metal-organic compounds
Poly[bis(μ2-formato-κ2O:O′)(quinoxaline-κN)copper(II)]
aInstitute of General & Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland
*Correspondence e-mail: lsieron@p.lodz.pl
In the polymeric title copper(II) compound, [Cu(CHO2)2(C8H6N2)]n, both formato ligands are O-bidentate anions and act as bridging ligands, creating a planar polymeric arrangement. The slightly distorted square-pyramidal coordination around CuII comprises four O atoms from two different formate anions as the base and a quinoxaline molecule in the apical position.
Related literature
For related literature, see: Addison et al. (1984); Borthwick (1980); Sieroń (2003, 2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).
Supporting information
https://doi.org/10.1107/S1600536807063015/om2186sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063015/om2186Isup2.hkl
The title complex was prepared by dissolving cupric formate [2 mmol, Cu(HCOO)2.2H2O] in 50 ml of water with quinoxaline (2 mmol, C8H6N2). After heating to boiling, the formic acid was added dropwise to clear the solution. The solution was filtered and allowed to cool. After few days, green crystals were obtained.
All H atoms were initially located in a difference Fourier synthesis, but were positioned with idealized geometry, with C–H = 0.93 Å, and Uiso(H) = 1.2Ueq(C), and refined using a riding model.
The
of the title compound was undertaken as a continuation of earlier studies of copper(II) complexes with formic acid (Sieroń, 2003; 2007). A fragment of the title compound structure is shown in Fig. 1.The CuII atom has a square-pyramidal environment. The four short equatorial Cu–O bonds, that range from 1.9489 (13) to 1.9605 (11) Å, are formed by the formate anions. The long Cu–N axial bond of 2.515 (2) Å to quinoxaline molecule completes the five coordination geometry around Cu. The degree of trigonality τ = 0.092 [τ is defined by Addison et al. (1984); for the regular square-pyramidal (SQP) structure, the trigonality parameter is 0, and for the trigonal-bipyramidal (TBP) structure, it increases to 1] indicates a slightly distorted SQP coordination of the Cu atom.
The O—C distances in both formate groups are approximately equal and range from 1.238 (2) to 1.250 (2) Å, indicating the distinct delocalization of their π electrons (Borthwick, 1980). All the formate anions coordinate in a bidentate anti-anti fashion, to result in a two-dimensional framework parralel to (101) plane (Fig. 2). The quinoxaline rings engage in π-π stacking interactions, with distances between ring centroids of 3.6704 (12) Å, and these serve to connect polymeric planes into three-dimensional network.
The closest Cu···Cu distance of 5.6164 (3) Å, corresponds aproximately to half the length of the b axis. The second-shortest Cu···Cu distance is 5.7924 (4) Å, which is half the length of the diagonal of the ac plane.
For related literature, see: Addison et al. (1984); Borthwick (1980); Sieroń (2003, 2007).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL (Sheldrick, 2003); molecular graphics: SHELXTL (Sheldrick, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).Fig. 1. A view of a fragment of the title compound showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius [symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2]. | |
Fig. 2. The packing diagram showing two-dimensional polymeric framework parralel to (101) plane. |
[Cu(CHO2)2(C8H6N2)] | F(000) = 572 |
Mr = 283.73 | Dx = 1.819 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7748 reflections |
a = 9.5648 (3) Å | θ = 2.8–32.3° |
b = 11.1913 (3) Å | µ = 2.11 mm−1 |
c = 10.1910 (4) Å | T = 291 K |
β = 108.284 (3)° | Prism, green |
V = 1035.80 (6) Å3 | 0.30 × 0.30 × 0.08 mm |
Z = 4 |
KUMA KM4CCD diffractometer | 2378 independent reflections |
Radiation source: CX-Mo12x0.4-S Seifert Mo tube | 2267 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 8.2356 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction,2006) | k = −14→14 |
Tmin = 0.578, Tmax = 0.843 | l = −13→13 |
12535 measured reflections |
Refinement on F2 | Secondary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0359P)2 + 0.4837P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
2378 reflections | Δρmax = 0.35 e Å−3 |
155 parameters | Δρmin = −0.60 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0054 (8) |
[Cu(CHO2)2(C8H6N2)] | V = 1035.80 (6) Å3 |
Mr = 283.73 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.5648 (3) Å | µ = 2.11 mm−1 |
b = 11.1913 (3) Å | T = 291 K |
c = 10.1910 (4) Å | 0.30 × 0.30 × 0.08 mm |
β = 108.284 (3)° |
KUMA KM4CCD diffractometer | 2378 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction,2006) | 2267 reflections with I > 2σ(I) |
Tmin = 0.578, Tmax = 0.843 | Rint = 0.017 |
12535 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.35 e Å−3 |
2378 reflections | Δρmin = −0.60 e Å−3 |
155 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.72396 (2) | 0.74628 (2) | 0.24693 (2) | 0.0231 (1) | |
O1 | 0.75356 (15) | 0.89959 (10) | 0.34492 (12) | 0.0276 (4) | |
O2 | 0.88757 (15) | 0.68234 (11) | 0.39838 (14) | 0.0349 (4) | |
O3 | 0.78057 (14) | 1.09526 (10) | 0.35166 (12) | 0.0257 (3) | |
O4 | 1.05990 (14) | 0.68686 (11) | 0.59961 (12) | 0.0275 (3) | |
N1 | 0.55057 (18) | 0.68333 (15) | 0.37545 (17) | 0.0316 (5) | |
N2 | 0.3759 (2) | 0.66292 (17) | 0.55363 (17) | 0.0376 (6) | |
C1 | 0.75006 (19) | 0.99809 (14) | 0.28872 (19) | 0.0240 (5) | |
C2 | 0.9877 (2) | 0.73484 (16) | 0.48872 (18) | 0.0243 (5) | |
C3 | 0.5850 (3) | 0.73576 (19) | 0.4970 (2) | 0.0376 (7) | |
C4 | 0.4972 (3) | 0.7260 (2) | 0.5847 (2) | 0.0411 (7) | |
C5 | 0.2092 (2) | 0.53257 (19) | 0.3880 (2) | 0.0357 (6) | |
C6 | 0.1703 (2) | 0.4739 (2) | 0.2637 (2) | 0.0404 (7) | |
C7 | 0.2566 (3) | 0.4848 (2) | 0.1746 (2) | 0.0400 (7) | |
C8 | 0.3807 (2) | 0.55395 (19) | 0.2109 (2) | 0.0340 (6) | |
C9 | 0.4245 (2) | 0.61503 (16) | 0.33862 (19) | 0.0280 (5) | |
C10 | 0.3373 (2) | 0.60485 (17) | 0.42837 (19) | 0.0292 (5) | |
H1 | 0.72280 | 0.99990 | 0.19270 | 0.0290* | |
H2 | 1.00950 | 0.81340 | 0.47250 | 0.0290* | |
H3 | 0.67060 | 0.78110 | 0.52620 | 0.0450* | |
H4 | 0.52680 | 0.76630 | 0.66870 | 0.0490* | |
H5 | 0.15140 | 0.52490 | 0.44590 | 0.0430* | |
H6 | 0.08630 | 0.42650 | 0.23790 | 0.0480* | |
H7 | 0.22870 | 0.44470 | 0.09040 | 0.0480* | |
H8 | 0.43650 | 0.56080 | 0.15120 | 0.0410* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0250 (2) | 0.0143 (1) | 0.0206 (1) | 0.0024 (1) | −0.0063 (1) | −0.0023 (1) |
O1 | 0.0403 (8) | 0.0154 (5) | 0.0213 (6) | −0.0021 (5) | 0.0015 (5) | −0.0004 (4) |
O2 | 0.0341 (7) | 0.0218 (6) | 0.0316 (7) | 0.0032 (5) | −0.0142 (6) | −0.0024 (5) |
O3 | 0.0340 (7) | 0.0157 (5) | 0.0215 (6) | −0.0028 (5) | 0.0002 (5) | 0.0003 (4) |
O4 | 0.0267 (6) | 0.0233 (6) | 0.0233 (6) | −0.0048 (5) | −0.0052 (5) | 0.0009 (5) |
N1 | 0.0287 (8) | 0.0350 (9) | 0.0303 (8) | −0.0032 (7) | 0.0082 (7) | 0.0034 (7) |
N2 | 0.0380 (10) | 0.0450 (10) | 0.0316 (9) | −0.0026 (8) | 0.0134 (7) | 0.0008 (7) |
C1 | 0.0300 (9) | 0.0186 (8) | 0.0187 (7) | 0.0009 (7) | 0.0008 (6) | 0.0002 (6) |
C2 | 0.0243 (9) | 0.0191 (8) | 0.0238 (9) | −0.0003 (6) | −0.0007 (7) | −0.0011 (6) |
C3 | 0.0331 (11) | 0.0429 (12) | 0.0358 (11) | −0.0087 (9) | 0.0094 (9) | −0.0020 (8) |
C4 | 0.0442 (13) | 0.0482 (12) | 0.0309 (10) | −0.0072 (10) | 0.0119 (9) | −0.0050 (9) |
C5 | 0.0323 (10) | 0.0386 (10) | 0.0381 (11) | −0.0022 (8) | 0.0140 (8) | 0.0059 (9) |
C6 | 0.0348 (11) | 0.0400 (11) | 0.0447 (12) | −0.0105 (9) | 0.0102 (9) | 0.0004 (9) |
C7 | 0.0428 (12) | 0.0412 (11) | 0.0337 (11) | −0.0062 (9) | 0.0089 (9) | −0.0041 (9) |
C8 | 0.0342 (10) | 0.0378 (10) | 0.0305 (9) | −0.0014 (8) | 0.0107 (8) | 0.0027 (8) |
C9 | 0.0274 (9) | 0.0270 (9) | 0.0278 (9) | 0.0025 (7) | 0.0063 (7) | 0.0073 (7) |
C10 | 0.0295 (10) | 0.0284 (9) | 0.0289 (9) | 0.0022 (7) | 0.0080 (7) | 0.0067 (7) |
Cu1—O1 | 1.9605 (11) | C5—C6 | 1.371 (3) |
Cu1—O2 | 1.9564 (14) | C5—C10 | 1.417 (3) |
Cu1—O3i | 1.9598 (12) | C6—C7 | 1.411 (3) |
Cu1—O4ii | 1.9489 (13) | C7—C8 | 1.367 (3) |
Cu1—N1 | 2.5150 (18) | C8—C9 | 1.412 (3) |
O1—C1 | 1.238 (2) | C9—C10 | 1.423 (3) |
O2—C2 | 1.248 (2) | C1—H1 | 0.93 |
O3—C1 | 1.250 (2) | C2—H2 | 0.93 |
O4—C2 | 1.246 (2) | C3—H3 | 0.93 |
N1—C3 | 1.316 (3) | C4—H4 | 0.93 |
N1—C9 | 1.377 (3) | C5—H5 | 0.93 |
N2—C4 | 1.309 (3) | C6—H6 | 0.93 |
N2—C10 | 1.376 (3) | C7—H7 | 0.93 |
C3—C4 | 1.410 (4) | C8—H8 | 0.93 |
O1—Cu1—O2 | 88.07 (5) | C6—C7—C8 | 120.55 (19) |
O1—Cu1—O3i | 172.89 (6) | C7—C8—C9 | 120.31 (19) |
O1—Cu1—O4ii | 90.52 (5) | N1—C9—C8 | 120.08 (18) |
O2—Cu1—O3i | 88.43 (5) | N1—C9—C10 | 120.61 (17) |
O2—Cu1—O4ii | 178.42 (5) | C8—C9—C10 | 119.31 (18) |
O3i—Cu1—O4ii | 93.05 (5) | N2—C10—C5 | 119.66 (18) |
O1—Cu1—N1 | 89.62 (6) | N2—C10—C9 | 121.20 (18) |
O2—Cu1—N1 | 88.95 (6) | C5—C10—C9 | 119.14 (17) |
O3i—Cu1—N1 | 96.50 (5) | O1—C1—H1 | 118 |
O4ii—Cu1—N1 | 90.32 (6) | O3—C1—H1 | 118 |
Cu1—O1—C1 | 124.40 (11) | O2—C2—H2 | 118 |
Cu1—O2—C2 | 130.44 (12) | O4—C2—H2 | 118 |
Cu1iii—O3—C1 | 121.55 (11) | N1—C3—H3 | 119 |
Cu1iv—O4—C2 | 128.06 (12) | C4—C3—H3 | 119 |
Cu1—N1—C3 | 110.74 (15) | N2—C4—H4 | 118 |
Cu1—N1—C9 | 132.68 (13) | C3—C4—H4 | 118 |
C3—N1—C9 | 116.32 (19) | C6—C5—H5 | 120 |
C4—N2—C10 | 116.02 (18) | C10—C5—H5 | 120 |
O1—C1—O3 | 124.71 (17) | C5—C6—H6 | 120 |
O2—C2—O4 | 123.02 (17) | C7—C6—H6 | 120 |
N1—C3—C4 | 122.7 (2) | C6—C7—H7 | 120 |
N2—C4—C3 | 123.19 (19) | C8—C7—H7 | 120 |
C6—C5—C10 | 120.07 (18) | C7—C8—H8 | 120 |
C5—C6—C7 | 120.6 (2) | C9—C8—H8 | 120 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(CHO2)2(C8H6N2)] |
Mr | 283.73 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 291 |
a, b, c (Å) | 9.5648 (3), 11.1913 (3), 10.1910 (4) |
β (°) | 108.284 (3) |
V (Å3) | 1035.80 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.11 |
Crystal size (mm) | 0.30 × 0.30 × 0.08 |
Data collection | |
Diffractometer | KUMA KM4CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction,2006) |
Tmin, Tmax | 0.578, 0.843 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12535, 2378, 2267 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.070, 1.14 |
No. of reflections | 2378 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.60 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2003) and Mercury (Macrae et al., 2006), PLATON (Spek, 2003).
Cu1—O1 | 1.9605 (11) | Cu1—O4ii | 1.9489 (13) |
Cu1—O2 | 1.9564 (14) | Cu1—N1 | 2.5150 (18) |
Cu1—O3i | 1.9598 (12) | ||
O1—Cu1—O2 | 88.07 (5) | O3i—Cu1—O4ii | 93.05 (5) |
O1—Cu1—O3i | 172.89 (6) | O1—Cu1—N1 | 89.62 (6) |
O1—Cu1—O4ii | 90.52 (5) | O2—Cu1—N1 | 88.95 (6) |
O2—Cu1—O3i | 88.43 (5) | O3i—Cu1—N1 | 96.50 (5) |
O2—Cu1—O4ii | 178.42 (5) | O4ii—Cu1—N1 | 90.32 (6) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z−1/2. |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Borthwick, P. W. (1980). Acta Cryst. B36, 628–632. CrossRef CAS IUCr Journals Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sieroń, L. (2003). Acta Cryst. E59, m803–m805. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sieroń, L. (2007). Acta Cryst. C63, m199–m200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure determination of the title compound was undertaken as a continuation of earlier studies of copper(II) complexes with formic acid (Sieroń, 2003; 2007). A fragment of the title compound structure is shown in Fig. 1.
The CuII atom has a square-pyramidal environment. The four short equatorial Cu–O bonds, that range from 1.9489 (13) to 1.9605 (11) Å, are formed by the formate anions. The long Cu–N axial bond of 2.515 (2) Å to quinoxaline molecule completes the five coordination geometry around Cu. The degree of trigonality τ = 0.092 [τ is defined by Addison et al. (1984); for the regular square-pyramidal (SQP) structure, the trigonality parameter is 0, and for the trigonal-bipyramidal (TBP) structure, it increases to 1] indicates a slightly distorted SQP coordination of the Cu atom.
The O—C distances in both formate groups are approximately equal and range from 1.238 (2) to 1.250 (2) Å, indicating the distinct delocalization of their π electrons (Borthwick, 1980). All the formate anions coordinate in a bidentate anti-anti fashion, to result in a two-dimensional framework parralel to (101) plane (Fig. 2). The quinoxaline rings engage in π-π stacking interactions, with distances between ring centroids of 3.6704 (12) Å, and these serve to connect polymeric planes into three-dimensional network.
The closest Cu···Cu distance of 5.6164 (3) Å, corresponds aproximately to half the length of the b axis. The second-shortest Cu···Cu distance is 5.7924 (4) Å, which is half the length of the diagonal of the ac plane.