organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Dioxo-1,10-phenanthrolin-1-ium nitrate

aSchool of Chemistry, University College of Science, University of Tehran, Tehran, Iran
*Correspondence e-mail: aabbasi@khayam.ut.ac.ir

(Received 29 November 2007; accepted 8 December 2007; online 18 December 2007)

In the title salt, C12H7N2O2+·NO3, the monoprotonated cation is connected to the nitrate anion by a hydrogen bond. Weak C—H⋯O hydrogen bonds hold the planar cations together in a layer structure.

Related literature

For related literature, see Fujihara et al. (2004[Fujihara, T., Wada, T. & Tanaka, K. (2004). Dalton Trans. pp. 645-652.]); Larsson & Ohström (2004[Larsson, K. & Ohström, L. (2004). Inorg. Chim. Acta, 357, 657-664.]). For the bromide salt, see: Bomfim et al. (2003[Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, o244-o246.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7N2O2+·NO3

  • Mr = 273.21

  • Monoclinic, C 2/c

  • a = 14.4860 (19) Å

  • b = 12.5177 (13) Å

  • c = 13.4535 (16) Å

  • β = 101.720 (12)°

  • V = 2388.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 290 (2) K

  • 0.30 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur 3 CCD diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 1997[Stoe & Cie (1997). X-RED. Version 1.09. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.960, Tmax = 0.989

  • 7311 measured reflections

  • 2095 independent reflections

  • 635 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.060

  • S = 0.83

  • 2095 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 1.95 2.703 (4) 145
C8—H8⋯O5i 0.93 2.48 3.396 (4) 167
C9—H9⋯O4i 0.93 2.71 3.359 (5) 128
C4—H4⋯O4ii 0.93 2.61 3.323 (4) 134
C3—H3⋯O3ii 0.93 2.40 3.209 (4) 146
C10—H10⋯O1iii 0.93 2.47 3.318 (5) 151
C5—H5⋯O2iv 0.93 2.37 3.266 (5) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

From a survey of the Cambridge Structural Database [version 5.28, updated Jan. 2007], we found two complexes containing O-protonated pdon (Fujihara, et al., 2004; Larsson, & Ohström, 2004). However, up to now, only one molecule is reported for the N-protonated pdon (C12H7N2O2+, Hpdon) with bromide ions as counter ion (Bomfim et al., 2003).

The molecular structure and atom-labeling scheme for (I) are shown in Fig. 1. There is a relatively strong hydrogen bond between the nitrate ion and to the protonated nitrogen atom in Hpdon (N1—H1···O5, 2.703 (4) Å). Weak C–H···O hydrogen bonds hold the approximately planar cations together in a layer structure (Fig. 2). The packing of the layers is similar to that in the bromide salt of Hpdon (Bomfim et al., 2003) without specific directional interactions between the layers. Ring A (C1–C5/N1), B (C6–C10/N2) and C (C1/C2/C12/C11/C7/C6) in the cation (C12H7N2O2+, Hpdon) is approximately planar. The interplanar angle between the least-square planes defined by ring A and two other rings, B and C, are 1.69 (5)° and 1.17 (5)°, respectively. While, rings B and C are almost planar, 0.52 (5)°. However, the C—N—C angle is affected by protonation and causes to increase from 116.6 (3)° to 122.7 (3)° in the rings B and A, respectively. Similar effect has also been shown in the previously reported Hpdon bromide by increasing from 116.8 (3)° to 123.2 (3)° for the corresponding values. The comparison of the torsion angle, O1—C12—C11—O2, 2.5 (6)°, in (I) with the molecular pdon indicates that the N-protonation in (I) doesn't significantly affect on dione groups.

Related literature top

For related literature, see Fujihara et al. (2004); Larsson & Ohström (2004). For the bromide salt, see: Bomfim et al. (2003).

Experimental top

The title compound was obtained during the reaction of thorium nitrate, Th(NO3)4.5H2O (Merck, 99%), and 1,10-phenanthroline-5,6-dione (Aldrich, 97%) in ethanolic solution. Pale-yellow crystals of Hpdon were taken from the obtained greenish precipitates. The presence of water in the ethanolic solution and the high basicity of dione ligand can be the reason for the protonation, providing the C12H7N2O2+, Hpdon cation. Thin fragile layer crystals were obtained by recrystallization from acetonitrile.

Refinement top

All H atoms were geometrically positioned and constrained to ride on their parent atoms, with Uiso(H) = 1.2 times Ueq(C,N).

Structure description top

From a survey of the Cambridge Structural Database [version 5.28, updated Jan. 2007], we found two complexes containing O-protonated pdon (Fujihara, et al., 2004; Larsson, & Ohström, 2004). However, up to now, only one molecule is reported for the N-protonated pdon (C12H7N2O2+, Hpdon) with bromide ions as counter ion (Bomfim et al., 2003).

The molecular structure and atom-labeling scheme for (I) are shown in Fig. 1. There is a relatively strong hydrogen bond between the nitrate ion and to the protonated nitrogen atom in Hpdon (N1—H1···O5, 2.703 (4) Å). Weak C–H···O hydrogen bonds hold the approximately planar cations together in a layer structure (Fig. 2). The packing of the layers is similar to that in the bromide salt of Hpdon (Bomfim et al., 2003) without specific directional interactions between the layers. Ring A (C1–C5/N1), B (C6–C10/N2) and C (C1/C2/C12/C11/C7/C6) in the cation (C12H7N2O2+, Hpdon) is approximately planar. The interplanar angle between the least-square planes defined by ring A and two other rings, B and C, are 1.69 (5)° and 1.17 (5)°, respectively. While, rings B and C are almost planar, 0.52 (5)°. However, the C—N—C angle is affected by protonation and causes to increase from 116.6 (3)° to 122.7 (3)° in the rings B and A, respectively. Similar effect has also been shown in the previously reported Hpdon bromide by increasing from 116.8 (3)° to 123.2 (3)° for the corresponding values. The comparison of the torsion angle, O1—C12—C11—O2, 2.5 (6)°, in (I) with the molecular pdon indicates that the N-protonation in (I) doesn't significantly affect on dione groups.

For related literature, see Fujihara et al. (2004); Larsson & Ohström (2004). For the bromide salt, see: Bomfim et al. (2003).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.
[Figure 2] Fig. 2. Packing view for (I), showing the hydrogen bonds as dashed lines.
5,6-Dioxo-1,10-phenanthrolin-1-ium nitrate top
Crystal data top
C12H7N2O2+·NO3F(000) = 1120
Mr = 273.21Dx = 1.519 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7311 reflections
a = 14.4860 (19) Åθ = 3.5–25.0°
b = 12.5177 (13) ŵ = 0.12 mm1
c = 13.4535 (16) ÅT = 290 K
β = 101.720 (12)°Needle, pale-yellow
V = 2388.7 (5) Å30.30 × 0.10 × 0.08 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur 3 CCD
diffractometer
2095 independent reflections
Radiation source: fine-focus sealed tube635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 12 pixels mm-1θmax = 25.0°, θmin = 3.8°
ω–scans at different φh = 1717
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
k = 1414
Tmin = 0.960, Tmax = 0.989l = 1015
7311 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
2095 reflectionsΔρmax = 0.31 e Å3
182 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00072 (4)
Crystal data top
C12H7N2O2+·NO3V = 2388.7 (5) Å3
Mr = 273.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.4860 (19) ŵ = 0.12 mm1
b = 12.5177 (13) ÅT = 290 K
c = 13.4535 (16) Å0.30 × 0.10 × 0.08 mm
β = 101.720 (12)°
Data collection top
Oxford Diffraction Xcalibur 3 CCD
diffractometer
2095 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1997)
635 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.989Rint = 0.068
7311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 0.83Δρmax = 0.31 e Å3
2095 reflectionsΔρmin = 0.14 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85417 (17)0.13522 (19)0.12439 (18)0.0673 (8)
O20.85003 (19)0.08376 (19)0.1238 (2)0.0834 (10)
O30.30299 (14)0.0377 (2)0.07097 (16)0.0649 (7)
O40.22236 (15)0.03456 (19)0.17219 (15)0.0613 (6)
O50.34903 (16)0.11186 (18)0.14632 (16)0.0622 (7)
N10.52797 (19)0.1426 (2)0.12265 (18)0.0439 (9)
H10.47760.10630.12300.053*
N20.5205 (2)0.0692 (2)0.1274 (2)0.0488 (9)
N30.29121 (19)0.0361 (3)0.1292 (2)0.0476 (8)
C10.6089 (3)0.0896 (3)0.1224 (2)0.0370 (9)
C20.6903 (3)0.1473 (3)0.1211 (2)0.0374 (10)
C30.6870 (3)0.2573 (3)0.1201 (2)0.0528 (11)
H30.74110.29690.11910.063*
C40.6018 (3)0.3086 (3)0.1207 (2)0.0550 (11)
H40.59860.38280.11980.066*
C50.5228 (3)0.2490 (3)0.1224 (2)0.0502 (11)
H50.46570.28260.12350.060*
C60.6062 (3)0.0275 (3)0.1258 (2)0.0380 (9)
C70.6867 (3)0.0879 (3)0.1278 (2)0.0421 (10)
C80.6798 (3)0.1978 (3)0.1312 (2)0.0534 (13)
H80.73200.24110.13190.064*
C90.5922 (3)0.2415 (3)0.1336 (2)0.0589 (12)
H90.58520.31510.13690.071*
C100.5151 (3)0.1749 (3)0.1308 (3)0.0589 (13)
H100.45680.20580.13140.071*
C110.7780 (3)0.0351 (4)0.1244 (2)0.0526 (10)
C120.7807 (3)0.0894 (3)0.1227 (2)0.0469 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0405 (19)0.064 (2)0.102 (2)0.0165 (15)0.0270 (16)0.0046 (15)
O20.051 (2)0.062 (2)0.146 (2)0.0150 (16)0.0412 (18)0.0002 (17)
O30.0736 (19)0.0573 (18)0.0696 (16)0.0079 (15)0.0282 (13)0.0205 (15)
O40.0508 (18)0.0664 (15)0.0730 (16)0.0081 (16)0.0276 (13)0.0048 (14)
O50.0453 (17)0.0477 (18)0.0977 (18)0.0163 (14)0.0242 (14)0.0116 (15)
N10.036 (2)0.038 (2)0.0605 (19)0.0038 (18)0.0143 (17)0.0013 (19)
N20.054 (2)0.035 (2)0.0620 (19)0.0086 (17)0.0214 (18)0.0027 (17)
N30.041 (2)0.051 (2)0.053 (2)0.005 (2)0.0144 (17)0.001 (2)
C10.034 (3)0.038 (3)0.041 (2)0.007 (2)0.012 (2)0.003 (2)
C20.037 (3)0.033 (3)0.044 (2)0.008 (2)0.011 (2)0.006 (2)
C30.056 (3)0.043 (3)0.065 (3)0.009 (3)0.023 (2)0.002 (2)
C40.067 (4)0.034 (3)0.066 (3)0.001 (3)0.020 (2)0.004 (2)
C50.050 (3)0.035 (3)0.068 (3)0.007 (2)0.017 (2)0.000 (2)
C60.037 (3)0.035 (3)0.042 (2)0.001 (3)0.0093 (19)0.010 (3)
C70.038 (3)0.036 (3)0.053 (2)0.002 (2)0.011 (2)0.002 (2)
C80.060 (4)0.030 (3)0.070 (3)0.005 (2)0.012 (2)0.003 (2)
C90.073 (4)0.037 (3)0.065 (3)0.015 (3)0.010 (3)0.001 (2)
C100.058 (4)0.045 (3)0.075 (3)0.005 (2)0.016 (3)0.003 (2)
C110.052 (3)0.051 (3)0.059 (2)0.002 (3)0.021 (2)0.001 (3)
C120.050 (3)0.048 (3)0.046 (2)0.000 (3)0.018 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C121.206 (4)C3—C41.392 (4)
O2—C111.210 (3)C3—H30.9300
O3—N31.244 (3)C4—C51.371 (4)
O4—N31.251 (3)C4—H40.9300
O5—N31.256 (3)C5—H50.9300
N1—C51.335 (4)C6—C71.385 (4)
N1—C11.347 (4)C7—C81.381 (4)
N1—H10.8600C7—C111.488 (4)
N2—C101.326 (4)C8—C91.387 (4)
N2—C61.350 (4)C8—H80.9300
C1—C21.387 (4)C9—C101.389 (4)
C1—C61.467 (4)C9—H90.9300
C2—C31.377 (4)C10—H100.9300
C2—C121.492 (4)C11—C121.559 (4)
C5—N1—C1122.7 (3)N2—C6—C7124.1 (4)
C5—N1—H1118.7N2—C6—C1114.7 (4)
C1—N1—H1118.7C7—C6—C1121.2 (4)
C10—N2—C6116.6 (3)C8—C7—C6118.5 (4)
O3—N3—O4120.3 (3)C8—C7—C11120.9 (4)
O3—N3—O5120.3 (3)C6—C7—C11120.5 (4)
O4—N3—O5119.4 (3)C7—C8—C9117.8 (4)
N1—C1—C2119.1 (4)C7—C8—H8121.1
N1—C1—C6117.6 (4)C9—C8—H8121.1
C2—C1—C6123.3 (4)C8—C9—C10119.8 (4)
C3—C2—C1119.5 (4)C8—C9—H9120.1
C3—C2—C12121.0 (4)C10—C9—H9120.1
C1—C2—C12119.5 (4)N2—C10—C9123.1 (4)
C2—C3—C4119.4 (4)N2—C10—H10118.4
C2—C3—H3120.3C9—C10—H10118.4
C4—C3—H3120.3O2—C11—C7123.4 (5)
C5—C4—C3119.6 (4)O2—C11—C12118.6 (4)
C5—C4—H4120.2C7—C11—C12118.0 (4)
C3—C4—H4120.2O1—C12—C2122.5 (4)
N1—C5—C4119.8 (4)O1—C12—C11120.0 (4)
N1—C5—H5120.1C2—C12—C11117.5 (4)
C4—C5—H5120.1
C5—N1—C1—C20.5 (5)N2—C6—C7—C11179.1 (3)
C5—N1—C1—C6178.2 (3)C1—C6—C7—C111.2 (5)
N1—C1—C2—C30.0 (5)C6—C7—C8—C90.7 (5)
C6—C1—C2—C3178.6 (3)C11—C7—C8—C9179.5 (3)
N1—C1—C2—C12178.9 (3)C7—C8—C9—C101.0 (5)
C6—C1—C2—C120.3 (5)C6—N2—C10—C90.5 (5)
C1—C2—C3—C40.1 (5)C8—C9—C10—N21.0 (6)
C12—C2—C3—C4178.7 (3)C8—C7—C11—O20.4 (5)
C2—C3—C4—C50.2 (5)C6—C7—C11—O2178.4 (3)
C1—N1—C5—C40.8 (5)C8—C7—C11—C12178.9 (3)
C3—C4—C5—N10.6 (6)C6—C7—C11—C122.3 (5)
C10—N2—C6—C70.2 (5)C3—C2—C12—O10.9 (5)
C10—N2—C6—C1179.8 (3)C1—C2—C12—O1178.0 (4)
N1—C1—C6—N20.9 (5)C3—C2—C12—C11179.6 (3)
C2—C1—C6—N2179.5 (3)C1—C2—C12—C110.8 (4)
N1—C1—C6—C7178.7 (3)O2—C11—C12—O12.5 (6)
C2—C1—C6—C70.1 (5)C7—C11—C12—O1176.8 (3)
N2—C6—C7—C80.3 (5)O2—C11—C12—C2178.6 (3)
C1—C6—C7—C8179.9 (3)C7—C11—C12—C22.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.952.703 (4)145
C8—H8···O5i0.932.483.396 (4)167
C9—H9···O4i0.932.713.359 (5)128
C4—H4···O4ii0.932.613.323 (4)134
C3—H3···O3ii0.932.403.209 (4)146
C10—H10···O1iii0.932.473.318 (5)151
C5—H5···O2iv0.932.373.266 (5)162
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC12H7N2O2+·NO3
Mr273.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)14.4860 (19), 12.5177 (13), 13.4535 (16)
β (°) 101.720 (12)
V3)2388.7 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur 3 CCD
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.960, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
7311, 2095, 635
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.060, 0.83
No. of reflections2095
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.14

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2001), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.952.703 (4)145.1
C8—H8···O5i0.932.483.396 (4)167.0
C9—H9···O4i0.932.713.359 (5)127.9
C4—H4···O4ii0.932.613.323 (4)133.9
C3—H3···O3ii0.932.403.209 (4)145.8
C10—H10···O1iii0.932.473.318 (5)150.9
C5—H5···O2iv0.932.373.266 (5)162.0
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by grants from the University of Tehran and the Swedish Research Council. The authors are grateful to Professor Magnus Sandström for his support.

References

First citationBomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, o244–o246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFujihara, T., Wada, T. & Tanaka, K. (2004). Dalton Trans. pp. 645–652.  Web of Science CSD CrossRef Google Scholar
First citationLarsson, K. & Ohström, L. (2004). Inorg. Chim. Acta, 357, 657–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171.29.2. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). X-RED. Version 1.09. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds