organic compounds
(E)-O-Isopropyl N-(4-nitrophenyl)thiocarbamate
aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
*Correspondence e-mail: edward.tiekink@utsa.edu
The configuration of the thione–aryl C—N single bond in the title molecule, C10H12N2O3S, is E. Centrosymmetrically related molecules are connected into a dimer via an eight-membered thioamide {⋯H—N—C=S}2 synthon and molecules are consolidated into the via C—H⋯O interactions.
Related literature
For related structures, see: Ho et al. (2005); Kuan et al. (2007). For related literature, see: Ho et al. (2006); Ho & Tiekink (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell TwinSolve (Rigaku and Prekat AB, 2006); data reduction: TwinSolve; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807067360/ng2410sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807067360/ng2410Isup2.hkl
Compound (I) was prepared by refluxing 4-nitrophenylisothiocyanate (Aldrich) with 2-propanol using standard methods (Ho et al., 2005). The yellow precipitate, which was obtained upon concentration of the reaction solution, was dissolved in diethyl ether and layered with hexane in a 1:1 ratio. Yellow crystals were isolated by slow evaporation; m. p. 465 - 469 K. IR (cm-1): ν(N—H) 3241 (br), ν(NO2) 1549 (s), ν(CN) 1494 (s), ν(NO2) (s), ν(CS) 1083 (s). NMR (DMSO, p.p.m.): δ 1.37 (6 H, d, J = 6.2 Hz, CH3), 5.56 (1 H, septet, J = 6.2 Hz, CH), 7.78 (2 H, br, aryl-H), 8.21 (2 H, br, aryl-H), 11.52 (1 H, br, NH).
All H atoms were included in the riding-model approximation with C—H = 0.95 to 1.00 Å and N—H = 0.88 Å, and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(N and remaining-C).
The title thiocarbamate (I), Fig. 1, was investigated as a part of an on-going evaluation of the structural features of these molecules (Ho et al., 2005; Kuan et al., 2007) along with their phosphinegold(I) complexes (Ho et al., 2006; Ho & Tiekink, 2007). While the central portion of the molecule is planar, small twists are evident in the outer extremities as seen in the N1/C1/O1/H8 and C1/N1/C2/C3 torsion angles of 33 and -20.0 (5)°, respectively. Geometric parameters resemble those found in related systems (Ho et al., 2005; Kuan et al., 2007). The key synthon in the
is the eight-membered thioamide {···H—N—C=S}2 synthon, Table 1, as found in most thiocarbamate structures (Kuan et al., 2007). The dimers thus formed stack into layers along the c axis with the projecting on either side to from aliphatic layers. Interactions of the type C—H···O, involving each of the nitro-O atoms, are formed within and between layers, Table 1.For related structures, see: Ho et al. (2005); Kuan et al. (2007). For related literature, see: Ho et al. (2006); Ho & Tiekink (2007).
Data collection: CrystalClear (Rigaku, 2005); cell
TwinSolve (Rigaku and Prekat AB, 2006); data reduction: TwinSolve (Rigaku and Prekat AB, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C10H12N2O3S | Z = 2 |
Mr = 240.28 | F(000) = 252 |
Triclinic, P1 | Dx = 1.400 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71070 Å |
a = 7.4200 (8) Å | Cell parameters from 4435 reflections |
b = 8.3206 (9) Å | θ = 2.6–29.2° |
c = 10.0993 (11) Å | µ = 0.28 mm−1 |
α = 111.414 (4)° | T = 98 K |
β = 97.877 (5)° | Block, yellow |
γ = 94.130 (5)° | 0.30 × 0.18 × 0.10 mm |
V = 569.94 (11) Å3 |
Rigaku AFC12κ/SATURN724 diffractometer | 2221 independent reflections |
Radiation source: fine-focus sealed tube | 2103 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 26.0°, θmin = 2.7° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→9 |
Tmin = 0.915, Tmax = 1 | k = −10→10 |
3875 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.33 | w = 1/[σ2(Fo2) + (0.0191P)2 + 0.7747P] where P = (Fo2 + 2Fc2)/3 |
2221 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C10H12N2O3S | γ = 94.130 (5)° |
Mr = 240.28 | V = 569.94 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4200 (8) Å | Mo Kα radiation |
b = 8.3206 (9) Å | µ = 0.28 mm−1 |
c = 10.0993 (11) Å | T = 98 K |
α = 111.414 (4)° | 0.30 × 0.18 × 0.10 mm |
β = 97.877 (5)° |
Rigaku AFC12κ/SATURN724 diffractometer | 2221 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2103 reflections with I > 2σ(I) |
Tmin = 0.915, Tmax = 1 | Rint = 0.024 |
3875 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.33 | Δρmax = 0.29 e Å−3 |
2221 reflections | Δρmin = −0.24 e Å−3 |
145 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.55527 (11) | 0.09264 (11) | 0.23408 (8) | 0.0271 (2) | |
O1 | 0.2493 (3) | 0.2303 (3) | 0.3002 (2) | 0.0227 (4) | |
O2 | −0.4727 (3) | 0.3762 (3) | −0.1315 (2) | 0.0369 (6) | |
O3 | −0.3181 (3) | 0.3892 (3) | −0.2947 (2) | 0.0391 (6) | |
N1 | 0.2838 (3) | 0.1543 (3) | 0.0701 (2) | 0.0238 (5) | |
H1N | 0.3503 | 0.1049 | 0.0042 | 0.029* | |
N2 | −0.3330 (3) | 0.3620 (3) | −0.1846 (3) | 0.0268 (6) | |
C1 | 0.3532 (4) | 0.1629 (4) | 0.2037 (3) | 0.0215 (6) | |
C2 | 0.1242 (4) | 0.2101 (4) | 0.0165 (3) | 0.0216 (6) | |
C3 | −0.0289 (4) | 0.2438 (4) | 0.0835 (3) | 0.0247 (6) | |
H3 | −0.0301 | 0.2328 | 0.1737 | 0.030* | |
C4 | −0.1797 (4) | 0.2937 (4) | 0.0174 (3) | 0.0241 (6) | |
H4 | −0.2850 | 0.3168 | 0.0618 | 0.029* | |
C5 | −0.1743 (4) | 0.3091 (4) | −0.1142 (3) | 0.0218 (6) | |
C6 | −0.0249 (4) | 0.2768 (4) | −0.1820 (3) | 0.0255 (6) | |
H6 | −0.0240 | 0.2889 | −0.2719 | 0.031* | |
C7 | 0.1240 (4) | 0.2261 (4) | −0.1162 (3) | 0.0256 (6) | |
H7 | 0.2279 | 0.2018 | −0.1621 | 0.031* | |
C8 | 0.3146 (4) | 0.2614 (4) | 0.4537 (3) | 0.0244 (6) | |
H8 | 0.4509 | 0.2935 | 0.4777 | 0.029* | |
C9 | 0.2226 (5) | 0.4141 (4) | 0.5385 (3) | 0.0306 (7) | |
H9A | 0.2637 | 0.5168 | 0.5193 | 0.046* | |
H9B | 0.2557 | 0.4388 | 0.6419 | 0.046* | |
H9C | 0.0891 | 0.3852 | 0.5088 | 0.046* | |
C10 | 0.2626 (5) | 0.0986 (4) | 0.4801 (3) | 0.0331 (7) | |
H10A | 0.3280 | 0.0054 | 0.4248 | 0.050* | |
H10B | 0.1300 | 0.0627 | 0.4494 | 0.050* | |
H10C | 0.2962 | 0.1218 | 0.5833 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0270 (4) | 0.0355 (4) | 0.0209 (4) | 0.0135 (3) | 0.0040 (3) | 0.0115 (3) |
O1 | 0.0240 (10) | 0.0282 (11) | 0.0172 (10) | 0.0079 (8) | 0.0036 (8) | 0.0095 (8) |
O2 | 0.0287 (12) | 0.0482 (15) | 0.0355 (13) | 0.0145 (11) | 0.0051 (10) | 0.0161 (11) |
O3 | 0.0336 (13) | 0.0576 (16) | 0.0340 (13) | 0.0068 (11) | −0.0020 (10) | 0.0294 (12) |
N1 | 0.0260 (13) | 0.0285 (13) | 0.0176 (12) | 0.0101 (10) | 0.0044 (10) | 0.0083 (10) |
N2 | 0.0272 (14) | 0.0238 (13) | 0.0262 (13) | 0.0006 (10) | −0.0026 (11) | 0.0089 (11) |
C1 | 0.0269 (15) | 0.0216 (14) | 0.0161 (13) | 0.0057 (12) | 0.0023 (11) | 0.0072 (11) |
C2 | 0.0229 (14) | 0.0199 (14) | 0.0184 (14) | 0.0013 (11) | −0.0002 (11) | 0.0049 (11) |
C3 | 0.0262 (15) | 0.0313 (16) | 0.0191 (14) | 0.0066 (12) | 0.0029 (11) | 0.0125 (12) |
C4 | 0.0235 (15) | 0.0253 (15) | 0.0238 (15) | 0.0058 (12) | 0.0072 (12) | 0.0082 (12) |
C5 | 0.0233 (14) | 0.0183 (14) | 0.0209 (14) | 0.0007 (11) | −0.0039 (11) | 0.0071 (11) |
C6 | 0.0303 (16) | 0.0275 (16) | 0.0190 (14) | 0.0029 (12) | 0.0032 (12) | 0.0097 (12) |
C7 | 0.0234 (15) | 0.0310 (16) | 0.0228 (15) | 0.0062 (12) | 0.0056 (12) | 0.0098 (13) |
C8 | 0.0256 (15) | 0.0311 (16) | 0.0175 (14) | 0.0065 (12) | 0.0014 (11) | 0.0109 (12) |
C9 | 0.0358 (17) | 0.0305 (17) | 0.0258 (16) | 0.0099 (14) | 0.0080 (13) | 0.0093 (13) |
C10 | 0.0429 (19) | 0.0363 (18) | 0.0262 (16) | 0.0100 (15) | 0.0087 (14) | 0.0171 (14) |
S1—C1 | 1.678 (3) | C4—H4 | 0.9500 |
O1—C1 | 1.314 (3) | C5—C6 | 1.373 (4) |
O1—C8 | 1.479 (3) | C6—C7 | 1.383 (4) |
O2—N2 | 1.224 (3) | C6—H6 | 0.9500 |
O3—N2 | 1.231 (3) | C7—H7 | 0.9500 |
N1—C1 | 1.352 (3) | C8—C10 | 1.508 (4) |
N1—C2 | 1.413 (4) | C8—C9 | 1.517 (4) |
N1—H1N | 0.8800 | C8—H8 | 1.0000 |
N2—C5 | 1.470 (4) | C9—H9A | 0.9800 |
C2—C7 | 1.394 (4) | C9—H9B | 0.9800 |
C2—C3 | 1.395 (4) | C9—H9C | 0.9800 |
C3—C4 | 1.391 (4) | C10—H10A | 0.9800 |
C3—H3 | 0.9500 | C10—H10B | 0.9800 |
C4—C5 | 1.387 (4) | C10—H10C | 0.9800 |
C1—O1—C8 | 119.8 (2) | C5—C6—H6 | 120.9 |
C1—N1—C2 | 131.9 (2) | C7—C6—H6 | 120.9 |
C1—N1—H1N | 114.0 | C6—C7—C2 | 121.1 (3) |
C2—N1—H1N | 114.0 | C6—C7—H7 | 119.4 |
O2—N2—O3 | 123.5 (3) | C2—C7—H7 | 119.4 |
O2—N2—C5 | 118.7 (2) | O1—C8—C10 | 109.3 (2) |
O3—N2—C5 | 117.8 (2) | O1—C8—C9 | 105.0 (2) |
O1—C1—N1 | 113.7 (2) | C10—C8—C9 | 112.9 (3) |
O1—C1—S1 | 126.2 (2) | O1—C8—H8 | 109.8 |
N1—C1—S1 | 120.2 (2) | C10—C8—H8 | 109.8 |
C7—C2—C3 | 119.6 (3) | C9—C8—H8 | 109.8 |
C7—C2—N1 | 115.1 (3) | C8—C9—H9A | 109.5 |
C3—C2—N1 | 125.2 (3) | C8—C9—H9B | 109.5 |
C4—C3—C2 | 119.6 (3) | H9A—C9—H9B | 109.5 |
C4—C3—H3 | 120.2 | C8—C9—H9C | 109.5 |
C2—C3—H3 | 120.2 | H9A—C9—H9C | 109.5 |
C5—C4—C3 | 119.0 (3) | H9B—C9—H9C | 109.5 |
C5—C4—H4 | 120.5 | C8—C10—H10A | 109.5 |
C3—C4—H4 | 120.5 | C8—C10—H10B | 109.5 |
C6—C5—C4 | 122.4 (3) | H10A—C10—H10B | 109.5 |
C6—C5—N2 | 118.3 (3) | C8—C10—H10C | 109.5 |
C4—C5—N2 | 119.4 (3) | H10A—C10—H10C | 109.5 |
C5—C6—C7 | 118.2 (3) | H10B—C10—H10C | 109.5 |
C8—O1—C1—N1 | −175.0 (2) | O2—N2—C5—C6 | 173.7 (3) |
C8—O1—C1—S1 | 4.4 (4) | O3—N2—C5—C6 | −6.1 (4) |
C2—N1—C1—O1 | 2.6 (4) | O2—N2—C5—C4 | −6.4 (4) |
C2—N1—C1—S1 | −176.8 (3) | O3—N2—C5—C4 | 173.8 (3) |
C1—N1—C2—C7 | 162.0 (3) | C4—C5—C6—C7 | 0.4 (4) |
C1—N1—C2—C3 | −19.9 (5) | N2—C5—C6—C7 | −179.7 (3) |
C7—C2—C3—C4 | −0.2 (4) | C5—C6—C7—C2 | −0.8 (4) |
N1—C2—C3—C4 | −178.3 (3) | C3—C2—C7—C6 | 0.7 (4) |
C2—C3—C4—C5 | −0.1 (4) | N1—C2—C7—C6 | 178.9 (3) |
C3—C4—C5—C6 | 0.0 (4) | C1—O1—C8—C10 | −87.1 (3) |
C3—C4—C5—N2 | −179.9 (3) | C1—O1—C8—C9 | 151.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···S1i | 0.88 | 2.59 | 3.440 (2) | 162 |
C7—H7···O2ii | 0.95 | 2.48 | 3.204 (4) | 133 |
C8—H8···O3iii | 1.00 | 2.50 | 3.275 (4) | 134 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C10H12N2O3S |
Mr | 240.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 98 |
a, b, c (Å) | 7.4200 (8), 8.3206 (9), 10.0993 (11) |
α, β, γ (°) | 111.414 (4), 97.877 (5), 94.130 (5) |
V (Å3) | 569.94 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.30 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC12κ/SATURN724 |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.915, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3875, 2221, 2103 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.119, 1.33 |
No. of reflections | 2221 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.24 |
Computer programs: CrystalClear (Rigaku, 2005), TwinSolve (Rigaku and Prekat AB, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···S1i | 0.88 | 2.59 | 3.440 (2) | 162 |
C7—H7···O2ii | 0.95 | 2.48 | 3.204 (4) | 133 |
C8—H8···O3iii | 1.00 | 2.50 | 3.275 (4) | 134 |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) x+1, y, z+1. |
Acknowledgements
The MBRS RISE program (GM 60655) is thanked for the support of CAE. We thank CNPq and FAPESP (Brazil) and UTSA for support to allow JZ-S to spend a sabbatical at UTSA.
References
Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany. Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682–689. Web of Science CSD CrossRef CAS Google Scholar
Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574–581. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Rigaku and Prekat AB (2006). TwinSolve. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Prekat AB, Lund, Sweden. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title thiocarbamate (I), Fig. 1, was investigated as a part of an on-going evaluation of the structural features of these molecules (Ho et al., 2005; Kuan et al., 2007) along with their phosphinegold(I) complexes (Ho et al., 2006; Ho & Tiekink, 2007). While the central portion of the molecule is planar, small twists are evident in the outer extremities as seen in the N1/C1/O1/H8 and C1/N1/C2/C3 torsion angles of 33 and -20.0 (5)°, respectively. Geometric parameters resemble those found in related systems (Ho et al., 2005; Kuan et al., 2007). The key synthon in the crystal structure is the eight-membered thioamide {···H—N—C=S}2 synthon, Table 1, as found in most thiocarbamate structures (Kuan et al., 2007). The dimers thus formed stack into layers along the c axis with the alkyl groups projecting on either side to from aliphatic layers. Interactions of the type C—H···O, involving each of the nitro-O atoms, are formed within and between layers, Table 1.