organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-O-Iso­propyl N-(4-nitro­phen­yl)thio­carbamate

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 16 December 2007; accepted 17 December 2007; online 21 December 2007)

The configuration of the thione–aryl C—N single bond in the title mol­ecule, C10H12N2O3S, is E. Centrosymmetrically related mol­ecules are connected into a dimer via an eight-membered thio­amide {⋯H—N—C=S}2 synthon and mol­ecules are consolidated into the crystal structure via C—H⋯O inter­actions.

Related literature

For related structures, see: Ho et al. (2005[Ho, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682-689.]); Kuan et al. (2007[Kuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574-581.]). For related literature, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3S

  • Mr = 240.28

  • Triclinic, [P \overline 1]

  • a = 7.4200 (8) Å

  • b = 8.3206 (9) Å

  • c = 10.0993 (11) Å

  • α = 111.414 (4)°

  • β = 97.877 (5)°

  • γ = 94.130 (5)°

  • V = 569.94 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 98 (2) K

  • 0.30 × 0.18 × 0.10 mm

Data collection
  • Rigaku AFC12κ/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.915, Tmax = 1 (expected range = 0.890–0.973)

  • 3875 measured reflections

  • 2221 independent reflections

  • 2103 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.119

  • S = 1.33

  • 2221 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯S1i 0.88 2.59 3.440 (2) 162
C7—H7⋯O2ii 0.95 2.48 3.204 (4) 133
C8—H8⋯O3iii 1.00 2.50 3.275 (4) 134
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) x+1, y, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: TwinSolve (Rigaku and Prekat AB, 2006[Rigaku and Prekat AB (2006). TwinSolve. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Prekat AB, Lund, Sweden.]); data reduction: TwinSolve; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title thiocarbamate (I), Fig. 1, was investigated as a part of an on-going evaluation of the structural features of these molecules (Ho et al., 2005; Kuan et al., 2007) along with their phosphinegold(I) complexes (Ho et al., 2006; Ho & Tiekink, 2007). While the central portion of the molecule is planar, small twists are evident in the outer extremities as seen in the N1/C1/O1/H8 and C1/N1/C2/C3 torsion angles of 33 and -20.0 (5)°, respectively. Geometric parameters resemble those found in related systems (Ho et al., 2005; Kuan et al., 2007). The key synthon in the crystal structure is the eight-membered thioamide {···H—N—C=S}2 synthon, Table 1, as found in most thiocarbamate structures (Kuan et al., 2007). The dimers thus formed stack into layers along the c axis with the alkyl groups projecting on either side to from aliphatic layers. Interactions of the type C—H···O, involving each of the nitro-O atoms, are formed within and between layers, Table 1.

Related literature top

For related structures, see: Ho et al. (2005); Kuan et al. (2007). For related literature, see: Ho et al. (2006); Ho & Tiekink (2007).

Experimental top

Compound (I) was prepared by refluxing 4-nitrophenylisothiocyanate (Aldrich) with 2-propanol using standard methods (Ho et al., 2005). The yellow precipitate, which was obtained upon concentration of the reaction solution, was dissolved in diethyl ether and layered with hexane in a 1:1 ratio. Yellow crystals were isolated by slow evaporation; m. p. 465 - 469 K. IR (cm-1): ν(N—H) 3241 (br), ν(NO2) 1549 (s), ν(CN) 1494 (s), ν(NO2) (s), ν(CS) 1083 (s). NMR (DMSO, p.p.m.): δ 1.37 (6 H, d, J = 6.2 Hz, CH3), 5.56 (1 H, septet, J = 6.2 Hz, CH), 7.78 (2 H, br, aryl-H), 8.21 (2 H, br, aryl-H), 11.52 (1 H, br, NH).

Refinement top

All H atoms were included in the riding-model approximation with C—H = 0.95 to 1.00 Å and N—H = 0.88 Å, and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(N and remaining-C).

Structure description top

The title thiocarbamate (I), Fig. 1, was investigated as a part of an on-going evaluation of the structural features of these molecules (Ho et al., 2005; Kuan et al., 2007) along with their phosphinegold(I) complexes (Ho et al., 2006; Ho & Tiekink, 2007). While the central portion of the molecule is planar, small twists are evident in the outer extremities as seen in the N1/C1/O1/H8 and C1/N1/C2/C3 torsion angles of 33 and -20.0 (5)°, respectively. Geometric parameters resemble those found in related systems (Ho et al., 2005; Kuan et al., 2007). The key synthon in the crystal structure is the eight-membered thioamide {···H—N—C=S}2 synthon, Table 1, as found in most thiocarbamate structures (Kuan et al., 2007). The dimers thus formed stack into layers along the c axis with the alkyl groups projecting on either side to from aliphatic layers. Interactions of the type C—H···O, involving each of the nitro-O atoms, are formed within and between layers, Table 1.

For related structures, see: Ho et al. (2005); Kuan et al. (2007). For related literature, see: Ho et al. (2006); Ho & Tiekink (2007).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: TwinSolve (Rigaku and Prekat AB, 2006); data reduction: TwinSolve (Rigaku and Prekat AB, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Dimer formation in (I) mediated by N—H···S hydrogen bonding (dashed lines) between the centrosymmetrically related molecules, showing atom labelling and displacement ellipsoids at the 70% probability level. The unlabelled atoms are related to the labelled atoms by 1 - x, -y, -z.
[Figure 2] Fig. 2. Crystal packing in (I) viewed down the a axis. N—H···S hydrogen bonding is shown as orange dashed lines.
(E)-O-Isopropyl N-(4-nitrophenyl)thiocarbamate top
Crystal data top
C10H12N2O3SZ = 2
Mr = 240.28F(000) = 252
Triclinic, P1Dx = 1.400 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.4200 (8) ÅCell parameters from 4435 reflections
b = 8.3206 (9) Åθ = 2.6–29.2°
c = 10.0993 (11) ŵ = 0.28 mm1
α = 111.414 (4)°T = 98 K
β = 97.877 (5)°Block, yellow
γ = 94.130 (5)°0.30 × 0.18 × 0.10 mm
V = 569.94 (11) Å3
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2221 independent reflections
Radiation source: fine-focus sealed tube2103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.915, Tmax = 1k = 1010
3875 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.0191P)2 + 0.7747P]
where P = (Fo2 + 2Fc2)/3
2221 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H12N2O3Sγ = 94.130 (5)°
Mr = 240.28V = 569.94 (11) Å3
Triclinic, P1Z = 2
a = 7.4200 (8) ÅMo Kα radiation
b = 8.3206 (9) ŵ = 0.28 mm1
c = 10.0993 (11) ÅT = 98 K
α = 111.414 (4)°0.30 × 0.18 × 0.10 mm
β = 97.877 (5)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2221 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2103 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 1Rint = 0.024
3875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.33Δρmax = 0.29 e Å3
2221 reflectionsΔρmin = 0.24 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55527 (11)0.09264 (11)0.23408 (8)0.0271 (2)
O10.2493 (3)0.2303 (3)0.3002 (2)0.0227 (4)
O20.4727 (3)0.3762 (3)0.1315 (2)0.0369 (6)
O30.3181 (3)0.3892 (3)0.2947 (2)0.0391 (6)
N10.2838 (3)0.1543 (3)0.0701 (2)0.0238 (5)
H1N0.35030.10490.00420.029*
N20.3330 (3)0.3620 (3)0.1846 (3)0.0268 (6)
C10.3532 (4)0.1629 (4)0.2037 (3)0.0215 (6)
C20.1242 (4)0.2101 (4)0.0165 (3)0.0216 (6)
C30.0289 (4)0.2438 (4)0.0835 (3)0.0247 (6)
H30.03010.23280.17370.030*
C40.1797 (4)0.2937 (4)0.0174 (3)0.0241 (6)
H40.28500.31680.06180.029*
C50.1743 (4)0.3091 (4)0.1142 (3)0.0218 (6)
C60.0249 (4)0.2768 (4)0.1820 (3)0.0255 (6)
H60.02400.28890.27190.031*
C70.1240 (4)0.2261 (4)0.1162 (3)0.0256 (6)
H70.22790.20180.16210.031*
C80.3146 (4)0.2614 (4)0.4537 (3)0.0244 (6)
H80.45090.29350.47770.029*
C90.2226 (5)0.4141 (4)0.5385 (3)0.0306 (7)
H9A0.26370.51680.51930.046*
H9B0.25570.43880.64190.046*
H9C0.08910.38520.50880.046*
C100.2626 (5)0.0986 (4)0.4801 (3)0.0331 (7)
H10A0.32800.00540.42480.050*
H10B0.13000.06270.44940.050*
H10C0.29620.12180.58330.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0270 (4)0.0355 (4)0.0209 (4)0.0135 (3)0.0040 (3)0.0115 (3)
O10.0240 (10)0.0282 (11)0.0172 (10)0.0079 (8)0.0036 (8)0.0095 (8)
O20.0287 (12)0.0482 (15)0.0355 (13)0.0145 (11)0.0051 (10)0.0161 (11)
O30.0336 (13)0.0576 (16)0.0340 (13)0.0068 (11)0.0020 (10)0.0294 (12)
N10.0260 (13)0.0285 (13)0.0176 (12)0.0101 (10)0.0044 (10)0.0083 (10)
N20.0272 (14)0.0238 (13)0.0262 (13)0.0006 (10)0.0026 (11)0.0089 (11)
C10.0269 (15)0.0216 (14)0.0161 (13)0.0057 (12)0.0023 (11)0.0072 (11)
C20.0229 (14)0.0199 (14)0.0184 (14)0.0013 (11)0.0002 (11)0.0049 (11)
C30.0262 (15)0.0313 (16)0.0191 (14)0.0066 (12)0.0029 (11)0.0125 (12)
C40.0235 (15)0.0253 (15)0.0238 (15)0.0058 (12)0.0072 (12)0.0082 (12)
C50.0233 (14)0.0183 (14)0.0209 (14)0.0007 (11)0.0039 (11)0.0071 (11)
C60.0303 (16)0.0275 (16)0.0190 (14)0.0029 (12)0.0032 (12)0.0097 (12)
C70.0234 (15)0.0310 (16)0.0228 (15)0.0062 (12)0.0056 (12)0.0098 (13)
C80.0256 (15)0.0311 (16)0.0175 (14)0.0065 (12)0.0014 (11)0.0109 (12)
C90.0358 (17)0.0305 (17)0.0258 (16)0.0099 (14)0.0080 (13)0.0093 (13)
C100.0429 (19)0.0363 (18)0.0262 (16)0.0100 (15)0.0087 (14)0.0171 (14)
Geometric parameters (Å, º) top
S1—C11.678 (3)C4—H40.9500
O1—C11.314 (3)C5—C61.373 (4)
O1—C81.479 (3)C6—C71.383 (4)
O2—N21.224 (3)C6—H60.9500
O3—N21.231 (3)C7—H70.9500
N1—C11.352 (3)C8—C101.508 (4)
N1—C21.413 (4)C8—C91.517 (4)
N1—H1N0.8800C8—H81.0000
N2—C51.470 (4)C9—H9A0.9800
C2—C71.394 (4)C9—H9B0.9800
C2—C31.395 (4)C9—H9C0.9800
C3—C41.391 (4)C10—H10A0.9800
C3—H30.9500C10—H10B0.9800
C4—C51.387 (4)C10—H10C0.9800
C1—O1—C8119.8 (2)C5—C6—H6120.9
C1—N1—C2131.9 (2)C7—C6—H6120.9
C1—N1—H1N114.0C6—C7—C2121.1 (3)
C2—N1—H1N114.0C6—C7—H7119.4
O2—N2—O3123.5 (3)C2—C7—H7119.4
O2—N2—C5118.7 (2)O1—C8—C10109.3 (2)
O3—N2—C5117.8 (2)O1—C8—C9105.0 (2)
O1—C1—N1113.7 (2)C10—C8—C9112.9 (3)
O1—C1—S1126.2 (2)O1—C8—H8109.8
N1—C1—S1120.2 (2)C10—C8—H8109.8
C7—C2—C3119.6 (3)C9—C8—H8109.8
C7—C2—N1115.1 (3)C8—C9—H9A109.5
C3—C2—N1125.2 (3)C8—C9—H9B109.5
C4—C3—C2119.6 (3)H9A—C9—H9B109.5
C4—C3—H3120.2C8—C9—H9C109.5
C2—C3—H3120.2H9A—C9—H9C109.5
C5—C4—C3119.0 (3)H9B—C9—H9C109.5
C5—C4—H4120.5C8—C10—H10A109.5
C3—C4—H4120.5C8—C10—H10B109.5
C6—C5—C4122.4 (3)H10A—C10—H10B109.5
C6—C5—N2118.3 (3)C8—C10—H10C109.5
C4—C5—N2119.4 (3)H10A—C10—H10C109.5
C5—C6—C7118.2 (3)H10B—C10—H10C109.5
C8—O1—C1—N1175.0 (2)O2—N2—C5—C6173.7 (3)
C8—O1—C1—S14.4 (4)O3—N2—C5—C66.1 (4)
C2—N1—C1—O12.6 (4)O2—N2—C5—C46.4 (4)
C2—N1—C1—S1176.8 (3)O3—N2—C5—C4173.8 (3)
C1—N1—C2—C7162.0 (3)C4—C5—C6—C70.4 (4)
C1—N1—C2—C319.9 (5)N2—C5—C6—C7179.7 (3)
C7—C2—C3—C40.2 (4)C5—C6—C7—C20.8 (4)
N1—C2—C3—C4178.3 (3)C3—C2—C7—C60.7 (4)
C2—C3—C4—C50.1 (4)N1—C2—C7—C6178.9 (3)
C3—C4—C5—C60.0 (4)C1—O1—C8—C1087.1 (3)
C3—C4—C5—N2179.9 (3)C1—O1—C8—C9151.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.882.593.440 (2)162
C7—H7···O2ii0.952.483.204 (4)133
C8—H8···O3iii1.002.503.275 (4)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H12N2O3S
Mr240.28
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)7.4200 (8), 8.3206 (9), 10.0993 (11)
α, β, γ (°)111.414 (4), 97.877 (5), 94.130 (5)
V3)569.94 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.18 × 0.10
Data collection
DiffractometerRigaku AFC12κ/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.915, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
3875, 2221, 2103
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.119, 1.33
No. of reflections2221
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: CrystalClear (Rigaku, 2005), TwinSolve (Rigaku and Prekat AB, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···S1i0.882.593.440 (2)162
C7—H7···O2ii0.952.483.204 (4)133
C8—H8···O3iii1.002.503.275 (4)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

The MBRS RISE program (GM 60655) is thanked for the support of CAE. We thank CNPq and FAPESP (Brazil) and UTSA for support to allow JZ-S to spend a sabbatical at UTSA.

References

First citationBrandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHo, S. Y., Bettens, R. P. A., Dakternieks, D., Duthie, A. & Tiekink, E. R. T. (2005). CrystEngComm, 7, 682–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKuan, F. S., Mohr, F., Tadbuppa, P. P. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 574–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku and Prekat AB (2006). TwinSolve. Rigaku Americas Corporation, The Woodlands, Texas, USA, and Prekat AB, Lund, Sweden.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds