metal-organic compounds
catena-Poly[[aquacopper(II)]-μ-[(S)-N-(2-hydroxybenzyl)-L-aspartato]]
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn
The title compound, [Cu(C11H11NO5)(H2O)]n, was obtained by the reaction of Cu(NO3)2 and the homochiral organic ligand (S)-N-(2-hydroxybenzyl)-L-aspartic acid (S-H3sasp). The CuII ion has a distorted square-pyramidal geometry and is coordinated by one N atom and three O atoms from the organic ligand and one O atom from a water molecule. The carboxyl O atoms of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain. Intermolecular hydrogen bonds link these chains into a two-dimensional arrangement.
Related literature
For related literature, see: Yang et al. (2004); Lü et al. (2005); Sreenivasulu & Vittal (2004); Sreenivasulu et al. (2005); Wang et al. (2006).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807046922/pk2047sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807046922/pk2047Isup2.hkl
The homochiral reduced Schiff-base ligand S-N-(2-hydroxybenzyl)-L-aspartic acid was synthesized by the reaction of salicylaldehyde and L-aspartic acid according to the published procedure described in the literature (Sreenivasulu & Vittal, 2004). A mixture of S-N-(2-hydroxybenzyl)-L-aspartic acid (23.9 mg, 0.1 mmol) and Cu(NO3)2.3H2O (24.2 mg, 0.1 mmol) were dissolved in water and methanol. Blue crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.
The water H atoms bonded to O1W were located in a difference map and refined with distance restraints of O1W—H = 0.83 (2) but were subsequently fixed. Other H atoms were calculated geometrically and were allowed to ride on the atoms to which they are bonded. Uiso(H) values were 1.5Ueq(O) and 1.2Ueq(C or N).
In the past several years, considerable attention has been paid to the design and construction of chiral supramolecular architecture owing to their potential applications in enantioselective synthesis, asymmetric catalysis, magnetism and nonlinear optical materials (Lü et al., 2005). Among these supramolecular structures, one-dimensional coordination polymers appear to dominate the literature, involving linear, zigzag and helical polymers (Wang et al., 2006). In addition, the one-dimensional polymers can further assemble via hydrogen bonds or other non-covalent interactions to give two-dimensional or three-dimensional coordination polymeric structures (Yang et al., 2004).
We have focused on the synthesis of multi-dimensional network structures from a flexible chiral multi-dentate ligand, namely the reduced Schiff base formed between salicylaldehyde and L-aspartic acid (Sreenivasulu et al., 2005). Here we report the synthesis and
of the title compound.As shown in Fig. 1, there exists a chiral center C8 in the organic ligand S-H3sasp which induces the title compound to crystallize in a
P21. In the title compound, the central Cu atom is five- coordinated and adopts a distorted square-pyramidal geometry. The coordination environment is defined by one N atom and three O atoms from the S-H3sasp ligand, and one O atom from the water molecule. The carboxyl O of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain.The intermolecular hydrogen bonds, O1W—H1WA···O2, O1W—H1WB···O4, O1—H1A···O5, N1—H1B···O3 and other non-covalent interactions link the coordination polymer into a two-dimensional network (Table 2 and Fig. 2).
For related literature, see: Yang et al. (2004); Lü et al. (2005); Sreenivasulu & Vittal (2004); Sreenivasulu et al. (2005); Wang et al. (2006).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).[Cu(C11H11NO5)(H2O)] | F(000) = 326 |
Mr = 318.77 | Dx = 1.709 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1876 reflections |
a = 5.9107 (13) Å | θ = 3.4–27.5° |
b = 8.826 (2) Å | µ = 1.79 mm−1 |
c = 11.903 (3) Å | T = 293 K |
β = 93.787 (19)° | Prism, colourless |
V = 619.6 (3) Å3 | 0.2 × 0.2 × 0.2 mm |
Z = 2 |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 2934 independent reflections |
Radiation source: fine-focus sealed tube | 2532 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.9°, θmin = 2.9° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −11→11 |
Tmin = 0.690, Tmax = 0.703 | l = −15→15 |
6500 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0135P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max = 0.001 |
2934 reflections | Δρmax = 0.48 e Å−3 |
172 parameters | Δρmin = −0.41 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1355 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.064 (16) |
[Cu(C11H11NO5)(H2O)] | V = 619.6 (3) Å3 |
Mr = 318.77 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.9107 (13) Å | µ = 1.79 mm−1 |
b = 8.826 (2) Å | T = 293 K |
c = 11.903 (3) Å | 0.2 × 0.2 × 0.2 mm |
β = 93.787 (19)° |
Rigaku Mercury2 (2x2 bin mode) diffractometer | 2934 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2532 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.703 | Rint = 0.058 |
6500 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.079 | Δρmax = 0.48 e Å−3 |
S = 0.99 | Δρmin = −0.41 e Å−3 |
2934 reflections | Absolute structure: Flack (1983), 1355 Friedel pairs |
172 parameters | Absolute structure parameter: 0.064 (16) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.10776 (6) | 0.12114 (6) | 0.91119 (3) | 0.02344 (12) | |
O2 | −0.2062 (4) | 0.0614 (3) | 0.8604 (2) | 0.0281 (6) | |
O1W | 0.4293 (4) | 0.1802 (3) | 0.9514 (2) | 0.0474 (9) | |
H1WA | 0.5139 | 0.1301 | 0.9141 | 0.071* | |
H1WB | 0.4689 | 0.2697 | 0.9684 | 0.071* | |
N1 | 0.1790 (5) | 0.0507 (3) | 0.7580 (2) | 0.0202 (6) | |
H1B | 0.3241 | 0.0025 | 0.7702 | 0.024* | |
O1 | 0.0408 (5) | 0.3744 (3) | 0.8257 (2) | 0.0410 (7) | |
H1A | 0.0157 | 0.4558 | 0.8557 | 0.061* | |
C8 | 0.0087 (6) | −0.0670 (4) | 0.7261 (3) | 0.0212 (8) | |
H8A | −0.0121 | −0.0715 | 0.6438 | 0.025* | |
O3 | −0.3920 (4) | −0.0856 (3) | 0.7316 (3) | 0.0415 (8) | |
C6 | −0.0171 (7) | 0.2611 (4) | 0.6464 (3) | 0.0285 (9) | |
C9 | −0.2184 (6) | −0.0274 (4) | 0.7737 (3) | 0.0226 (8) | |
C1 | −0.0879 (7) | 0.3633 (5) | 0.7264 (3) | 0.0309 (9) | |
C2 | −0.2846 (7) | 0.4502 (5) | 0.7032 (4) | 0.0408 (11) | |
H2A | −0.3337 | 0.5172 | 0.7568 | 0.049* | |
C5 | −0.1454 (8) | 0.2473 (5) | 0.5451 (3) | 0.0393 (12) | |
H5A | −0.1014 | 0.1782 | 0.4918 | 0.047* | |
C7 | 0.1977 (7) | 0.1710 (4) | 0.6726 (3) | 0.0312 (9) | |
H7A | 0.2426 | 0.1250 | 0.6035 | 0.037* | |
H7B | 0.3173 | 0.2403 | 0.6987 | 0.037* | |
C3 | −0.4050 (8) | 0.4350 (6) | 0.6000 (4) | 0.0506 (13) | |
H3A | −0.5334 | 0.4938 | 0.5835 | 0.061* | |
C10 | 0.0854 (6) | −0.2238 (4) | 0.7707 (3) | 0.0239 (8) | |
H10A | −0.0131 | −0.3008 | 0.7358 | 0.029* | |
H10B | 0.2382 | −0.2434 | 0.7493 | 0.029* | |
C11 | 0.0808 (6) | −0.2362 (4) | 0.8979 (3) | 0.0238 (8) | |
C4 | −0.3354 (9) | 0.3333 (6) | 0.5220 (4) | 0.0505 (13) | |
H4A | −0.4177 | 0.3229 | 0.4531 | 0.061* | |
O5 | −0.0374 (4) | −0.3461 (3) | 0.9343 (2) | 0.0297 (7) | |
O4 | 0.1842 (5) | −0.1414 (3) | 0.9602 (2) | 0.0350 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01864 (19) | 0.0292 (2) | 0.0225 (2) | −0.0011 (2) | 0.00118 (15) | −0.0045 (2) |
O2 | 0.0185 (13) | 0.0362 (14) | 0.0302 (14) | −0.0005 (11) | 0.0067 (11) | −0.0075 (12) |
O1W | 0.0204 (15) | 0.061 (2) | 0.060 (2) | −0.0040 (13) | 0.0016 (14) | −0.0351 (17) |
N1 | 0.0182 (15) | 0.0212 (14) | 0.0213 (15) | −0.0010 (12) | 0.0014 (12) | −0.0015 (13) |
O1 | 0.0457 (18) | 0.0356 (16) | 0.0408 (17) | 0.0072 (14) | −0.0029 (15) | −0.0119 (14) |
C8 | 0.0221 (19) | 0.0250 (18) | 0.0167 (17) | −0.0038 (16) | 0.0027 (15) | −0.0007 (15) |
O3 | 0.0161 (14) | 0.054 (2) | 0.0540 (19) | −0.0037 (13) | −0.0015 (13) | −0.0196 (15) |
C6 | 0.039 (2) | 0.0231 (19) | 0.024 (2) | −0.0066 (17) | 0.0083 (18) | 0.0059 (16) |
C9 | 0.0185 (18) | 0.028 (2) | 0.0207 (18) | 0.0008 (15) | −0.0036 (15) | 0.0019 (15) |
C1 | 0.034 (2) | 0.024 (2) | 0.034 (2) | −0.0066 (18) | 0.0044 (19) | 0.0021 (18) |
C2 | 0.038 (2) | 0.027 (2) | 0.057 (3) | −0.002 (2) | 0.003 (2) | 0.001 (2) |
C5 | 0.060 (3) | 0.038 (3) | 0.020 (2) | −0.010 (2) | 0.002 (2) | 0.0048 (19) |
C7 | 0.036 (2) | 0.026 (2) | 0.033 (2) | −0.0079 (16) | 0.0151 (18) | 0.0016 (15) |
C3 | 0.036 (3) | 0.039 (2) | 0.077 (4) | −0.006 (2) | 0.000 (3) | 0.028 (3) |
C10 | 0.024 (2) | 0.0228 (18) | 0.0253 (19) | −0.0027 (16) | 0.0057 (16) | −0.0012 (16) |
C11 | 0.027 (2) | 0.0228 (18) | 0.0220 (19) | 0.0082 (16) | 0.0042 (17) | 0.0037 (15) |
C4 | 0.059 (3) | 0.055 (3) | 0.035 (3) | −0.018 (3) | −0.014 (2) | 0.024 (2) |
O5 | 0.0316 (14) | 0.0326 (19) | 0.0252 (13) | −0.0070 (12) | 0.0045 (11) | 0.0059 (11) |
O4 | 0.0492 (18) | 0.0286 (15) | 0.0255 (14) | −0.0088 (15) | −0.0093 (13) | 0.0005 (12) |
Cu1—O5i | 1.934 (2) | C6—C1 | 1.395 (6) |
Cu1—O2 | 1.985 (3) | C6—C7 | 1.513 (5) |
Cu1—N1 | 1.998 (3) | C1—C2 | 1.405 (6) |
Cu1—O1W | 1.998 (3) | C2—C3 | 1.385 (6) |
Cu1—O4 | 2.424 (3) | C2—H2A | 0.9300 |
O2—C9 | 1.294 (4) | C5—C4 | 1.368 (7) |
O1W—H1WA | 0.8200 | C5—H5A | 0.9300 |
O1W—H1WB | 0.8442 | C7—H7A | 0.9700 |
N1—C8 | 1.479 (4) | C7—H7B | 0.9700 |
N1—C7 | 1.479 (4) | C3—C4 | 1.374 (7) |
N1—H1B | 0.9600 | C3—H3A | 0.9300 |
O1—C1 | 1.366 (4) | C10—C11 | 1.520 (5) |
O1—H1A | 0.8200 | C10—H10A | 0.9700 |
C8—C9 | 1.532 (5) | C10—H10B | 0.9700 |
C8—C10 | 1.540 (5) | C11—O4 | 1.250 (5) |
C8—H8A | 0.9800 | C11—O5 | 1.287 (4) |
O3—C9 | 1.225 (4) | C4—H4A | 0.9300 |
C6—C5 | 1.387 (6) | O5—Cu1ii | 1.934 (2) |
O5i—Cu1—O2 | 94.24 (11) | O1—C1—C6 | 117.5 (4) |
O5i—Cu1—N1 | 170.47 (11) | O1—C1—C2 | 122.5 (4) |
O2—Cu1—N1 | 83.59 (12) | C6—C1—C2 | 120.1 (4) |
O5i—Cu1—O1W | 89.66 (11) | C3—C2—C1 | 119.4 (4) |
O2—Cu1—O1W | 176.09 (11) | C3—C2—H2A | 120.3 |
N1—Cu1—O1W | 92.61 (12) | C1—C2—H2A | 120.3 |
O5i—Cu1—O4 | 87.84 (10) | C4—C5—C6 | 121.4 (4) |
O2—Cu1—O4 | 88.57 (10) | C4—C5—H5A | 119.3 |
N1—Cu1—O4 | 82.84 (11) | C6—C5—H5A | 119.3 |
O1W—Cu1—O4 | 91.87 (11) | N1—C7—C6 | 114.7 (3) |
C9—O2—Cu1 | 113.9 (2) | N1—C7—H7A | 108.6 |
Cu1—O1W—H1WA | 109.5 | C6—C7—H7A | 108.6 |
Cu1—O1W—H1WB | 123.1 | N1—C7—H7B | 108.6 |
H1WA—O1W—H1WB | 117.7 | C6—C7—H7B | 108.6 |
C8—N1—C7 | 114.1 (3) | H7A—C7—H7B | 107.6 |
C8—N1—Cu1 | 105.8 (2) | C4—C3—C2 | 120.2 (4) |
C7—N1—Cu1 | 115.7 (2) | C4—C3—H3A | 119.9 |
C8—N1—H1B | 108.3 | C2—C3—H3A | 119.9 |
C7—N1—H1B | 108.4 | C11—C10—C8 | 112.6 (3) |
Cu1—N1—H1B | 103.9 | C11—C10—H10A | 109.1 |
C1—O1—H1A | 109.5 | C8—C10—H10A | 109.1 |
N1—C8—C9 | 110.1 (3) | C11—C10—H10B | 109.1 |
N1—C8—C10 | 111.3 (3) | C8—C10—H10B | 109.1 |
C9—C8—C10 | 108.8 (3) | H10A—C10—H10B | 107.8 |
N1—C8—H8A | 108.9 | O4—C11—O5 | 124.0 (3) |
C9—C8—H8A | 108.9 | O4—C11—C10 | 120.2 (3) |
C10—C8—H8A | 108.9 | O5—C11—C10 | 115.8 (3) |
C5—C6—C1 | 118.6 (4) | C5—C4—C3 | 120.3 (4) |
C5—C6—C7 | 122.4 (4) | C5—C4—H4A | 119.8 |
C1—C6—C7 | 119.0 (4) | C3—C4—H4A | 119.8 |
O3—C9—O2 | 125.6 (3) | C11—O5—Cu1ii | 126.0 (2) |
O3—C9—C8 | 118.9 (3) | C11—O4—Cu1 | 114.9 (2) |
O2—C9—C8 | 115.4 (3) | ||
O5i—Cu1—O2—C9 | −153.3 (2) | O1—C1—C2—C3 | 179.0 (4) |
N1—Cu1—O2—C9 | 17.3 (2) | C6—C1—C2—C3 | −1.0 (6) |
O4—Cu1—O2—C9 | −65.6 (2) | C1—C6—C5—C4 | 1.2 (6) |
O2—Cu1—N1—C8 | −28.4 (2) | C7—C6—C5—C4 | −178.0 (4) |
O1W—Cu1—N1—C8 | 152.5 (2) | C8—N1—C7—C6 | 60.9 (4) |
O4—Cu1—N1—C8 | 61.0 (2) | Cu1—N1—C7—C6 | −62.2 (4) |
O2—Cu1—N1—C7 | 99.0 (3) | C5—C6—C7—N1 | −108.9 (4) |
O1W—Cu1—N1—C7 | −80.0 (3) | C1—C6—C7—N1 | 71.9 (4) |
O4—Cu1—N1—C7 | −171.6 (3) | C1—C2—C3—C4 | 1.5 (6) |
C7—N1—C8—C9 | −93.8 (3) | N1—C8—C10—C11 | 70.4 (4) |
Cu1—N1—C8—C9 | 34.5 (3) | C9—C8—C10—C11 | −51.0 (4) |
C7—N1—C8—C10 | 145.4 (3) | C8—C10—C11—O4 | −54.0 (5) |
Cu1—N1—C8—C10 | −86.2 (3) | C8—C10—C11—O5 | 124.7 (3) |
Cu1—O2—C9—O3 | 175.6 (3) | C6—C5—C4—C3 | −0.7 (6) |
Cu1—O2—C9—C8 | −1.0 (4) | C2—C3—C4—C5 | −0.6 (6) |
N1—C8—C9—O3 | 159.8 (3) | O4—C11—O5—Cu1ii | 6.6 (5) |
C10—C8—C9—O3 | −78.0 (4) | C10—C11—O5—Cu1ii | −172.1 (2) |
N1—C8—C9—O2 | −23.4 (4) | O5—C11—O4—Cu1 | −128.6 (3) |
C10—C8—C9—O2 | 98.9 (3) | C10—C11—O4—Cu1 | 50.0 (4) |
C5—C6—C1—O1 | 179.7 (3) | O5i—Cu1—O4—C11 | 127.5 (3) |
C7—C6—C1—O1 | −1.1 (5) | O2—Cu1—O4—C11 | 33.2 (3) |
C5—C6—C1—C2 | −0.3 (6) | N1—Cu1—O4—C11 | −50.5 (3) |
C7—C6—C1—C2 | 178.9 (3) | O1W—Cu1—O4—C11 | −142.9 (3) |
Symmetry codes: (i) −x, y+1/2, −z+2; (ii) −x, y−1/2, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2iii | 0.82 | 1.91 | 2.688 (3) | 158 |
O1W—H1WB···O4iv | 0.84 | 2.30 | 2.913 (4) | 129 |
N1—H1B···O3iii | 0.96 | 1.93 | 2.843 (4) | 158 |
O1—H1A···O5v | 0.82 | 2.02 | 2.837 (4) | 178 |
Symmetry codes: (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+2; (v) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C11H11NO5)(H2O)] |
Mr | 318.77 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 5.9107 (13), 8.826 (2), 11.903 (3) |
β (°) | 93.787 (19) |
V (Å3) | 619.6 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.79 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Rigaku Mercury2 (2x2 bin mode) |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.690, 0.703 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6500, 2934, 2532 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.079, 0.99 |
No. of reflections | 2934 |
No. of parameters | 172 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.48, −0.41 |
Absolute structure | Flack (1983), 1355 Friedel pairs |
Absolute structure parameter | 0.064 (16) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2i | 0.82 | 1.91 | 2.688 (3) | 157.6 |
O1W—H1WB···O4ii | 0.84 | 2.30 | 2.913 (4) | 129.3 |
N1—H1B···O3i | 0.96 | 1.93 | 2.843 (4) | 157.5 |
O1—H1A···O5iii | 0.82 | 2.02 | 2.837 (4) | 177.8 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z+2; (iii) x, y+1, z. |
Acknowledgements
We acknowledge the National Natural Science Foundation of China (Project 20671019) for financial support.
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lü, Z.-L., Zhang, D.-Q., Gao, S. & Zhu, D.-B. (2005). Inorg. Chem. Commun. 8, 746–750. Google Scholar
Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645. Web of Science CSD CrossRef Google Scholar
Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769–5772. Web of Science CSD CrossRef CAS Google Scholar
Wang, X.-B., Ranford, J. D. & Vittal, J. J. (2006). J. Mol. Struct. 796, 28–35. Web of Science CSD CrossRef CAS Google Scholar
Yang, X.-D., Ranford, J. D. & Vittal, J. J. (2004). Cryst. Growth Des. 4, 781–788. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the past several years, considerable attention has been paid to the design and construction of chiral supramolecular architecture owing to their potential applications in enantioselective synthesis, asymmetric catalysis, magnetism and nonlinear optical materials (Lü et al., 2005). Among these supramolecular structures, one-dimensional coordination polymers appear to dominate the literature, involving linear, zigzag and helical polymers (Wang et al., 2006). In addition, the one-dimensional polymers can further assemble via hydrogen bonds or other non-covalent interactions to give two-dimensional or three-dimensional coordination polymeric structures (Yang et al., 2004).
We have focused on the synthesis of multi-dimensional network structures from a flexible chiral multi-dentate ligand, namely the reduced Schiff base formed between salicylaldehyde and L-aspartic acid (Sreenivasulu et al., 2005). Here we report the synthesis and crystal structure of the title compound.
As shown in Fig. 1, there exists a chiral center C8 in the organic ligand S-H3sasp which induces the title compound to crystallize in a chiral space group P21. In the title compound, the central Cu atom is five- coordinated and adopts a distorted square-pyramidal geometry. The coordination environment is defined by one N atom and three O atoms from the S-H3sasp ligand, and one O atom from the water molecule. The carboxyl O of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain.
The intermolecular hydrogen bonds, O1W—H1WA···O2, O1W—H1WB···O4, O1—H1A···O5, N1—H1B···O3 and other non-covalent interactions link the coordination polymer into a two-dimensional network (Table 2 and Fig. 2).