metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­copper(II)]-μ-[(S)-N-(2-hy­droxy­benz­yl)-L-aspartato]]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 7 September 2007; accepted 24 September 2007; online 12 December 2007)

The title compound, [Cu(C11H11NO5)(H2O)]n, was obtained by the reaction of Cu(NO3)2 and the homochiral organic ligand (S)-N-(2-hydroxy­benz­yl)-L-aspartic acid (S-H3sasp). The CuII ion has a distorted square-pyramidal geometry and is coordinated by one N atom and three O atoms from the organic ligand and one O atom from a water mol­ecule. The carboxyl O atoms of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain. Inter­molecular hydrogen bonds link these chains into a two-dimensional arrangement.

Related literature

For related literature, see: Yang et al. (2004[Yang, X.-D., Ranford, J. D. & Vittal, J. J. (2004). Cryst. Growth Des. 4, 781-788.]); Lü et al. (2005[Lü, Z.-L., Zhang, D.-Q., Gao, S. & Zhu, D.-B. (2005). Inorg. Chem. Commun. 8, 746-750.]); Sreenivasulu & Vittal (2004[Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769-5772.]); Sreenivasulu et al. (2005[Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635-4645.]); Wang et al. (2006[Wang, X.-B., Ranford, J. D. & Vittal, J. J. (2006). J. Mol. Struct. 796, 28-35.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H11NO5)(H2O)]

  • Mr = 318.77

  • Monoclinic, P 21

  • a = 5.9107 (13) Å

  • b = 8.826 (2) Å

  • c = 11.903 (3) Å

  • β = 93.787 (19)°

  • V = 619.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.690, Tmax = 0.703

  • 6500 measured reflections

  • 2934 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.079

  • S = 0.99

  • 2934 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1355 Friedel pairs

  • Flack parameter: 0.064 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.82 1.91 2.688 (3) 158
O1W—H1WB⋯O4ii 0.84 2.30 2.913 (4) 129
N1—H1B⋯O3i 0.96 1.93 2.843 (4) 158
O1—H1A⋯O5iii 0.82 2.02 2.837 (4) 178
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past several years, considerable attention has been paid to the design and construction of chiral supramolecular architecture owing to their potential applications in enantioselective synthesis, asymmetric catalysis, magnetism and nonlinear optical materials (Lü et al., 2005). Among these supramolecular structures, one-dimensional coordination polymers appear to dominate the literature, involving linear, zigzag and helical polymers (Wang et al., 2006). In addition, the one-dimensional polymers can further assemble via hydrogen bonds or other non-covalent interactions to give two-dimensional or three-dimensional coordination polymeric structures (Yang et al., 2004).

We have focused on the synthesis of multi-dimensional network structures from a flexible chiral multi-dentate ligand, namely the reduced Schiff base formed between salicylaldehyde and L-aspartic acid (Sreenivasulu et al., 2005). Here we report the synthesis and crystal structure of the title compound.

As shown in Fig. 1, there exists a chiral center C8 in the organic ligand S-H3sasp which induces the title compound to crystallize in a chiral space group P21. In the title compound, the central Cu atom is five- coordinated and adopts a distorted square-pyramidal geometry. The coordination environment is defined by one N atom and three O atoms from the S-H3sasp ligand, and one O atom from the water molecule. The carboxyl O of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain.

The intermolecular hydrogen bonds, O1W—H1WA···O2, O1W—H1WB···O4, O1—H1A···O5, N1—H1B···O3 and other non-covalent interactions link the coordination polymer into a two-dimensional network (Table 2 and Fig. 2).

Related literature top

For related literature, see: Yang et al. (2004); Lü et al. (2005); Sreenivasulu & Vittal (2004); Sreenivasulu et al. (2005); Wang et al. (2006).

Experimental top

The homochiral reduced Schiff-base ligand S-N-(2-hydroxybenzyl)-L-aspartic acid was synthesized by the reaction of salicylaldehyde and L-aspartic acid according to the published procedure described in the literature (Sreenivasulu & Vittal, 2004). A mixture of S-N-(2-hydroxybenzyl)-L-aspartic acid (23.9 mg, 0.1 mmol) and Cu(NO3)2.3H2O (24.2 mg, 0.1 mmol) were dissolved in water and methanol. Blue crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement top

The water H atoms bonded to O1W were located in a difference map and refined with distance restraints of O1W—H = 0.83 (2) but were subsequently fixed. Other H atoms were calculated geometrically and were allowed to ride on the atoms to which they are bonded. Uiso(H) values were 1.5Ueq(O) and 1.2Ueq(C or N).

Structure description top

In the past several years, considerable attention has been paid to the design and construction of chiral supramolecular architecture owing to their potential applications in enantioselective synthesis, asymmetric catalysis, magnetism and nonlinear optical materials (Lü et al., 2005). Among these supramolecular structures, one-dimensional coordination polymers appear to dominate the literature, involving linear, zigzag and helical polymers (Wang et al., 2006). In addition, the one-dimensional polymers can further assemble via hydrogen bonds or other non-covalent interactions to give two-dimensional or three-dimensional coordination polymeric structures (Yang et al., 2004).

We have focused on the synthesis of multi-dimensional network structures from a flexible chiral multi-dentate ligand, namely the reduced Schiff base formed between salicylaldehyde and L-aspartic acid (Sreenivasulu et al., 2005). Here we report the synthesis and crystal structure of the title compound.

As shown in Fig. 1, there exists a chiral center C8 in the organic ligand S-H3sasp which induces the title compound to crystallize in a chiral space group P21. In the title compound, the central Cu atom is five- coordinated and adopts a distorted square-pyramidal geometry. The coordination environment is defined by one N atom and three O atoms from the S-H3sasp ligand, and one O atom from the water molecule. The carboxyl O of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain.

The intermolecular hydrogen bonds, O1W—H1WA···O2, O1W—H1WB···O4, O1—H1A···O5, N1—H1B···O3 and other non-covalent interactions link the coordination polymer into a two-dimensional network (Table 2 and Fig. 2).

For related literature, see: Yang et al. (2004); Lü et al. (2005); Sreenivasulu & Vittal (2004); Sreenivasulu et al. (2005); Wang et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids are at the 30% probability level and all hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
catena-Poly[[aquacopper(II)]-µ-[(S)-N-(2-hydroxybenzyl)- L-aspartato]] top
Crystal data top
[Cu(C11H11NO5)(H2O)]F(000) = 326
Mr = 318.77Dx = 1.709 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1876 reflections
a = 5.9107 (13) Åθ = 3.4–27.5°
b = 8.826 (2) ŵ = 1.79 mm1
c = 11.903 (3) ÅT = 293 K
β = 93.787 (19)°Prism, colourless
V = 619.6 (3) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.9°
ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.690, Tmax = 0.703l = 1515
6500 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0135P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2934 reflectionsΔρmax = 0.48 e Å3
172 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 1355 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.064 (16)
Crystal data top
[Cu(C11H11NO5)(H2O)]V = 619.6 (3) Å3
Mr = 318.77Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9107 (13) ŵ = 1.79 mm1
b = 8.826 (2) ÅT = 293 K
c = 11.903 (3) Å0.2 × 0.2 × 0.2 mm
β = 93.787 (19)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2532 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.703Rint = 0.058
6500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.079Δρmax = 0.48 e Å3
S = 0.99Δρmin = 0.41 e Å3
2934 reflectionsAbsolute structure: Flack (1983), 1355 Friedel pairs
172 parametersAbsolute structure parameter: 0.064 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10776 (6)0.12114 (6)0.91119 (3)0.02344 (12)
O20.2062 (4)0.0614 (3)0.8604 (2)0.0281 (6)
O1W0.4293 (4)0.1802 (3)0.9514 (2)0.0474 (9)
H1WA0.51390.13010.91410.071*
H1WB0.46890.26970.96840.071*
N10.1790 (5)0.0507 (3)0.7580 (2)0.0202 (6)
H1B0.32410.00250.77020.024*
O10.0408 (5)0.3744 (3)0.8257 (2)0.0410 (7)
H1A0.01570.45580.85570.061*
C80.0087 (6)0.0670 (4)0.7261 (3)0.0212 (8)
H8A0.01210.07150.64380.025*
O30.3920 (4)0.0856 (3)0.7316 (3)0.0415 (8)
C60.0171 (7)0.2611 (4)0.6464 (3)0.0285 (9)
C90.2184 (6)0.0274 (4)0.7737 (3)0.0226 (8)
C10.0879 (7)0.3633 (5)0.7264 (3)0.0309 (9)
C20.2846 (7)0.4502 (5)0.7032 (4)0.0408 (11)
H2A0.33370.51720.75680.049*
C50.1454 (8)0.2473 (5)0.5451 (3)0.0393 (12)
H5A0.10140.17820.49180.047*
C70.1977 (7)0.1710 (4)0.6726 (3)0.0312 (9)
H7A0.24260.12500.60350.037*
H7B0.31730.24030.69870.037*
C30.4050 (8)0.4350 (6)0.6000 (4)0.0506 (13)
H3A0.53340.49380.58350.061*
C100.0854 (6)0.2238 (4)0.7707 (3)0.0239 (8)
H10A0.01310.30080.73580.029*
H10B0.23820.24340.74930.029*
C110.0808 (6)0.2362 (4)0.8979 (3)0.0238 (8)
C40.3354 (9)0.3333 (6)0.5220 (4)0.0505 (13)
H4A0.41770.32290.45310.061*
O50.0374 (4)0.3461 (3)0.9343 (2)0.0297 (7)
O40.1842 (5)0.1414 (3)0.9602 (2)0.0350 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01864 (19)0.0292 (2)0.0225 (2)0.0011 (2)0.00118 (15)0.0045 (2)
O20.0185 (13)0.0362 (14)0.0302 (14)0.0005 (11)0.0067 (11)0.0075 (12)
O1W0.0204 (15)0.061 (2)0.060 (2)0.0040 (13)0.0016 (14)0.0351 (17)
N10.0182 (15)0.0212 (14)0.0213 (15)0.0010 (12)0.0014 (12)0.0015 (13)
O10.0457 (18)0.0356 (16)0.0408 (17)0.0072 (14)0.0029 (15)0.0119 (14)
C80.0221 (19)0.0250 (18)0.0167 (17)0.0038 (16)0.0027 (15)0.0007 (15)
O30.0161 (14)0.054 (2)0.0540 (19)0.0037 (13)0.0015 (13)0.0196 (15)
C60.039 (2)0.0231 (19)0.024 (2)0.0066 (17)0.0083 (18)0.0059 (16)
C90.0185 (18)0.028 (2)0.0207 (18)0.0008 (15)0.0036 (15)0.0019 (15)
C10.034 (2)0.024 (2)0.034 (2)0.0066 (18)0.0044 (19)0.0021 (18)
C20.038 (2)0.027 (2)0.057 (3)0.002 (2)0.003 (2)0.001 (2)
C50.060 (3)0.038 (3)0.020 (2)0.010 (2)0.002 (2)0.0048 (19)
C70.036 (2)0.026 (2)0.033 (2)0.0079 (16)0.0151 (18)0.0016 (15)
C30.036 (3)0.039 (2)0.077 (4)0.006 (2)0.000 (3)0.028 (3)
C100.024 (2)0.0228 (18)0.0253 (19)0.0027 (16)0.0057 (16)0.0012 (16)
C110.027 (2)0.0228 (18)0.0220 (19)0.0082 (16)0.0042 (17)0.0037 (15)
C40.059 (3)0.055 (3)0.035 (3)0.018 (3)0.014 (2)0.024 (2)
O50.0316 (14)0.0326 (19)0.0252 (13)0.0070 (12)0.0045 (11)0.0059 (11)
O40.0492 (18)0.0286 (15)0.0255 (14)0.0088 (15)0.0093 (13)0.0005 (12)
Geometric parameters (Å, º) top
Cu1—O5i1.934 (2)C6—C11.395 (6)
Cu1—O21.985 (3)C6—C71.513 (5)
Cu1—N11.998 (3)C1—C21.405 (6)
Cu1—O1W1.998 (3)C2—C31.385 (6)
Cu1—O42.424 (3)C2—H2A0.9300
O2—C91.294 (4)C5—C41.368 (7)
O1W—H1WA0.8200C5—H5A0.9300
O1W—H1WB0.8442C7—H7A0.9700
N1—C81.479 (4)C7—H7B0.9700
N1—C71.479 (4)C3—C41.374 (7)
N1—H1B0.9600C3—H3A0.9300
O1—C11.366 (4)C10—C111.520 (5)
O1—H1A0.8200C10—H10A0.9700
C8—C91.532 (5)C10—H10B0.9700
C8—C101.540 (5)C11—O41.250 (5)
C8—H8A0.9800C11—O51.287 (4)
O3—C91.225 (4)C4—H4A0.9300
C6—C51.387 (6)O5—Cu1ii1.934 (2)
O5i—Cu1—O294.24 (11)O1—C1—C6117.5 (4)
O5i—Cu1—N1170.47 (11)O1—C1—C2122.5 (4)
O2—Cu1—N183.59 (12)C6—C1—C2120.1 (4)
O5i—Cu1—O1W89.66 (11)C3—C2—C1119.4 (4)
O2—Cu1—O1W176.09 (11)C3—C2—H2A120.3
N1—Cu1—O1W92.61 (12)C1—C2—H2A120.3
O5i—Cu1—O487.84 (10)C4—C5—C6121.4 (4)
O2—Cu1—O488.57 (10)C4—C5—H5A119.3
N1—Cu1—O482.84 (11)C6—C5—H5A119.3
O1W—Cu1—O491.87 (11)N1—C7—C6114.7 (3)
C9—O2—Cu1113.9 (2)N1—C7—H7A108.6
Cu1—O1W—H1WA109.5C6—C7—H7A108.6
Cu1—O1W—H1WB123.1N1—C7—H7B108.6
H1WA—O1W—H1WB117.7C6—C7—H7B108.6
C8—N1—C7114.1 (3)H7A—C7—H7B107.6
C8—N1—Cu1105.8 (2)C4—C3—C2120.2 (4)
C7—N1—Cu1115.7 (2)C4—C3—H3A119.9
C8—N1—H1B108.3C2—C3—H3A119.9
C7—N1—H1B108.4C11—C10—C8112.6 (3)
Cu1—N1—H1B103.9C11—C10—H10A109.1
C1—O1—H1A109.5C8—C10—H10A109.1
N1—C8—C9110.1 (3)C11—C10—H10B109.1
N1—C8—C10111.3 (3)C8—C10—H10B109.1
C9—C8—C10108.8 (3)H10A—C10—H10B107.8
N1—C8—H8A108.9O4—C11—O5124.0 (3)
C9—C8—H8A108.9O4—C11—C10120.2 (3)
C10—C8—H8A108.9O5—C11—C10115.8 (3)
C5—C6—C1118.6 (4)C5—C4—C3120.3 (4)
C5—C6—C7122.4 (4)C5—C4—H4A119.8
C1—C6—C7119.0 (4)C3—C4—H4A119.8
O3—C9—O2125.6 (3)C11—O5—Cu1ii126.0 (2)
O3—C9—C8118.9 (3)C11—O4—Cu1114.9 (2)
O2—C9—C8115.4 (3)
O5i—Cu1—O2—C9153.3 (2)O1—C1—C2—C3179.0 (4)
N1—Cu1—O2—C917.3 (2)C6—C1—C2—C31.0 (6)
O4—Cu1—O2—C965.6 (2)C1—C6—C5—C41.2 (6)
O2—Cu1—N1—C828.4 (2)C7—C6—C5—C4178.0 (4)
O1W—Cu1—N1—C8152.5 (2)C8—N1—C7—C660.9 (4)
O4—Cu1—N1—C861.0 (2)Cu1—N1—C7—C662.2 (4)
O2—Cu1—N1—C799.0 (3)C5—C6—C7—N1108.9 (4)
O1W—Cu1—N1—C780.0 (3)C1—C6—C7—N171.9 (4)
O4—Cu1—N1—C7171.6 (3)C1—C2—C3—C41.5 (6)
C7—N1—C8—C993.8 (3)N1—C8—C10—C1170.4 (4)
Cu1—N1—C8—C934.5 (3)C9—C8—C10—C1151.0 (4)
C7—N1—C8—C10145.4 (3)C8—C10—C11—O454.0 (5)
Cu1—N1—C8—C1086.2 (3)C8—C10—C11—O5124.7 (3)
Cu1—O2—C9—O3175.6 (3)C6—C5—C4—C30.7 (6)
Cu1—O2—C9—C81.0 (4)C2—C3—C4—C50.6 (6)
N1—C8—C9—O3159.8 (3)O4—C11—O5—Cu1ii6.6 (5)
C10—C8—C9—O378.0 (4)C10—C11—O5—Cu1ii172.1 (2)
N1—C8—C9—O223.4 (4)O5—C11—O4—Cu1128.6 (3)
C10—C8—C9—O298.9 (3)C10—C11—O4—Cu150.0 (4)
C5—C6—C1—O1179.7 (3)O5i—Cu1—O4—C11127.5 (3)
C7—C6—C1—O11.1 (5)O2—Cu1—O4—C1133.2 (3)
C5—C6—C1—C20.3 (6)N1—Cu1—O4—C1150.5 (3)
C7—C6—C1—C2178.9 (3)O1W—Cu1—O4—C11142.9 (3)
Symmetry codes: (i) x, y+1/2, z+2; (ii) x, y1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.821.912.688 (3)158
O1W—H1WB···O4iv0.842.302.913 (4)129
N1—H1B···O3iii0.961.932.843 (4)158
O1—H1A···O5v0.822.022.837 (4)178
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1/2, z+2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C11H11NO5)(H2O)]
Mr318.77
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.9107 (13), 8.826 (2), 11.903 (3)
β (°) 93.787 (19)
V3)619.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.690, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
6500, 2934, 2532
Rint0.058
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.079, 0.99
No. of reflections2934
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.41
Absolute structureFlack (1983), 1355 Friedel pairs
Absolute structure parameter0.064 (16)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.821.912.688 (3)157.6
O1W—H1WB···O4ii0.842.302.913 (4)129.3
N1—H1B···O3i0.961.932.843 (4)157.5
O1—H1A···O5iii0.822.022.837 (4)177.8
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+2; (iii) x, y+1, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Project 20671019) for financial support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLü, Z.-L., Zhang, D.-Q., Gao, S. & Zhu, D.-B. (2005). Inorg. Chem. Commun. 8, 746–750.  Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.  Web of Science CSD CrossRef Google Scholar
First citationSreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769–5772.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-B., Ranford, J. D. & Vittal, J. J. (2006). J. Mol. Struct. 796, 28–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, X.-D., Ranford, J. D. & Vittal, J. J. (2004). Cryst. Growth Des. 4, 781–788.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds