organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-5,7-di­methyl-3-methyl­sulfanyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 18 November 2007; accepted 25 November 2007; online 6 December 2007)

The title compound, C17H15BrOS, was prepared by the Lewis acid-catalysed reaction of 2,4-dimethyl­phenol with 4′-bromo-2-chloro-2-(methyl­sulfan­yl)acetophenone. The 4-bromo­phenyl ring is rotated slightly out of the benzofuran plane, making a dihedral angle of 8.4 (1)°. The crystal structure is stabilized by a CH2—H⋯π inter­action between the 5-methyl group and the benzene ring of the benzofuran system.

Related literature

For the crystal structures of similar 2-(4-bromo­phen­yl)-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrOS

  • Mr = 347.26

  • Monoclinic, P 21

  • a = 5.2332 (1) Å

  • b = 10.6602 (2) Å

  • c = 13.6374 (2) Å

  • β = 98.092 (1)°

  • V = 753.21 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 296 (2) K

  • 0.30 × 0.24 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.481, Tmax = 0.804

  • 7779 measured reflections

  • 3448 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 0.87

  • 3448 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1477 Friedel pairs

  • Flack parameter: 0.011 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15ACgi 0.96 2.97 3.891 (3) 161
Symmetry code: (i) x-1, y, z. Cg is the centroid of the C2–C7 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our continuing studies on the synthesis and structures of 2-(4-bromophenyl)-1-benzofuran derivatives, the crystal structures of 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b) have been described to the literature. Herein we report the molecular and crystal structure of the title compound, 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfanyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in the title compound formed by the plane of the benzofuran unit and the plane of the 4-bromophenyl ring is 8.4 (1)°. The molecular packing (Fig. 2) is stabilized by a CH2—H···π interaction between 5-methyl group and the benzene ring of benzofuran system, with a C15—H15A···Cgi separation of 2.97 Å (Table 1; Cg is a centroid of the C2—C7 benzene ring, symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 2-(4-bromophenyl)-1-benzofuran compounds, see: Choi et al. (2007a,b). Cg is the centroid of the C2—C7 benzene ring.

Experimental top

Zinc chloride (546 mg, 4.0 mmol) was added at room temperature to a stirred solution of 2,4-dimethylphenol (489 mg, 4.0 mmol) and 4'-bromo-2-chloro-2-(methylsulfanyl)acetophenone (1.12 g, 4.0 mmol) in dichloromethane (30 ml) and stirred for 40 min. The mixture was quenched with water and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (CCl4) to afford the title compound as a colorless solid [yield 52%, m.p. 385–386 K; Rf = 0.81 (CCl4)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a dilute solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were geometrically located in ideal positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

As part of our continuing studies on the synthesis and structures of 2-(4-bromophenyl)-1-benzofuran derivatives, the crystal structures of 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b) have been described to the literature. Herein we report the molecular and crystal structure of the title compound, 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfanyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in the title compound formed by the plane of the benzofuran unit and the plane of the 4-bromophenyl ring is 8.4 (1)°. The molecular packing (Fig. 2) is stabilized by a CH2—H···π interaction between 5-methyl group and the benzene ring of benzofuran system, with a C15—H15A···Cgi separation of 2.97 Å (Table 1; Cg is a centroid of the C2—C7 benzene ring, symmetry code as in Fig. 2).

For the crystal structures of similar 2-(4-bromophenyl)-1-benzofuran compounds, see: Choi et al. (2007a,b). Cg is the centroid of the C2—C7 benzene ring.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···π interaction (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) x - 1, y, z; (ii) x + 1, y, z.]
2-(4-Bromophenyl)-5,7-dimethyl-3-methylsulfanyl-1-benzofuran top
Crystal data top
C17H15BrOSF(000) = 352
Mr = 347.26Dx = 1.531 Mg m3
Monoclinic, P21Melting point = 385–386 K
Hall symbol: p 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.2332 (1) ÅCell parameters from 3988 reflections
b = 10.6602 (2) Åθ = 3.0–27.1°
c = 13.6374 (2) ŵ = 2.86 mm1
β = 98.092 (1)°T = 296 K
V = 753.21 (2) Å3Block, silver
Z = 20.30 × 0.24 × 0.08 mm
Data collection top
Bruker SMART CCD
diffractometer
3448 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.5°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1414
Tmin = 0.481, Tmax = 0.804l = 1718
7779 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0308P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.001
3448 reflectionsΔρmax = 0.20 e Å3
182 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1477 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (7)
Crystal data top
C17H15BrOSV = 753.21 (2) Å3
Mr = 347.26Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.2332 (1) ŵ = 2.86 mm1
b = 10.6602 (2) ÅT = 296 K
c = 13.6374 (2) Å0.30 × 0.24 × 0.08 mm
β = 98.092 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2957 reflections with I > 2σ(I)
Tmin = 0.481, Tmax = 0.804Rint = 0.020
7779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.20 e Å3
S = 0.87Δρmin = 0.20 e Å3
3448 reflectionsAbsolute structure: Flack (1983), 1477 Friedel pairs
182 parametersAbsolute structure parameter: 0.011 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.53020 (5)0.73216 (4)0.179068 (16)0.06373 (10)
S0.30384 (12)0.86959 (6)0.21002 (5)0.05180 (16)
O0.0436 (3)0.53588 (14)0.23230 (12)0.0412 (4)
C10.1770 (4)0.7187 (3)0.23497 (15)0.0404 (5)
C20.2370 (5)0.6414 (2)0.31587 (17)0.0407 (5)
C30.3917 (5)0.6547 (2)0.39043 (19)0.0470 (6)
H30.48890.72710.39460.056*
C40.3984 (5)0.5590 (2)0.45776 (18)0.0455 (5)
C50.2494 (5)0.4511 (2)0.44955 (17)0.0450 (5)
H50.25590.38780.49600.054*
C60.0931 (4)0.4327 (2)0.37673 (17)0.0410 (5)
C70.0959 (4)0.5314 (2)0.31082 (17)0.0398 (5)
C80.0091 (4)0.6519 (2)0.18701 (16)0.0404 (5)
C90.1192 (5)0.6724 (2)0.10053 (18)0.0404 (5)
C100.3069 (5)0.5879 (2)0.07758 (18)0.0468 (5)
H100.34910.51870.11820.056*
C110.4310 (5)0.6059 (2)0.00479 (19)0.0510 (6)
H110.55680.54980.01900.061*
C120.3659 (5)0.7077 (2)0.06535 (17)0.0465 (6)
C130.1811 (5)0.7927 (3)0.04460 (19)0.0527 (6)
H130.13950.86130.08590.063*
C140.0585 (5)0.7753 (2)0.03788 (19)0.0491 (6)
H140.06550.83260.05180.059*
C150.5633 (5)0.5692 (3)0.5390 (2)0.0598 (7)
H15A0.74030.58050.51050.072*
H15B0.50810.63980.58030.072*
H15C0.54710.49400.57800.072*
C160.0696 (5)0.3184 (2)0.3687 (2)0.0533 (6)
H16A0.01780.27850.30600.080*
H16B0.04730.26110.42120.080*
H16C0.24780.34240.37390.080*
C170.0310 (6)0.9643 (3)0.2543 (3)0.0748 (10)
H17A0.07561.05120.24480.112*
H17B0.10870.94440.21830.112*
H17C0.02070.94830.32350.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.06774 (17)0.0829 (2)0.04418 (13)0.01530 (17)0.02044 (10)0.00117 (15)
S0.0504 (4)0.0453 (3)0.0605 (4)0.0108 (3)0.0106 (3)0.0058 (3)
O0.0507 (9)0.0368 (9)0.0387 (9)0.0033 (7)0.0148 (7)0.0012 (6)
C10.0428 (11)0.0384 (12)0.0404 (10)0.0022 (11)0.0073 (8)0.0004 (11)
C20.0446 (12)0.0388 (12)0.0397 (12)0.0037 (10)0.0093 (9)0.0049 (9)
C30.0501 (13)0.0448 (13)0.0483 (14)0.0014 (11)0.0144 (11)0.0066 (11)
C40.0486 (12)0.0477 (14)0.0419 (13)0.0117 (10)0.0125 (10)0.0094 (10)
C50.0538 (14)0.0469 (13)0.0354 (11)0.0120 (11)0.0099 (10)0.0023 (10)
C60.0457 (13)0.0378 (12)0.0395 (12)0.0050 (10)0.0061 (10)0.0001 (10)
C70.0441 (12)0.0418 (13)0.0347 (11)0.0027 (11)0.0097 (9)0.0039 (9)
C80.0456 (13)0.0394 (12)0.0361 (12)0.0026 (10)0.0059 (10)0.0017 (9)
C90.0425 (12)0.0419 (12)0.0367 (12)0.0040 (10)0.0055 (9)0.0017 (9)
C100.0548 (14)0.0434 (13)0.0438 (13)0.0038 (11)0.0120 (10)0.0031 (11)
C110.0533 (15)0.0524 (15)0.0497 (14)0.0072 (12)0.0151 (11)0.0009 (12)
C120.0470 (12)0.0553 (17)0.0375 (11)0.0146 (12)0.0071 (9)0.0032 (11)
C130.0625 (16)0.0527 (14)0.0427 (14)0.0017 (13)0.0068 (12)0.0084 (11)
C140.0528 (14)0.0491 (15)0.0461 (14)0.0040 (11)0.0089 (11)0.0037 (10)
C150.0655 (17)0.0646 (17)0.0546 (16)0.0084 (14)0.0272 (12)0.0055 (13)
C160.0633 (17)0.0434 (14)0.0561 (16)0.0042 (12)0.0183 (13)0.0068 (11)
C170.069 (2)0.0472 (17)0.104 (3)0.0002 (14)0.0003 (18)0.0102 (17)
Geometric parameters (Å, º) top
Br—C121.894 (2)C9—C141.399 (3)
S—C11.755 (3)C10—C111.387 (4)
S—C171.783 (3)C10—H100.9300
O—C71.379 (3)C11—C121.377 (4)
O—C81.393 (3)C11—H110.9300
C1—C81.367 (3)C12—C131.383 (4)
C1—C21.447 (3)C13—C141.384 (4)
C2—C31.393 (3)C13—H130.9300
C2—C71.393 (3)C14—H140.9300
C3—C41.377 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.402 (3)C15—H15C0.9600
C4—C151.501 (3)C16—H16A0.9600
C5—C61.387 (4)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—C71.382 (3)C17—H17A0.9600
C6—C161.499 (3)C17—H17B0.9600
C8—C91.453 (3)C17—H17C0.9600
C9—C101.401 (3)
C1—S—C17100.98 (13)C9—C10—H10119.5
C7—O—C8106.38 (17)C12—C11—C10119.3 (2)
C8—C1—C2106.9 (2)C12—C11—H11120.3
C8—C1—S129.47 (19)C10—C11—H11120.3
C2—C1—S123.58 (18)C11—C12—C13121.0 (2)
C3—C2—C7119.2 (2)C11—C12—Br119.82 (19)
C3—C2—C1135.2 (2)C13—C12—Br119.21 (19)
C7—C2—C1105.6 (2)C12—C13—C14119.7 (2)
C4—C3—C2118.9 (2)C12—C13—H13120.1
C4—C3—H3120.6C14—C13—H13120.1
C2—C3—H3120.6C13—C14—C9120.7 (2)
C3—C4—C5119.2 (2)C13—C14—H14119.7
C3—C4—C15120.6 (2)C9—C14—H14119.7
C5—C4—C15120.2 (2)C4—C15—H15A109.5
C6—C5—C4124.4 (2)C4—C15—H15B109.5
C6—C5—H5117.8H15A—C15—H15B109.5
C4—C5—H5117.8C4—C15—H15C109.5
C7—C6—C5113.8 (2)H15A—C15—H15C109.5
C7—C6—C16121.7 (2)H15B—C15—H15C109.5
C5—C6—C16124.5 (2)C6—C16—H16A109.5
O—C7—C6125.0 (2)C6—C16—H16B109.5
O—C7—C2110.56 (19)H16A—C16—H16B109.5
C6—C7—C2124.5 (2)C6—C16—H16C109.5
C1—C8—O110.5 (2)H16A—C16—H16C109.5
C1—C8—C9135.3 (2)H16B—C16—H16C109.5
O—C8—C9114.1 (2)S—C17—H17A109.5
C10—C9—C14118.3 (2)S—C17—H17B109.5
C10—C9—C8120.2 (2)H17A—C17—H17B109.5
C14—C9—C8121.5 (2)S—C17—H17C109.5
C11—C10—C9121.0 (2)H17A—C17—H17C109.5
C11—C10—H10119.5H17B—C17—H17C109.5
C17—S—C1—C874.5 (3)C3—C2—C7—C61.3 (3)
C17—S—C1—C2104.8 (2)C1—C2—C7—C6178.4 (2)
C8—C1—C2—C3180.0 (2)C2—C1—C8—O0.1 (2)
S—C1—C2—C30.6 (4)S—C1—C8—O179.26 (16)
C8—C1—C2—C70.4 (2)C2—C1—C8—C9178.2 (2)
S—C1—C2—C7179.06 (16)S—C1—C8—C92.4 (4)
C7—C2—C3—C40.7 (3)C7—O—C8—C10.2 (2)
C1—C2—C3—C4178.9 (2)C7—O—C8—C9178.89 (17)
C2—C3—C4—C50.1 (3)C1—C8—C9—C10172.7 (3)
C2—C3—C4—C15179.7 (2)O—C8—C9—C109.0 (3)
C3—C4—C5—C60.4 (4)C1—C8—C9—C147.9 (4)
C15—C4—C5—C6179.4 (2)O—C8—C9—C14170.44 (19)
C4—C5—C6—C70.2 (3)C14—C9—C10—C110.4 (3)
C4—C5—C6—C16179.0 (2)C8—C9—C10—C11179.8 (2)
C8—O—C7—C6178.4 (2)C9—C10—C11—C120.7 (4)
C8—O—C7—C20.4 (2)C10—C11—C12—C130.7 (4)
C5—C6—C7—O179.7 (2)C10—C11—C12—Br179.15 (18)
C16—C6—C7—O0.5 (3)C11—C12—C13—C140.3 (4)
C5—C6—C7—C21.0 (3)Br—C12—C13—C14179.56 (18)
C16—C6—C7—C2178.2 (2)C12—C13—C14—C90.1 (4)
C3—C2—C7—O179.8 (2)C10—C9—C14—C130.1 (3)
C1—C2—C7—O0.5 (2)C8—C9—C14—C13179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cgi0.962.973.891 (3)161
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H15BrOS
Mr347.26
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.2332 (1), 10.6602 (2), 13.6374 (2)
β (°) 98.092 (1)
V3)753.21 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.30 × 0.24 × 0.08
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.481, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
7779, 3448, 2957
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 0.87
No. of reflections3448
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20
Absolute structureFlack (1983), 1477 Friedel pairs
Absolute structure parameter0.011 (7)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT (Bruker, 2001, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···Cgi0.962.973.891 (3)161.1
Symmetry code: (i) x1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds