organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,6,6′-Tetra­methyl-4,4′-bi­pyridine

aDepartment of Chemistry, TongHua Normal University, 134002, TongHua, Jilin, People's Republic of China
*Correspondence e-mail: fulihai1973@sina.com

(Received 11 November 2007; accepted 25 November 2007; online 6 December 2007)

In the title compound, C14H16N2, which has no crystallographic molecular symmetry, the dihedral angle between the least-squares planes of the two pyridine rings is 19.48 (2)°. No classical hydrogen bonds nor ππ inter­actions were found.

Related literature

For the synthesis of the title compound, see: Hunig & Wehner (1989[Hunig, S. & Wehner, I. (1989). Synthesis, pp. 552-554.]). For related compounds, see: Coles et al. (2002[Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626-o628.]); Jackisch et al. (1990[Jackisch, M. A., Fronczek, F. R., Geiger, C. C., Hale, P. S., Daly, W. H. & Butler, L. G. (1990). Acta Cryst. C46, 919-922.]); Lin et al. (2006[Lin, X., Blake, A. J., Wilson, C., Sun, X. Z., Champness, N. R., George, M. W., Hubberstey, P., Mokaya, R. & Schroder, M. (2006). J. Am. Chem. Soc. 128, 10745-10753.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2

  • Mr = 212.29

  • Tetragonal, I 41 /a

  • a = 21.9827 (10) Å

  • c = 10.1569 (6) Å

  • V = 4908.2 (4) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.26 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03) and SADABS (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 14604 measured reflections

  • 2959 independent reflections

  • 2112 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.165

  • S = 1.06

  • 2959 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected torsion angles (°)

C2—C3—C8—C7 −20.9 (2)
C4—C3—C8—C7 159.85 (14)
C2—C3—C8—C9 159.45 (14)
C4—C3—C8—C9 −19.8 (2)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03) and SADABS (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03) and SADABS (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The title compound, C14H16N2, is a important synthetic intermediate for the preparation of the ligand 4,4'-bipyridine-2,6,2',6'-tetracarboxylic acid, which can be used for constructing open and robust coordination frameworks (Lin et al., 2006).

The molecular structure of the compound is shown in Fig. 1, and selected geometric parameters are given in Table 1. The dihedral angle between the least-squares planes of the two pyridine rings is 19.48 (2) °. This is probably because of steric hindrance, which is similar to related compounds (Coles et al., 2002, Jackisch et al., 1990, Lin et al., 2006), and for this reason the molecule has no symmetry plane.

In the crystal structure no classic hydrogen bonds nor π-π interactions were found (Fig. 2). The molecules may be linked together by weak van der Waals interactions.

Related literature top

For the synthesis of the title compound, see: Hunig & Wehner (1989). For related compounds, see: Coles et al. (2002); Jackisch et al. (1990); Lin et al. (2006).

Experimental top

All reagents were purchased from Aldrich and used without further purification. The compound was synthesized according to a reported method (Hunig & Wehner, 1989). It (0.424 g, 0.002 mol) was dissolved in ethanol (20 ml). After heating at 343 K for 20 min, the mixture was allowed to cool and evaporate naturally. After a few days, yellow crystalline lumps formed. Analysis found: C 79.24, H 7.60, N 13.16%.; C14H16N2 requires: C 79.20, H 7.60, N 13.20%.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms with C—H distances = 0.93–0.97 A °. For the aromatic H atoms Uiso(H) = 1.2Ueq(C), and for the CH3 H atoms Uiso(H) = 1.5Ueq(C). The highest peak 0.22 e.A^-3^ in the final difference map is located 0.81 Å from H11C.

Structure description top

The title compound, C14H16N2, is a important synthetic intermediate for the preparation of the ligand 4,4'-bipyridine-2,6,2',6'-tetracarboxylic acid, which can be used for constructing open and robust coordination frameworks (Lin et al., 2006).

The molecular structure of the compound is shown in Fig. 1, and selected geometric parameters are given in Table 1. The dihedral angle between the least-squares planes of the two pyridine rings is 19.48 (2) °. This is probably because of steric hindrance, which is similar to related compounds (Coles et al., 2002, Jackisch et al., 1990, Lin et al., 2006), and for this reason the molecule has no symmetry plane.

In the crystal structure no classic hydrogen bonds nor π-π interactions were found (Fig. 2). The molecules may be linked together by weak van der Waals interactions.

For the synthesis of the title compound, see: Hunig & Wehner (1989). For related compounds, see: Coles et al. (2002); Jackisch et al. (1990); Lin et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labeling scheme, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing, viewed along the c axis.
2,2',6,6'-Tetramethyl-4,4'-bipyridine top
Crystal data top
C14H16N2Dx = 1.149 Mg m3
Mr = 212.29Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 352 reflections
a = 21.9827 (10) Åθ = 2.6–24.8°
c = 10.1569 (6) ŵ = 0.07 mm1
V = 4908.2 (4) Å3T = 293 K
Z = 16Block, yellow
F(000) = 18240.32 × 0.26 × 0.26 mm
Data collection top
Bruker SMART APEXII
diffractometer
2959 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2828
Tmin = 0.979, Tmax = 0.982k = 2129
14604 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0889P)2 + 1.2656P]
where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max = 0.002
149 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H16N2Z = 16
Mr = 212.29Mo Kα radiation
Tetragonal, I41/aµ = 0.07 mm1
a = 21.9827 (10) ÅT = 293 K
c = 10.1569 (6) Å0.32 × 0.26 × 0.26 mm
V = 4908.2 (4) Å3
Data collection top
Bruker SMART APEXII
diffractometer
2959 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2112 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.031
14604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2959 reflectionsΔρmin = 0.18 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36926 (6)0.13022 (6)0.07996 (14)0.0547 (4)
N20.14766 (6)0.34910 (6)0.10403 (13)0.0501 (3)
C10.33348 (7)0.12075 (7)0.02437 (16)0.0486 (4)
C20.28970 (6)0.16252 (6)0.06394 (15)0.0442 (3)
H20.26590.15450.13770.053*
C30.28130 (6)0.21610 (6)0.00610 (14)0.0415 (3)
C40.31887 (7)0.22525 (7)0.11452 (16)0.0509 (4)
H40.31490.26040.16490.061*
C50.36228 (7)0.18207 (8)0.14767 (16)0.0551 (4)
C60.14380 (6)0.29160 (7)0.14839 (15)0.0453 (4)
C70.18561 (6)0.24730 (7)0.11270 (15)0.0449 (4)
H70.18050.20750.14200.054*
C80.23495 (6)0.26192 (6)0.03364 (14)0.0411 (3)
C90.23940 (7)0.32206 (6)0.00853 (16)0.0483 (4)
H90.27220.33430.06000.058*
C100.19490 (7)0.36346 (6)0.02641 (16)0.0504 (4)
C110.34380 (10)0.06300 (8)0.1000 (2)0.0704 (5)
H11A0.31470.03300.07270.106*
H11B0.33910.07080.19240.106*
H11C0.38420.04830.08320.106*
C120.40499 (10)0.19262 (11)0.2612 (2)0.0815 (6)
H12A0.44400.20510.22820.122*
H12B0.38880.22380.31730.122*
H12C0.40940.15560.31060.122*
C130.09245 (7)0.27763 (9)0.24106 (17)0.0588 (4)
H13A0.10580.28360.33010.088*
H13B0.07990.23610.22950.088*
H13C0.05880.30420.22280.088*
C140.19686 (10)0.42776 (8)0.0243 (2)0.0759 (6)
H14A0.16330.43440.08320.114*
H14B0.23440.43440.07030.114*
H14C0.19400.45560.04840.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0522 (7)0.0543 (8)0.0574 (8)0.0114 (6)0.0035 (6)0.0052 (6)
N20.0475 (7)0.0470 (7)0.0558 (8)0.0060 (5)0.0012 (6)0.0011 (6)
C10.0492 (8)0.0439 (8)0.0527 (9)0.0059 (6)0.0042 (7)0.0017 (6)
C20.0426 (7)0.0413 (7)0.0487 (8)0.0012 (6)0.0013 (6)0.0010 (6)
C30.0363 (7)0.0388 (7)0.0495 (8)0.0006 (5)0.0014 (6)0.0011 (6)
C40.0512 (8)0.0480 (8)0.0537 (9)0.0045 (6)0.0070 (7)0.0061 (7)
C50.0518 (9)0.0597 (10)0.0539 (9)0.0059 (7)0.0080 (7)0.0024 (7)
C60.0385 (7)0.0505 (8)0.0469 (8)0.0001 (6)0.0023 (6)0.0008 (6)
C70.0427 (7)0.0400 (7)0.0519 (8)0.0006 (6)0.0013 (6)0.0047 (6)
C80.0384 (7)0.0380 (7)0.0470 (8)0.0010 (5)0.0017 (6)0.0004 (6)
C90.0446 (8)0.0423 (8)0.0579 (9)0.0005 (6)0.0063 (7)0.0056 (6)
C100.0503 (8)0.0403 (8)0.0606 (9)0.0038 (6)0.0010 (7)0.0022 (7)
C110.0815 (13)0.0534 (10)0.0764 (13)0.0223 (9)0.0073 (10)0.0065 (9)
C120.0752 (13)0.0951 (15)0.0743 (13)0.0159 (11)0.0300 (10)0.0069 (11)
C130.0466 (9)0.0706 (11)0.0590 (10)0.0001 (7)0.0070 (7)0.0017 (8)
C140.0772 (13)0.0447 (9)0.1057 (16)0.0116 (8)0.0158 (11)0.0139 (9)
Geometric parameters (Å, º) top
N1—C11.336 (2)C8—C91.3931 (19)
N1—C51.340 (2)C9—C101.383 (2)
N2—C101.341 (2)C9—H90.9300
N2—C61.3446 (19)C10—C141.505 (2)
C1—C21.389 (2)C11—H11A0.9600
C1—C111.501 (2)C11—H11B0.9600
C2—C31.3885 (19)C11—H11C0.9600
C2—H20.9300C12—H12A0.9600
C3—C41.391 (2)C12—H12B0.9600
C3—C81.4886 (19)C12—H12C0.9600
C4—C51.388 (2)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C121.505 (2)C13—H13C0.9600
C6—C71.387 (2)C14—H14A0.9600
C6—C131.502 (2)C14—H14B0.9600
C7—C81.3873 (19)C14—H14C0.9600
C7—H70.9300
C1—N1—C5118.18 (13)C8—C9—H9120.1
C10—N2—C6117.84 (12)N2—C10—C9122.93 (13)
N1—C1—C2122.29 (14)N2—C10—C14116.37 (14)
N1—C1—C11116.65 (14)C9—C10—C14120.69 (15)
C2—C1—C11121.04 (15)C1—C11—H11A109.5
C3—C2—C1120.29 (14)C1—C11—H11B109.5
C3—C2—H2119.9H11A—C11—H11B109.5
C1—C2—H2119.9C1—C11—H11C109.5
C2—C3—C4116.71 (13)H11A—C11—H11C109.5
C2—C3—C8121.74 (13)H11B—C11—H11C109.5
C4—C3—C8121.55 (13)C5—C12—H12A109.5
C5—C4—C3120.10 (14)C5—C12—H12B109.5
C5—C4—H4120.0H12A—C12—H12B109.5
C3—C4—H4120.0C5—C12—H12C109.5
N1—C5—C4122.42 (15)H12A—C12—H12C109.5
N1—C5—C12116.94 (15)H12B—C12—H12C109.5
C4—C5—C12120.63 (16)C6—C13—H13A109.5
N2—C6—C7122.05 (13)C6—C13—H13B109.5
N2—C6—C13116.73 (13)H13A—C13—H13B109.5
C7—C6—C13121.21 (14)C6—C13—H13C109.5
C6—C7—C8120.44 (13)H13A—C13—H13C109.5
C6—C7—H7119.8H13B—C13—H13C109.5
C8—C7—H7119.8C10—C14—H14A109.5
C7—C8—C9116.92 (13)C10—C14—H14B109.5
C7—C8—C3122.38 (12)H14A—C14—H14B109.5
C9—C8—C3120.70 (13)C10—C14—H14C109.5
C10—C9—C8119.74 (13)H14A—C14—H14C109.5
C10—C9—H9120.1H14B—C14—H14C109.5
C5—N1—C1—C20.2 (2)N2—C6—C7—C82.9 (2)
C5—N1—C1—C11178.33 (16)C13—C6—C7—C8175.91 (14)
N1—C1—C2—C30.7 (2)C6—C7—C8—C91.0 (2)
C11—C1—C2—C3179.13 (15)C6—C7—C8—C3179.37 (13)
C1—C2—C3—C40.6 (2)C2—C3—C8—C720.9 (2)
C1—C2—C3—C8179.86 (13)C4—C3—C8—C7159.85 (14)
C2—C3—C4—C50.3 (2)C2—C3—C8—C9159.45 (14)
C8—C3—C4—C5178.97 (14)C4—C3—C8—C919.8 (2)
C1—N1—C5—C41.1 (2)C7—C8—C9—C101.5 (2)
C1—N1—C5—C12177.52 (16)C3—C8—C9—C10178.14 (14)
C3—C4—C5—N11.2 (3)C6—N2—C10—C90.4 (2)
C3—C4—C5—C12177.38 (16)C6—N2—C10—C14178.45 (16)
C10—N2—C6—C72.2 (2)C8—C9—C10—N22.3 (3)
C10—N2—C6—C13176.71 (14)C8—C9—C10—C14176.52 (16)

Experimental details

Crystal data
Chemical formulaC14H16N2
Mr212.29
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)21.9827 (10), 10.1569 (6)
V3)4908.2 (4)
Z16
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.32 × 0.26 × 0.26
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.979, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
14604, 2959, 2112
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.165, 1.06
No. of reflections2959
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXTL (Sheldrick, 2001), SHELXTL and local programs.

Selected torsion angles (º) top
C2—C3—C8—C720.9 (2)C2—C3—C8—C9159.45 (14)
C4—C3—C8—C7159.85 (14)C4—C3—C8—C919.8 (2)
 

References

First citationBruker (2004). APEX2 (Version 1.08), SAINT (Version 7.03) and SADABS (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHunig, S. & Wehner, I. (1989). Synthesis, pp. 552–554.  CrossRef Google Scholar
First citationJackisch, M. A., Fronczek, F. R., Geiger, C. C., Hale, P. S., Daly, W. H. & Butler, L. G. (1990). Acta Cryst. C46, 919–922.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLin, X., Blake, A. J., Wilson, C., Sun, X. Z., Champness, N. R., George, M. W., Hubberstey, P., Mokaya, R. & Schroder, M. (2006). J. Am. Chem. Soc. 128, 10745–10753.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds