organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ammonium bi­phenyl-4,4′-di­sulfonate

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 21 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title salt, 2NH4+·C12H8O6S22−, the dianion has crystallographic inversion symmetry. A three-dimensional framework is formed from primary hydrogen-bonded sheet structures comprising ammonium N—H⋯Osulfonate inter­actions and is linked peripherally through the biphenyl residues of the anions. This open framework has 43 Å3 solvent-accessible voids.

Related literature

Biphenyl-4,4′-disulfonate clathrate structures may be found in: Russell et al. (1997[Russell, V. A., Evans, C. C., Li, W. & Ward, M. D. (1997). Science, 276, 575-579.]); Swift, Pivovar et al. (1998[Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159-4168.]); Swift, Reynolds & Ward (1998[Swift, J. A., Pivovar, A. M., Reynolds, A. M. & Ward, M. D. (1998). J. Am. Chem. Soc. 120, 5887-5894.]); Swift & Ward (2000[Swift, J. A. & Ward, M. D. (2000). Chem. Mater. 12, 1501-1504.]); Pivovar et al. (2001[Pivovar, A. M., Holman, K. T. & Ward, M. D. (2001). Chem. Mater. 13, 3018-3031.]).

[Scheme 1]

Experimental

Crystal data
  • 2NH4+·C12H8O6S22−

  • Mr = 348.39

  • Monoclinic, P 21 /c

  • a = 14.778 (2) Å

  • b = 7.4138 (12) Å

  • c = 7.6647 (13) Å

  • β = 96.667 (13)°

  • V = 834.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 297 (2) K

  • 0.40 × 0.30 × 0.11 mm

Data collection
  • Rigaku AFC 7R four-circle diffractometer

  • Absorption correction: ψ scan (TEXSAN for Windows; Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]) Tmin = 0.874, Tmax = 0.963

  • 2129 measured reflections

  • 1909 independent reflections

  • 1030 reflections with I > 2σ(I)

  • Rint = 0.037

  • 3 standard reflections frequency: 150 min intensity decay: 1.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.172

  • S = 0.86

  • 1909 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O11i 0.91 (5) 1.96 (4) 2.861 (5) 172 (4)
N1—H12⋯O11ii 0.80 (5) 2.18 (5) 2.922 (5) 153 (5)
N1—H12⋯O13iii 0.80 (5) 2.45 (5) 2.955 (4) 122 (4)
N1—H13⋯O13 0.91 (6) 1.96 (6) 2.841 (5) 162 (4)
N1—H14⋯O12iv 0.88 (5) 1.97 (5) 2.848 (5) 174 (4)
C2—H2⋯O11 0.95 2.48 2.873 (6) 105
C6—H6⋯O12v 0.95 2.33 3.243 (6) 161
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The guanidinium salts of biphenyl-4,4'-disulfonic acid (BPDSH2) form two-dimensional hydrogen-bonded open-framework structures in which the guanidinium cations form sheets connected by BPDS pillars. (Russell et al., 1997). These structures may accommodate various molecular guest species, commonly aromatic hydrocarbons, giving crystalline clathrates of the type (Gu+)2 BPDS2-. nG (where G = the guest species) (Swift, Pivovar et al., 1998; Swift, Reynolds & Ward, 1998; Swift & Ward, 2000; Pivovar et al., 2001). Because it was considered that the ammonium salt of BPDSH2 might also have an open framework structure, we prepared crystals of anhydrous (NH4+)2 C12H8O6S22- (I) from an aqueous ammoniacal solution of the acid and the structure is reported here.

In (I), the planar anions have inversion symmetry coincident with crystallographic symmetry (Fig. 1). Each ammonium cation gives a total of five associations with sulfonate-O acceptors of the cation (Table 1) resulting in sheet structures which extend across the bc planes in the unit cell at a = 0. These sheets are linked across the a cell direction through the biphenyl residues of the BPDS anions, giving a three- dimensional framework structure (Fig. 2). There are 43 Å3 solvent accessible voids within the structure.

Related literature top

Biphenyl-4,4'-disulfonate clathrate structures may be found in: Russell et al. (1997); Swift, Pivovar et al. (1998); Swift, Reynolds & Ward (1998); Swift & Ward (2000); Pivovar et al. (2001).

Experimental top

Compound (I) was prepared by the room temperature interaction in a 2:1 stoichiometric ratio of ammonia as an aqueous solution with biphenyl-4,4'-disulfonic acid. Colourless crystal plates (m. p. >573 K) were obtained from the partial room temperature evaporation of this solution.

Refinement top

The ammonium hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C–H = 0.95 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

The guanidinium salts of biphenyl-4,4'-disulfonic acid (BPDSH2) form two-dimensional hydrogen-bonded open-framework structures in which the guanidinium cations form sheets connected by BPDS pillars. (Russell et al., 1997). These structures may accommodate various molecular guest species, commonly aromatic hydrocarbons, giving crystalline clathrates of the type (Gu+)2 BPDS2-. nG (where G = the guest species) (Swift, Pivovar et al., 1998; Swift, Reynolds & Ward, 1998; Swift & Ward, 2000; Pivovar et al., 2001). Because it was considered that the ammonium salt of BPDSH2 might also have an open framework structure, we prepared crystals of anhydrous (NH4+)2 C12H8O6S22- (I) from an aqueous ammoniacal solution of the acid and the structure is reported here.

In (I), the planar anions have inversion symmetry coincident with crystallographic symmetry (Fig. 1). Each ammonium cation gives a total of five associations with sulfonate-O acceptors of the cation (Table 1) resulting in sheet structures which extend across the bc planes in the unit cell at a = 0. These sheets are linked across the a cell direction through the biphenyl residues of the BPDS anions, giving a three- dimensional framework structure (Fig. 2). There are 43 Å3 solvent accessible voids within the structure.

Biphenyl-4,4'-disulfonate clathrate structures may be found in: Russell et al. (1997); Swift, Pivovar et al. (1998); Swift, Reynolds & Ward (1998); Swift & Ward (2000); Pivovar et al. (2001).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999); data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the BPDS anion in (I). Atoms of the inversion-related half of the compound are indicated by symmetry code (vi) (-x + 1, -y, -z + 1). The dashed lines represent the hydrogen bonds between the ammonium protons and the sulfonate-O acceptors.
[Figure 2] Fig. 2. A perspective view of the three-dimensional hydrogen-bonded framework structure of (I) with ammonium NH–Osulfonate sheets interlinked by the biphenyl residues of the BPDS anions.
Diammonium biphenyl-4,4'-disulfonate top
Crystal data top
2NH4+·C12H8O6S22F(000) = 364
Mr = 348.39Dx = 1.387 Mg m3
Monoclinic, P21/cMelting point > 573 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.778 (2) ÅCell parameters from 25 reflections
b = 7.4138 (12) Åθ = 13.7–17.1°
c = 7.6647 (13) ŵ = 0.35 mm1
β = 96.667 (13)°T = 297 K
V = 834.1 (2) Å3Plate, colourless
Z = 20.40 × 0.30 × 0.11 mm
Data collection top
Rigaku AFC 7R four-circle
diffractometer
1030 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ω–2θ scansh = 819
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation,1999)
k = 09
Tmin = 0.874, Tmax = 0.963l = 99
2129 measured reflections3 standard reflections every 150 min
1909 independent reflections intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.1P)2 + 0.8639P]
where P = (Fo2 + 2Fc2)/3
1909 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
2NH4+·C12H8O6S22V = 834.1 (2) Å3
Mr = 348.39Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.778 (2) ŵ = 0.35 mm1
b = 7.4138 (12) ÅT = 297 K
c = 7.6647 (13) Å0.40 × 0.30 × 0.11 mm
β = 96.667 (13)°
Data collection top
Rigaku AFC 7R four-circle
diffractometer
1030 reflections with I > 2σ(I)
Absorption correction: ψ scan
(TEXSAN for Windows; Molecular Structure Corporation,1999)
Rint = 0.037
Tmin = 0.874, Tmax = 0.9633 standard reflections every 150 min
2129 measured reflections intensity decay: 1.6%
1909 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.30 e Å3
1909 reflectionsΔρmin = 0.39 e Å3
116 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15898 (5)0.00272 (12)0.19165 (11)0.0282 (2)
O110.15361 (18)0.1393 (4)0.0601 (3)0.0415 (8)
O120.14295 (19)0.1783 (4)0.1126 (4)0.0458 (9)
O130.10228 (17)0.0332 (4)0.3285 (3)0.0442 (9)
C10.2732 (2)0.0001 (5)0.2931 (4)0.0313 (9)
C20.3348 (3)0.1181 (8)0.2409 (8)0.079 (2)
C30.4233 (3)0.1161 (8)0.3218 (8)0.086 (2)
C40.4528 (2)0.0004 (6)0.4560 (5)0.0383 (11)
C50.3888 (3)0.1184 (8)0.5045 (6)0.0660 (18)
C60.3001 (3)0.1182 (8)0.4249 (7)0.0664 (18)
N10.0887 (3)0.0292 (5)0.2899 (5)0.0376 (11)
H20.317100.201800.149400.0940*
H30.465800.198700.282700.1020*
H50.406000.203000.595500.0790*
H60.257400.201300.462400.0800*
H110.107 (3)0.055 (5)0.175 (6)0.039 (11)*
H120.110 (3)0.096 (7)0.357 (6)0.055 (15)*
H130.027 (4)0.035 (6)0.299 (5)0.055 (14)*
H140.109 (3)0.076 (7)0.323 (6)0.053 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0262 (4)0.0305 (4)0.0273 (4)0.0015 (4)0.0011 (3)0.0018 (4)
O110.0439 (16)0.0432 (15)0.0345 (13)0.0003 (13)0.0073 (11)0.0066 (12)
O120.0426 (16)0.0346 (15)0.0595 (17)0.0035 (12)0.0030 (13)0.0109 (13)
O130.0284 (13)0.073 (2)0.0313 (13)0.0046 (13)0.0043 (10)0.0096 (13)
C10.0245 (15)0.0370 (17)0.0324 (16)0.0007 (17)0.0030 (12)0.0043 (18)
C20.042 (3)0.089 (4)0.097 (4)0.024 (3)0.026 (3)0.067 (3)
C30.041 (3)0.098 (4)0.110 (4)0.028 (3)0.023 (3)0.073 (4)
C40.0226 (17)0.051 (2)0.0404 (19)0.0011 (19)0.0003 (14)0.010 (2)
C50.034 (2)0.090 (4)0.071 (3)0.010 (2)0.006 (2)0.053 (3)
C60.031 (2)0.090 (4)0.075 (3)0.016 (2)0.007 (2)0.054 (3)
N10.039 (2)0.046 (2)0.0285 (17)0.0049 (16)0.0073 (14)0.0010 (16)
Geometric parameters (Å, º) top
S1—O111.454 (3)C2—C31.381 (7)
S1—O121.444 (3)C3—C41.375 (7)
S1—O131.441 (3)C4—C51.371 (6)
S1—C11.775 (3)C4—C4i1.477 (4)
N1—H140.88 (5)C5—C61.380 (6)
N1—H110.91 (5)C2—H20.9500
N1—H120.80 (5)C3—H30.9500
N1—H130.91 (6)C5—H50.9500
C1—C61.361 (6)C6—H60.9500
C1—C21.357 (6)
O11—S1—O12111.65 (17)C1—C2—C3119.6 (5)
O11—S1—O13112.42 (16)C2—C3—C4123.0 (5)
O11—S1—C1105.58 (16)C3—C4—C5115.8 (4)
O12—S1—O13113.02 (17)C4i—C4—C5121.6 (4)
O12—S1—C1107.17 (17)C3—C4—C4i122.7 (4)
O13—S1—C1106.43 (15)C4—C5—C6122.0 (5)
H12—N1—H14101 (5)C1—C6—C5120.6 (5)
H13—N1—H14113 (4)C1—C2—H2120.00
H11—N1—H14113 (4)C3—C2—H2120.00
H11—N1—H12113 (4)C4—C3—H3118.00
H11—N1—H13104 (4)C2—C3—H3119.00
H12—N1—H13113 (4)C4—C5—H5119.00
C2—C1—C6119.1 (4)C6—C5—H5119.00
S1—C1—C2121.0 (3)C5—C6—H6120.00
S1—C1—C6120.0 (3)C1—C6—H6120.00
O11—S1—C1—C20.7 (4)C1—C2—C3—C40.6 (9)
O11—S1—C1—C6179.5 (3)C2—C3—C4—C50.9 (8)
O12—S1—C1—C2118.4 (4)C2—C3—C4—C4i178.9 (5)
O12—S1—C1—C661.4 (4)C3—C4—C5—C60.8 (7)
O13—S1—C1—C2120.4 (4)C4i—C4—C5—C6179.0 (5)
O13—S1—C1—C659.8 (4)C3—C4—C4i—C3i180.0 (5)
S1—C1—C2—C3179.6 (4)C3—C4—C4i—C5i0.2 (7)
C6—C1—C2—C30.2 (8)C5—C4—C4i—C3i0.2 (7)
S1—C1—C6—C5179.7 (4)C5—C4—C4i—C5i180.0 (5)
C2—C1—C6—C50.1 (7)C4—C5—C6—C10.5 (8)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O11ii0.91 (5)1.96 (4)2.861 (5)172 (4)
N1—H12···O11iii0.80 (5)2.18 (5)2.922 (5)153 (5)
N1—H12···O13iv0.80 (5)2.45 (5)2.955 (4)122 (4)
N1—H13···O130.91 (6)1.96 (6)2.841 (5)162 (4)
N1—H14···O12v0.88 (5)1.97 (5)2.848 (5)174 (4)
C2—H2···O110.952.482.873 (6)105
C6—H6···O12vi0.952.333.243 (6)161
Symmetry codes: (ii) x, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2NH4+·C12H8O6S22
Mr348.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)14.778 (2), 7.4138 (12), 7.6647 (13)
β (°) 96.667 (13)
V3)834.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.40 × 0.30 × 0.11
Data collection
DiffractometerRigaku AFC 7R four-circle
diffractometer
Absorption correctionψ scan
(TEXSAN for Windows; Molecular Structure Corporation,1999)
Tmin, Tmax0.874, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
2129, 1909, 1030
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.172, 0.86
No. of reflections1909
No. of parameters116
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.39

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999), TEXSAN for Windows (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O11i0.91 (5)1.96 (4)2.861 (5)172 (4)
N1—H12···O11ii0.80 (5)2.18 (5)2.922 (5)153 (5)
N1—H12···O13iii0.80 (5)2.45 (5)2.955 (4)122 (4)
N1—H13···O130.91 (6)1.96 (6)2.841 (5)162 (4)
N1—H14···O12iv0.88 (5)1.97 (5)2.848 (5)174 (4)
C2—H2···O110.952.482.873 (6)105
C6—H6···O12v0.952.333.243 (6)161
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1999). MSC/AFC Diffractometer Control Software and TEXSAN for Windows. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationPivovar, A. M., Holman, K. T. & Ward, M. D. (2001). Chem. Mater. 13, 3018–3031.  Web of Science CSD CrossRef CAS Google Scholar
First citationRussell, V. A., Evans, C. C., Li, W. & Ward, M. D. (1997). Science, 276, 575–579.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwift, J. A., Pivovar, A. M., Reynolds, A. M. & Ward, M. D. (1998). J. Am. Chem. Soc. 120, 5887–5894.  Web of Science CSD CrossRef CAS Google Scholar
First citationSwift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater. 10, 4159–4168.  Web of Science CSD CrossRef CAS Google Scholar
First citationSwift, J. A. & Ward, M. D. (2000). Chem. Mater. 12, 1501–1504.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds