organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-2-methyl­quinolinium hydrogensulfate dihydrate

aDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
*Correspondence e-mail: m-pouramini@cc.sbu.ac.ir

(Received 19 November 2007; accepted 28 November 2007; online 6 December 2007)

In the title compound, C10H11N2+·HSO4·2H2O, the asymmetric unit contains two protonated 4-amino­quinoline cations and two hydrogen sulfate anions with four water mol­ecules. The crystal structure involves extensive N—H⋯O and O—H⋯O hydrogen bonding.

Related literature

For related literature, see: Amini et al. (2007a[Amini, M. M., Nasiri, S. & Ng, S. W. (2007a). Acta Cryst. E63, o1361-o1362.],b[Amini, M. M., Mohammadnezhad, G. S. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2516.]); Repicky et al. (2005[Repicky, A., Jantova, S., Theiszova, M. & Milata, V. (2005). Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Rep. 49, 345-347.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N2+·HSO4·2H2O

  • Mr = 292.32

  • Triclinic, [P \overline 1]

  • a = 10.1585 (9) Å

  • b = 11.2131 (9) Å

  • c = 13.3545 (11) Å

  • α = 68.283 (6)°

  • β = 76.355 (7)°

  • γ = 67.949 (6)°

  • V = 1301.51 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 (2) K

  • 0.5 × 0.15 × 0.12 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-RED32 (Version 1.28b), X-SHAPE (Version 2.05) and X-AREA (Version 1.31). Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.950, Tmax = 0.970

  • 16357 measured reflections

  • 7008 independent reflections

  • 5729 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.182

  • S = 1.06

  • 7008 reflections

  • 409 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O7i 0.89 (3) 2.16 (3) 2.981 (3) 154 (3)
N1—H1C⋯O7ii 0.88 (3) 2.26 (3) 3.049 (3) 149 (3)
N1—H1C⋯O8ii 0.88 (3) 2.58 (3) 3.374 (3) 151 (3)
O1—H1D⋯O9 0.88 (4) 1.61 (4) 2.485 (3) 177 (5)
N2—H2B⋯O11iii 0.95 (3) 1.88 (3) 2.819 (3) 172 (3)
N3—H3B⋯O3iv 0.90 (3) 2.03 (3) 2.902 (3) 163 (3)
N3—H3C⋯O3 0.87 (3) 2.54 (3) 3.177 (3) 132 (3)
N3—H3C⋯O4 0.87 (3) 2.20 (3) 3.034 (3) 162 (3)
N4—H4B⋯O12 0.90 (3) 1.87 (3) 2.753 (3) 169 (3)
O5—H5⋯O10 0.94 (4) 1.58 (4) 2.523 (3) 174 (5)
O9—H9D⋯O8 0.84 (4) 1.91 (4) 2.736 (3) 169 (4)
O9—H9E⋯O6v 0.81 (4) 1.98 (4) 2.783 (3) 178 (5)
O10—H10A⋯O4 0.89 (4) 1.81 (4) 2.695 (3) 175 (3)
O10—H10B⋯O2vi 0.83 (4) 1.93 (4) 2.745 (3) 169 (4)
O11—H11B⋯O2vi 0.82 (4) 2.04 (4) 2.843 (3) 167 (5)
O11—H11C⋯O7 0.85 (4) 1.94 (4) 2.787 (3) 172 (3)
O12—H12B⋯O3vii 0.86 (4) 1.98 (4) 2.823 (3) 166 (4)
O12—H12C⋯O11ii 0.92 (4) 1.90 (4) 2.823 (3) 177 (4)
Symmetry codes: (i) -x-1, -y, -z+1; (ii) x-1, y+1, z; (iii) x, y+1, z; (iv) -x, -y+1, -z; (v) -x, -y, -z+1; (vi) -x, -y, -z; (vii) x-1, y, z.

Data collection: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-RED32 (Version 1.28b), X-SHAPE (Version 2.05) and X-AREA (Version 1.31). Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our research on the structure determination of simple ammonium salts (Amini et al., 2007a) as precursors for synthesis of double sulfate (Amini et al., 2007b), we have found that the this compound (Fig. 1) forms structures with extended hydrogen bonding in the presence of water molecules. From the packing diagram (Fig. 2), it seems that the intermolecular and intramolecular N—H···O and O—H···O and O—H···O hydrogen bonds (Table 1) are effective in the stabilization of the crystal structure. These compounds could be classified as an outstanding model system for polymers with higher dimensional hydrogen bonding. 4-aminoquinoline derivatives have cytotoxic activity (Repicky et al., 2005), so determination of molecular structure of these compounds could be beneficial. As it is shown in Fig. 2, the quinoline rings form π bonding stacks. The closest contact distance between adjacent aromatic rings is 3.328 (3) A°.

Related literature top

For related literature, see: Amini et al. (2007a,b); Repicky et al. (2005).

Experimental top

2-methylquinolin-4-amine (1.58 g, 0.01 mol) was dissolved in 30 ml dichloromethane. Dropwise addition of concentrated sulfuric acid (0.98 g, 0.01 mol) resulted in a white precipitate which was filtered and dissolved in methanol. Needle shape crystals were grown by slow evaporation of a methanol solution at room temperature.

Refinement top

The N-bond and O-bond H atoms were located in a difference map and their positions were freely refined. Other hydrogen atoms were refined using a riding model (C—H = 0.93–0.96 A°) with their displacement parameters set at 1.2 times Ueq of the parent atom.

Structure description top

In continuation of our research on the structure determination of simple ammonium salts (Amini et al., 2007a) as precursors for synthesis of double sulfate (Amini et al., 2007b), we have found that the this compound (Fig. 1) forms structures with extended hydrogen bonding in the presence of water molecules. From the packing diagram (Fig. 2), it seems that the intermolecular and intramolecular N—H···O and O—H···O and O—H···O hydrogen bonds (Table 1) are effective in the stabilization of the crystal structure. These compounds could be classified as an outstanding model system for polymers with higher dimensional hydrogen bonding. 4-aminoquinoline derivatives have cytotoxic activity (Repicky et al., 2005), so determination of molecular structure of these compounds could be beneficial. As it is shown in Fig. 2, the quinoline rings form π bonding stacks. The closest contact distance between adjacent aromatic rings is 3.328 (3) A°.

For related literature, see: Amini et al. (2007a,b); Repicky et al. (2005).

Computing details top

Data collection: X-RED32 (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Unit-cell packing diagram as viewed down the a-direction. Hydrogen bonds are shown as dashed lines.
4-Amino-2-methylquinolinium hydrogensulfate dihydrate top
Crystal data top
C10H11N2+·HSO4·2H2OZ = 4
Mr = 292.32F(000) = 616
Triclinic, P1Dx = 1.492 Mg m3
a = 10.1585 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2131 (9) ÅCell parameters from 2500 reflections
c = 13.3545 (11) Åθ = 1.7–29.2°
α = 68.283 (6)°µ = 0.27 mm1
β = 76.355 (7)°T = 120 K
γ = 67.949 (6)°Needle, colorless
V = 1301.51 (19) Å30.5 × 0.15 × 0.12 mm
Data collection top
Stoe IPDSII
diffractometer
5729 reflections with I > 2σ(I)
ω scansRint = 0.087
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
θmax = 29.2°, θmin = 1.7°
Tmin = 0.950, Tmax = 0.970h = 1313
16357 measured reflectionsk = 1515
7008 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0853P)2 + 1.1102P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182(Δ/σ)max = 0.019
S = 1.06Δρmax = 0.39 e Å3
7008 reflectionsΔρmin = 0.99 e Å3
409 parameters
Crystal data top
C10H11N2+·HSO4·2H2Oγ = 67.949 (6)°
Mr = 292.32V = 1301.51 (19) Å3
Triclinic, P1Z = 4
a = 10.1585 (9) ÅMo Kα radiation
b = 11.2131 (9) ŵ = 0.27 mm1
c = 13.3545 (11) ÅT = 120 K
α = 68.283 (6)°0.5 × 0.15 × 0.12 mm
β = 76.355 (7)°
Data collection top
Stoe IPDSII
diffractometer
7008 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
5729 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.970Rint = 0.087
16357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.182H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
7008 reflectionsΔρmin = 0.99 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2667 (2)0.3412 (2)0.37942 (17)0.0230 (4)
H1A0.17890.35650.35830.028*
C20.2725 (2)0.2116 (2)0.42028 (19)0.0251 (4)
H2A0.18820.13890.42680.03*
C30.4052 (2)0.1875 (2)0.45255 (19)0.0251 (4)
H3A0.4080.09910.480.03*
C40.5305 (2)0.2943 (2)0.44357 (17)0.0228 (4)
H4A0.61740.27720.46480.027*
C50.5292 (2)0.4296 (2)0.40258 (16)0.0206 (4)
C60.6557 (2)0.5461 (2)0.39237 (17)0.0208 (4)
C70.6404 (2)0.6757 (2)0.34890 (17)0.0228 (4)
H70.72150.75190.34110.027*
C80.5072 (2)0.6914 (2)0.31778 (17)0.0217 (4)
C90.4852 (3)0.8274 (2)0.27189 (19)0.0274 (5)
H9C0.43420.83680.20050.033*
H9B0.43110.83510.31790.033*
H9A0.57640.89730.26790.033*
C100.3942 (2)0.4510 (2)0.36953 (17)0.0205 (4)
C110.7437 (2)0.6655 (2)0.12158 (18)0.0240 (4)
H11A0.83390.65530.14150.029*
C120.7303 (2)0.7924 (2)0.08060 (19)0.0268 (4)
H12A0.81160.86830.07360.032*
C130.5935 (2)0.8088 (2)0.04894 (19)0.0257 (4)
H130.58540.89530.02080.031*
C140.4726 (2)0.6974 (2)0.05956 (17)0.0230 (4)
H140.38320.70930.03860.028*
C150.4823 (2)0.5647 (2)0.10199 (16)0.0203 (4)
C160.3599 (2)0.4439 (2)0.11442 (17)0.0202 (4)
C170.3833 (2)0.3176 (2)0.15913 (17)0.0217 (4)
H170.30550.23850.16880.026*
C180.5200 (2)0.3094 (2)0.18876 (17)0.0216 (4)
C190.5493 (2)0.1767 (2)0.23516 (18)0.0253 (4)
H19A0.46170.10440.2530.03*
H19B0.58890.16410.18270.03*
H19C0.61590.17670.29950.03*
C200.6205 (2)0.5506 (2)0.13349 (17)0.0207 (4)
N10.7861 (2)0.5326 (2)0.42328 (17)0.0264 (4)
H1B0.799 (3)0.452 (3)0.450 (2)0.035 (8)*
H1C0.863 (3)0.604 (3)0.421 (2)0.034 (8)*
N20.38895 (19)0.58169 (19)0.32826 (15)0.0215 (4)
H2B0.297 (3)0.591 (3)0.304 (2)0.033 (8)*
N30.2264 (2)0.4497 (2)0.08604 (16)0.0241 (4)
H3B0.206 (3)0.528 (3)0.056 (3)0.041 (9)*
H3C0.156 (3)0.375 (3)0.090 (2)0.030 (7)*
N40.63363 (19)0.42260 (19)0.17560 (15)0.0217 (4)
H4B0.724 (3)0.421 (3)0.197 (2)0.024 (7)*
O10.21598 (18)0.09186 (18)0.12957 (15)0.0304 (4)
H1D0.174 (4)0.085 (4)0.196 (3)0.049 (10)*
O20.19440 (18)0.16254 (17)0.05753 (13)0.0285 (4)
O30.11031 (19)0.33038 (17)0.03498 (15)0.0316 (4)
O40.02002 (17)0.17733 (17)0.07138 (14)0.0279 (4)
O50.21953 (18)0.06596 (18)0.35374 (15)0.0299 (4)
H50.169 (4)0.059 (4)0.284 (3)0.054 (10)*
O60.20017 (18)0.15065 (18)0.54201 (14)0.0307 (4)
O70.10350 (19)0.30542 (17)0.43617 (14)0.0306 (4)
O80.01481 (18)0.14707 (19)0.41604 (15)0.0328 (4)
O90.1039 (3)0.0757 (2)0.31884 (16)0.0445 (5)
H9D0.080 (4)0.007 (4)0.356 (3)0.056 (11)*
H9E0.133 (4)0.098 (4)0.358 (3)0.047 (10)*
O100.0982 (2)0.0478 (2)0.16311 (16)0.0396 (5)
H10A0.073 (4)0.026 (4)0.129 (3)0.050 (10)*
H10B0.127 (4)0.073 (3)0.124 (3)0.042 (9)*
O110.12512 (18)0.36765 (18)0.25826 (15)0.0276 (4)
H11C0.112 (3)0.346 (3)0.309 (3)0.038 (8)*
H11B0.137 (4)0.303 (4)0.203 (3)0.070 (13)*
O120.90519 (19)0.4039 (2)0.21908 (16)0.0316 (4)
H12B0.916 (4)0.386 (4)0.165 (3)0.058 (11)*
H12C0.979 (4)0.478 (4)0.231 (3)0.063 (11)*
S10.12067 (5)0.19469 (5)0.04176 (4)0.02081 (14)
S20.12161 (5)0.17207 (5)0.44180 (4)0.02107 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (10)0.0298 (11)0.0256 (10)0.0120 (8)0.0022 (8)0.0116 (8)
C20.0199 (10)0.0276 (11)0.0317 (11)0.0074 (8)0.0033 (8)0.0137 (9)
C30.0260 (11)0.0250 (10)0.0304 (11)0.0135 (9)0.0012 (8)0.0111 (8)
C40.0205 (10)0.0282 (11)0.0258 (10)0.0132 (8)0.0009 (8)0.0108 (8)
C50.0196 (9)0.0262 (10)0.0220 (9)0.0122 (8)0.0019 (7)0.0095 (8)
C60.0168 (9)0.0281 (10)0.0224 (9)0.0096 (8)0.0002 (7)0.0118 (8)
C70.0223 (10)0.0237 (10)0.0258 (10)0.0077 (8)0.0040 (8)0.0102 (8)
C80.0222 (10)0.0240 (10)0.0228 (9)0.0099 (8)0.0033 (7)0.0086 (8)
C90.0317 (12)0.0254 (11)0.0297 (11)0.0148 (9)0.0041 (9)0.0076 (8)
C100.0197 (9)0.0247 (10)0.0230 (9)0.0109 (8)0.0022 (7)0.0102 (8)
C110.0184 (9)0.0310 (11)0.0278 (10)0.0109 (8)0.0033 (8)0.0113 (8)
C120.0213 (10)0.0281 (11)0.0329 (11)0.0059 (8)0.0057 (8)0.0121 (9)
C130.0266 (11)0.0245 (10)0.0307 (11)0.0120 (9)0.0034 (9)0.0098 (8)
C140.0213 (10)0.0275 (10)0.0253 (10)0.0126 (8)0.0030 (8)0.0086 (8)
C150.0192 (9)0.0264 (10)0.0212 (9)0.0112 (8)0.0019 (7)0.0101 (8)
C160.0178 (9)0.0268 (10)0.0225 (9)0.0113 (8)0.0015 (7)0.0109 (8)
C170.0176 (9)0.0252 (10)0.0278 (10)0.0091 (8)0.0035 (8)0.0115 (8)
C180.0201 (9)0.0260 (10)0.0242 (10)0.0121 (8)0.0025 (7)0.0091 (8)
C190.0258 (10)0.0272 (11)0.0288 (11)0.0154 (9)0.0009 (8)0.0097 (8)
C200.0192 (9)0.0251 (10)0.0228 (9)0.0102 (8)0.0035 (7)0.0092 (8)
N10.0177 (9)0.0285 (10)0.0355 (10)0.0099 (8)0.0012 (7)0.0112 (8)
N20.0199 (8)0.0259 (9)0.0248 (8)0.0121 (7)0.0015 (7)0.0106 (7)
N30.0160 (9)0.0269 (10)0.0325 (10)0.0104 (8)0.0011 (7)0.0101 (8)
N40.0171 (8)0.0292 (9)0.0255 (9)0.0130 (7)0.0011 (6)0.0109 (7)
O10.0226 (8)0.0384 (10)0.0315 (9)0.0084 (7)0.0048 (7)0.0127 (7)
O20.0302 (8)0.0337 (9)0.0284 (8)0.0149 (7)0.0030 (6)0.0162 (7)
O30.0305 (9)0.0282 (8)0.0435 (10)0.0172 (7)0.0046 (7)0.0167 (7)
O40.0183 (7)0.0330 (9)0.0387 (9)0.0157 (7)0.0021 (6)0.0111 (7)
O50.0238 (8)0.0329 (9)0.0346 (9)0.0071 (7)0.0045 (7)0.0135 (7)
O60.0300 (9)0.0380 (9)0.0305 (8)0.0175 (7)0.0027 (7)0.0148 (7)
O70.0325 (9)0.0268 (8)0.0367 (9)0.0127 (7)0.0027 (7)0.0121 (7)
O80.0206 (8)0.0443 (10)0.0398 (10)0.0194 (7)0.0011 (7)0.0124 (8)
O90.0656 (14)0.0587 (13)0.0308 (10)0.0463 (12)0.0001 (9)0.0143 (9)
O100.0614 (13)0.0439 (11)0.0288 (9)0.0365 (10)0.0023 (8)0.0099 (8)
O110.0253 (8)0.0320 (9)0.0328 (9)0.0150 (7)0.0018 (7)0.0130 (7)
O120.0208 (8)0.0380 (10)0.0445 (10)0.0133 (7)0.0023 (7)0.0191 (8)
S10.0171 (3)0.0242 (3)0.0272 (3)0.0123 (2)0.00033 (19)0.0103 (2)
S20.0170 (3)0.0253 (3)0.0263 (3)0.0114 (2)0.00057 (19)0.0105 (2)
Geometric parameters (Å, º) top
C1—C21.369 (3)C16—C171.407 (3)
C1—C101.405 (3)C17—C181.380 (3)
C1—H1A0.93C17—H170.93
C2—C31.411 (3)C18—N41.344 (3)
C2—H2A0.93C18—C191.499 (3)
C3—C41.374 (3)C19—H19A0.96
C3—H3A0.93C19—H19B0.96
C4—C51.414 (3)C19—H19C0.96
C4—H4A0.93C20—N41.380 (3)
C5—C101.420 (3)N1—H1B0.89 (3)
C5—C61.437 (3)N1—H1C0.89 (3)
C6—N11.339 (3)N2—H2B0.95 (3)
C6—C71.406 (3)N3—H3B0.90 (3)
C7—C81.376 (3)N3—H3C0.86 (3)
C7—H70.93N4—H4B0.90 (3)
C8—N21.348 (3)O1—S11.5293 (18)
C8—C91.500 (3)O1—H1D0.87 (4)
C9—H9C0.96O2—S11.4601 (17)
C9—H9B0.96O3—S11.4548 (16)
C9—H9A0.96O4—S11.4568 (15)
C10—N21.379 (3)O5—S21.5543 (18)
C11—C121.370 (3)O5—H50.94 (4)
C11—C201.408 (3)O6—S21.4406 (17)
C11—H11A0.93O7—S21.4646 (17)
C12—C131.414 (3)O8—S21.4536 (15)
C12—H12A0.93O9—H9D0.84 (4)
C13—C141.374 (3)O9—H9E0.81 (4)
C13—H130.93O10—H10A0.88 (4)
C14—C151.415 (3)O10—H10B0.82 (3)
C14—H140.93O11—H11C0.85 (3)
C15—C201.419 (3)O11—H11B0.82 (4)
C15—C161.440 (3)O12—H12B0.86 (4)
C16—N31.339 (2)O12—H12C0.92 (4)
C2—C1—C10119.60 (19)N3—C16—C17120.0 (2)
C2—C1—H1A120.2N3—C16—C15121.66 (19)
C10—C1—H1A120.2C17—C16—C15118.32 (18)
C1—C2—C3120.6 (2)C18—C17—C16121.0 (2)
C1—C2—H2A119.7C18—C17—H17119.5
C3—C2—H2A119.7C16—C17—H17119.5
C4—C3—C2120.19 (19)N4—C18—C17120.30 (19)
C4—C3—H3A119.9N4—C18—C19117.20 (18)
C2—C3—H3A119.9C17—C18—C19122.5 (2)
C3—C4—C5121.01 (19)C18—C19—H19A109.5
C3—C4—H4A119.5C18—C19—H19B109.5
C5—C4—H4A119.5H19A—C19—H19B109.5
C4—C5—C10117.63 (19)C18—C19—H19C109.5
C4—C5—C6124.08 (18)H19A—C19—H19C109.5
C10—C5—C6118.30 (18)H19B—C19—H19C109.5
N1—C6—C7120.1 (2)N4—C20—C11119.97 (18)
N1—C6—C5121.16 (19)N4—C20—C15119.33 (19)
C7—C6—C5118.71 (18)C11—C20—C15120.70 (19)
C8—C7—C6120.9 (2)C6—N1—H1B122 (2)
C8—C7—H7119.6C6—N1—H1C120.9 (19)
C6—C7—H7119.6H1B—N1—H1C117 (3)
N2—C8—C7120.14 (19)C8—N2—C10122.78 (17)
N2—C8—C9116.95 (18)C8—N2—H2B121.3 (18)
C7—C8—C9122.9 (2)C10—N2—H2B115.9 (18)
C8—C9—H9C109.5C16—N3—H3B123 (2)
C8—C9—H9B109.5C16—N3—H3C118.9 (19)
H9C—C9—H9B109.5H3B—N3—H3C118 (3)
C8—C9—H9A109.5C18—N4—C20122.61 (17)
H9C—C9—H9A109.5C18—N4—H4B122.8 (17)
H9B—C9—H9A109.5C20—N4—H4B114.6 (17)
N2—C10—C1119.84 (18)S1—O1—H1D114 (2)
N2—C10—C5119.20 (19)S2—O5—H5111 (2)
C1—C10—C5120.96 (19)H9D—O9—H9E109 (4)
C12—C11—C20119.83 (19)H10A—O10—H10B114 (3)
C12—C11—H11A120.1H11C—O11—H11B111 (3)
C20—C11—H11A120.1H12B—O12—H12C111 (3)
C11—C12—C13120.4 (2)O3—S1—O4110.45 (10)
C11—C12—H12A119.8O3—S1—O2111.62 (10)
C13—C12—H12A119.8O4—S1—O2112.86 (10)
C14—C13—C12120.2 (2)O3—S1—O1108.74 (10)
C14—C13—H13119.9O4—S1—O1108.47 (10)
C12—C13—H13119.9O2—S1—O1104.41 (10)
C13—C14—C15120.93 (19)O6—S2—O8113.87 (10)
C13—C14—H14119.5O6—S2—O7112.78 (10)
C15—C14—H14119.5O8—S2—O7110.74 (11)
C14—C15—C20117.89 (19)O6—S2—O5104.17 (10)
C14—C15—C16123.65 (18)O8—S2—O5108.13 (10)
C20—C15—C16118.47 (18)O7—S2—O5106.56 (10)
C10—C1—C2—C30.0 (3)C13—C14—C15—C16179.5 (2)
C1—C2—C3—C40.2 (3)C14—C15—C16—N30.0 (3)
C2—C3—C4—C50.3 (3)C20—C15—C16—N3179.79 (19)
C3—C4—C5—C101.0 (3)C14—C15—C16—C17179.10 (19)
C3—C4—C5—C6179.1 (2)C20—C15—C16—C171.2 (3)
C4—C5—C6—N10.8 (3)N3—C16—C17—C18179.9 (2)
C10—C5—C6—N1179.22 (19)C15—C16—C17—C181.0 (3)
C4—C5—C6—C7179.12 (19)C16—C17—C18—N40.2 (3)
C10—C5—C6—C70.8 (3)C16—C17—C18—C19179.12 (19)
N1—C6—C7—C8179.3 (2)C12—C11—C20—N4179.5 (2)
C5—C6—C7—C80.7 (3)C12—C11—C20—C150.9 (3)
C6—C7—C8—N20.3 (3)C14—C15—C20—N4179.74 (18)
C6—C7—C8—C9179.5 (2)C16—C15—C20—N40.5 (3)
C2—C1—C10—N2179.89 (19)C14—C15—C20—C110.7 (3)
C2—C1—C10—C50.8 (3)C16—C15—C20—C11179.10 (19)
C4—C5—C10—N2179.44 (18)C7—C8—N2—C100.1 (3)
C6—C5—C10—N20.5 (3)C9—C8—N2—C10179.83 (18)
C4—C5—C10—C11.3 (3)C1—C10—N2—C8179.24 (19)
C6—C5—C10—C1178.79 (19)C5—C10—N2—C80.1 (3)
C20—C11—C12—C130.8 (3)C17—C18—N4—C200.5 (3)
C11—C12—C13—C140.4 (3)C19—C18—N4—C20179.86 (18)
C12—C13—C14—C150.1 (3)C11—C20—N4—C18179.95 (19)
C13—C14—C15—C200.2 (3)C15—C20—N4—C180.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O7i0.89 (3)2.16 (3)2.981 (3)154 (3)
N1—H1C···O7ii0.88 (3)2.26 (3)3.049 (3)149 (3)
N1—H1C···O8ii0.88 (3)2.58 (3)3.374 (3)151 (3)
O1—H1D···O90.88 (4)1.61 (4)2.485 (3)177 (5)
N2—H2B···O11iii0.95 (3)1.88 (3)2.819 (3)172 (3)
N3—H3B···O3iv0.90 (3)2.03 (3)2.902 (3)163 (3)
N3—H3C···O30.87 (3)2.54 (3)3.177 (3)132 (3)
N3—H3C···O40.87 (3)2.20 (3)3.034 (3)162 (3)
N4—H4B···O120.90 (3)1.87 (3)2.753 (3)169 (3)
O5—H5···O100.94 (4)1.58 (4)2.523 (3)174 (5)
O9—H9D···O80.84 (4)1.91 (4)2.736 (3)169 (4)
O9—H9E···O6v0.81 (4)1.98 (4)2.783 (3)178 (5)
O10—H10A···O40.89 (4)1.81 (4)2.695 (3)175 (3)
O10—H10B···O2vi0.83 (4)1.93 (4)2.745 (3)169 (4)
O11—H11B···O2vi0.82 (4)2.04 (4)2.843 (3)167 (5)
O11—H11C···O70.85 (4)1.94 (4)2.787 (3)172 (3)
O12—H12B···O3vii0.86 (4)1.98 (4)2.823 (3)166 (4)
O12—H12C···O11ii0.92 (4)1.90 (4)2.823 (3)177 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC10H11N2+·HSO4·2H2O
Mr292.32
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.1585 (9), 11.2131 (9), 13.3545 (11)
α, β, γ (°)68.283 (6), 76.355 (7), 67.949 (6)
V3)1301.51 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.5 × 0.15 × 0.12
Data collection
DiffractometerStoe IPDSII
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.950, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
16357, 7008, 5729
Rint0.087
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.182, 1.06
No. of reflections7008
No. of parameters409
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.99

Computer programs: X-RED32 (Stoe & Cie, 2005), X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O7i0.89 (3)2.16 (3)2.981 (3)154 (3)
N1—H1C···O7ii0.88 (3)2.26 (3)3.049 (3)149 (3)
N1—H1C···O8ii0.88 (3)2.58 (3)3.374 (3)151 (3)
O1—H1D···O90.88 (4)1.61 (4)2.485 (3)177 (5)
N2—H2B···O11iii0.95 (3)1.88 (3)2.819 (3)172 (3)
N3—H3B···O3iv0.90 (3)2.03 (3)2.902 (3)163 (3)
N3—H3C···O30.87 (3)2.54 (3)3.177 (3)132 (3)
N3—H3C···O40.87 (3)2.20 (3)3.034 (3)162 (3)
N4—H4B···O120.90 (3)1.87 (3)2.753 (3)169 (3)
O5—H5···O100.94 (4)1.58 (4)2.523 (3)174 (5)
O9—H9D···O80.84 (4)1.91 (4)2.736 (3)169 (4)
O9—H9E···O6v0.81 (4)1.98 (4)2.783 (3)178 (5)
O10—H10A···O40.89 (4)1.81 (4)2.695 (3)175 (3)
O10—H10B···O2vi0.83 (4)1.93 (4)2.745 (3)169 (4)
O11—H11B···O2vi0.82 (4)2.04 (4)2.843 (3)167 (5)
O11—H11C···O70.85 (4)1.94 (4)2.787 (3)172 (3)
O12—H12B···O3vii0.86 (4)1.98 (4)2.823 (3)166 (4)
O12—H12C···O11ii0.92 (4)1.90 (4)2.823 (3)177 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y, z; (vii) x1, y, z.
 

Acknowledgements

The authors acknowledge Shahid Beheshti University for financial support.

References

First citationAmini, M. M., Mohammadnezhad, G. S. & Khavasi, H. R. (2007b). Acta Cryst. E63, m2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmini, M. M., Nasiri, S. & Ng, S. W. (2007a). Acta Cryst. E63, o1361–o1362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRepicky, A., Jantova, S., Theiszova, M. & Milata, V. (2005). Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Rep. 49, 345–347.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (2005). X-RED32 (Version 1.28b), X-SHAPE (Version 2.05) and X-AREA (Version 1.31). Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds