inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dy8SnS13.61O0.39 from single-crystal data

aW. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna str. 2, PO Box 1410, 50-950 Wrocław, Poland, bDepartment of Ecology and Protection of the Environment, Volyn State University, Voli Ave 13, 43009 Lutsk, Ukraine, and cDepartment of Chemistry, Lutsk State Technical University, L'vivska str. 75, 43018 Lutsk, Ukraine
*Correspondence e-mail: m.daszkiewicz@int.pan.wroc.pl

(Received 9 November 2007; accepted 26 November 2007; online 6 December 2007)

Crystals of the title dysprosium tin sulfide oxide, Dy8SnS13S1−xOx [x = 0.39 (4)], were obtained unintentionally from the Dy–Sn–S system. A statistical mixture of sulfur and oxygen was assumed for one position in the structure. S and O atoms surround each of the eight symmetrically non-equivalent dysprosium atoms. The Sn atoms are located in tetra­hedral surroundings of sulfur atoms. Trigonal prisms and tetra­hedra are connected to each other by their edges. All atoms are situated in mirror planes.

Related literature

For previous structures with a statistical mixture of sulfur and oxygen, see: Besançon et al. (1973[Besançon, P., Carré, D. & Laruelle, P. (1973). Acta Cryst. B29, 1064-1066.]); Schleid (1991[Schleid, T. (1991). Z. Anorg. Allg. Chem. 602, 39-47.]).

Experimental

Crystal data
  • Dy8SnS13.61O0.39

  • Mr = 1861.27

  • Orthorhombic, C m c 21

  • a = 3.7822 (8) Å

  • b = 23.620 (5) Å

  • c = 21.271 (4) Å

  • V = 1900.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 33.80 mm−1

  • T = 293 (2) K

  • 0.14 × 0.01 × 0.01 mm

Data collection
  • KUMA KM-4 CCD area-detector diffractometer

  • Absorption correction: numerical (CrysAlis; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.6. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.104, Tmax = 0.716

  • 11655 measured reflections

  • 2287 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.038

  • S = 0.89

  • 2287 reflections

  • 141 parameters

  • 1 restraint

  • Δρmax = 3.05 e Å−3

  • Δρmin = −1.56 e Å−3

  • Absolute structure: Flack (1983), 1089 Friedel pairs

  • Flack parameter: 0.0 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.6. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.6. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2007[Westrip (2007). publCIF. In preparation.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

An attempt to synthesize Dy2SnS5, a compound with the La2SnS5 type structure was unsuccessful, resulting in a multiphase product. However, the formation of the new compound, Dy8SnS13S1 - xOx (x = 0.39 (4)) was achieved. The structure of this compound was investigated by means of single-crystal X-ray diffraction. In the initial stage of refinement, the composition Dy8SnS14 was assumed. However, unusually short Dy2—S14 (2.399 (5) Å) and Dy3—S14 (2.508 (7) Å) distances and a large value for the displacement parameter of S14 were observed. To complete the refinement, a statistical mixture (S and O) was assumed at the site of S14. Refinement of this model reduced the unusual displacement parameter to a physically reasonable value. The final composition was Dy8SnS13S1 - xOx (x = 0.39 (4)). The values of the Dy2—S14 (2.399 (5) Å) and Dy3—S14 (2.508 (7) Å) distances are intermediate between the Dy—O (2.220–2.264 Å) and Dy–S (2.704–2.742 Å) distances in Dy2OS2 (Schleid, 1991). A similar substitution of S by O in one position has also been observed in the structure of the La10S14S1 - xOx (x 1/2) compound (Besançon et al., 1973).

The unit cell and coordination polyhedra of the Dy and Sn atoms in the structure of the Dy8SnS14 - xOx (x = 0.39 (4)) compound are shown in Fig. 1. Sulfur and oxygen atoms surround each of eight symmetrically non-equivalent dysprosium atoms. However, only one mono-capped trigonal prism is evident (Dy1) along with seven bi-capped trigonal prisms around the remaining Dy atoms. The Sn atoms are located in tetrahedral surroundings of sulfur atoms. Trigonal prisms and tetrahedra are connected to each other by edges.

Related literature top

For previous structures with a statistical mixture of sulfur and oxygen, see: Besançon et al. (1973); cShleid (1991).

Experimental top

Single crystals of the title compound were grown by fusion of the elemental constituents (Alfa Aesar; purity > 99.9%wt) in evacuated silica ampoules. The ampoule was heated in a tube furnace with a heating rate of 30 K/h to 1420 K and kept at this temperature for 4 h. It was then cooled down slowly (10 K/h) to 870 K and annealed at this temperature for further 240 h and finally quenched in cold water. The product was a brown-coloured compact alloy containing red crystals with a prismatic habit and maximal lengths of 0.2 mm. An EDAX PV9800 microanalyser was used for the confirmation of the composition of the Dy, Sn and S in the crystal. The content of oxygen (<2%) was out of the limit of the microanalyser.

Refinement top

A statistical mixture of the sulfur and oxygen was assumed in the refinement with the same anisotropic displacement parameters for the S14 and O14 atoms. The space group Cmc21 was confirmed with PLATON (Spek, 2003).

Structure description top

An attempt to synthesize Dy2SnS5, a compound with the La2SnS5 type structure was unsuccessful, resulting in a multiphase product. However, the formation of the new compound, Dy8SnS13S1 - xOx (x = 0.39 (4)) was achieved. The structure of this compound was investigated by means of single-crystal X-ray diffraction. In the initial stage of refinement, the composition Dy8SnS14 was assumed. However, unusually short Dy2—S14 (2.399 (5) Å) and Dy3—S14 (2.508 (7) Å) distances and a large value for the displacement parameter of S14 were observed. To complete the refinement, a statistical mixture (S and O) was assumed at the site of S14. Refinement of this model reduced the unusual displacement parameter to a physically reasonable value. The final composition was Dy8SnS13S1 - xOx (x = 0.39 (4)). The values of the Dy2—S14 (2.399 (5) Å) and Dy3—S14 (2.508 (7) Å) distances are intermediate between the Dy—O (2.220–2.264 Å) and Dy–S (2.704–2.742 Å) distances in Dy2OS2 (Schleid, 1991). A similar substitution of S by O in one position has also been observed in the structure of the La10S14S1 - xOx (x 1/2) compound (Besançon et al., 1973).

The unit cell and coordination polyhedra of the Dy and Sn atoms in the structure of the Dy8SnS14 - xOx (x = 0.39 (4)) compound are shown in Fig. 1. Sulfur and oxygen atoms surround each of eight symmetrically non-equivalent dysprosium atoms. However, only one mono-capped trigonal prism is evident (Dy1) along with seven bi-capped trigonal prisms around the remaining Dy atoms. The Sn atoms are located in tetrahedral surroundings of sulfur atoms. Trigonal prisms and tetrahedra are connected to each other by edges.

For previous structures with a statistical mixture of sulfur and oxygen, see: Besançon et al. (1973); cShleid (1991).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2007) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of Dy8SnS13.61O0.39 viewed down the a axis. Displacement ellipsoids are shown at the 50% probability level.
Dysprosium tin sulfide oxide top
Crystal data top
Dy8SnS13.61O0.39F(000) = 3196
Mr = 1861.27Dx = 6.506 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2Cell parameters from 1910 reflections
a = 3.7822 (8) Åθ = 2.6–26.7°
b = 23.620 (5) ŵ = 33.80 mm1
c = 21.271 (4) ÅT = 293 K
V = 1900.3 (7) Å3Needle, red
Z = 40.14 × 0.01 × 0.01 mm
Data collection top
KUMA KM-4 with CCD area-detector
diffractometer
2287 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 26.7°, θmin = 2.6°
ω–scanh = 44
Absorption correction: numerical
(CrysAlis; Oxford Diffraction, 2007)
k = 2929
Tmin = 0.104, Tmax = 0.716l = 2626
11655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0128P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.038(Δ/σ)max = 0.001
S = 0.89Δρmax = 3.05 e Å3
2287 reflectionsΔρmin = 1.56 e Å3
141 parametersAbsolute structure: Flack (1983), 1089 Friedel pairs
1 restraintAbsolute structure parameter: 0.0 (2)
Crystal data top
Dy8SnS13.61O0.39V = 1900.3 (7) Å3
Mr = 1861.27Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 3.7822 (8) ŵ = 33.80 mm1
b = 23.620 (5) ÅT = 293 K
c = 21.271 (4) Å0.14 × 0.01 × 0.01 mm
Data collection top
KUMA KM-4 with CCD area-detector
diffractometer
2287 independent reflections
Absorption correction: numerical
(CrysAlis; Oxford Diffraction, 2007)
1910 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.716Rint = 0.049
11655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.038Δρmax = 3.05 e Å3
S = 0.89Δρmin = 1.56 e Å3
2287 reflectionsAbsolute structure: Flack (1983), 1089 Friedel pairs
141 parametersAbsolute structure parameter: 0.0 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Dy10.00000.69122 (4)0.08524 (3)0.0086 (2)
Dy20.00000.44849 (4)0.24158 (5)0.0242 (3)
Dy30.00000.10373 (4)0.23391 (4)0.0132 (2)
Dy40.00000.04543 (4)0.40541 (5)0.0125 (2)
Dy50.00000.85422 (4)0.07459 (5)0.0106 (2)
Dy60.00000.27636 (4)0.24724 (4)0.0100 (2)
Dy70.00000.37415 (4)0.41648 (5)0.0109 (2)
Dy80.50000.52208 (3)0.07589 (4)0.01244 (19)
Sn10.00000.70904 (6)0.40908 (8)0.0076 (2)
S10.00000.85740 (18)0.2105 (2)0.0088 (11)
S20.50000.43628 (19)0.3487 (2)0.0100 (10)
S30.50000.7734 (2)0.1121 (2)0.0089 (10)
S40.00000.48205 (18)0.4751 (2)0.0086 (9)
S50.00000.55462 (18)0.3115 (2)0.0100 (10)
S60.50000.63430 (18)0.0139 (2)0.0084 (10)
S70.00000.4362 (2)0.1072 (2)0.0121 (11)
S80.00000.58602 (18)0.13619 (19)0.0105 (9)
S90.50000.7460 (2)0.4772 (2)0.0141 (10)
S100.00000.1733 (2)0.3409 (2)0.0169 (10)
S110.00000.69522 (18)0.21604 (19)0.0079 (9)
S120.00000.6207 (2)0.4722 (2)0.0112 (10)
S130.00000.80025 (18)0.3496 (2)0.0096 (9)
O140.00000.0010 (3)0.2040 (4)0.034 (3)0.39 (4)
S140.00000.0010 (3)0.2040 (4)0.034 (3)0.61 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.0068 (4)0.0089 (5)0.0101 (5)0.0000.0000.0003 (4)
Dy20.0243 (5)0.0308 (6)0.0174 (7)0.0000.0000.0128 (5)
Dy30.0077 (4)0.0231 (5)0.0089 (5)0.0000.0000.0020 (4)
Dy40.0095 (5)0.0173 (5)0.0106 (5)0.0000.0000.0007 (4)
Dy50.0062 (4)0.0107 (4)0.0149 (5)0.0000.0000.0034 (4)
Dy60.0069 (4)0.0122 (4)0.0110 (5)0.0000.0000.0010 (4)
Dy70.0083 (4)0.0162 (5)0.0083 (5)0.0000.0000.0014 (4)
Dy80.0062 (4)0.0104 (4)0.0207 (5)0.0000.0000.0021 (4)
Sn10.0069 (4)0.0080 (5)0.0079 (5)0.0000.0000.0016 (4)
S10.012 (3)0.010 (2)0.005 (3)0.0000.0000.0009 (18)
S20.007 (2)0.013 (2)0.010 (2)0.0000.0000.004 (2)
S30.006 (2)0.010 (2)0.010 (3)0.0000.0000.002 (2)
S40.008 (2)0.008 (2)0.010 (2)0.0000.0000.0019 (18)
S50.009 (2)0.014 (2)0.006 (2)0.0000.0000.0020 (17)
S60.008 (2)0.009 (2)0.008 (2)0.0000.0000.0006 (16)
S70.008 (2)0.014 (2)0.014 (3)0.0000.0000.006 (2)
S80.011 (2)0.012 (2)0.009 (2)0.0000.0000.0014 (16)
S90.009 (2)0.021 (3)0.013 (2)0.0000.0000.0090 (18)
S100.009 (2)0.029 (3)0.012 (2)0.0000.0000.011 (2)
S110.010 (2)0.007 (2)0.007 (2)0.0000.0000.0045 (17)
S120.013 (2)0.012 (2)0.009 (2)0.0000.0000.001 (2)
S130.013 (2)0.008 (2)0.008 (2)0.0000.0000.0007 (18)
O140.023 (4)0.022 (5)0.056 (6)0.0000.0000.004 (4)
S140.023 (4)0.022 (5)0.056 (6)0.0000.0000.004 (4)
Geometric parameters (Å, º) top
Dy1—S82.711 (4)Dy7—S13vii2.940 (3)
Dy1—S9i2.735 (5)Dy7—S13viii2.940 (3)
Dy1—S32.769 (3)Dy7—Dy7ii3.7822 (8)
Dy1—S3ii2.769 (3)Dy7—Dy7iii3.7822 (8)
Dy1—S6ii2.772 (3)Dy7—Dy1xii3.9078 (15)
Dy1—S62.772 (3)Dy8—S8iii2.739 (3)
Dy1—S112.784 (4)Dy8—S82.739 (3)
Dy1—Dy1ii3.7822 (8)Dy8—S14v2.770 (8)
Dy1—Dy1iii3.7822 (8)Dy8—O14v2.770 (8)
Dy1—Dy53.8567 (14)Dy8—S72.852 (4)
Dy1—Dy7iv3.9078 (15)Dy8—S7iii2.852 (4)
Dy2—S14v2.399 (5)Dy8—S4iv2.861 (3)
Dy2—O14v2.399 (5)Dy8—S4xiii2.861 (3)
Dy2—S14vi2.399 (5)Dy8—S62.960 (4)
Dy2—O14vi2.399 (5)Dy8—Dy8ii3.7822 (8)
Dy2—S72.873 (5)Dy8—Dy8iii3.7822 (8)
Dy2—S52.914 (5)Dy8—Dy3v3.8753 (14)
Dy2—S1vii2.940 (3)Sn1—S122.481 (5)
Dy2—S1viii2.940 (3)Sn1—S132.498 (5)
Dy2—S22.976 (4)Sn1—S10vi2.529 (3)
Dy2—S2ii2.976 (4)Sn1—S10v2.529 (3)
Dy2—Dy2ii3.7822 (8)Sn1—S92.537 (3)
Dy2—Dy2iii3.7822 (8)Sn1—S9ii2.537 (3)
Dy3—O142.508 (7)S1—Dy6vi2.802 (3)
Dy3—S5viii2.765 (3)S1—Dy6v2.802 (3)
Dy3—S5vii2.765 (3)S1—Dy2v2.940 (3)
Dy3—S102.807 (5)S1—Dy2vi2.940 (3)
Dy3—S8vii2.841 (3)S2—Dy7iii2.794 (4)
Dy3—S8viii2.841 (3)S2—Dy4v2.846 (5)
Dy3—S11viii2.897 (3)S2—Dy2iii2.976 (4)
Dy3—S11vii2.897 (3)S3—Dy1iii2.769 (3)
Dy3—Dy3ii3.7822 (8)S3—Dy5iii2.803 (4)
Dy3—Dy3iii3.7822 (8)S3—Dy6v2.876 (5)
Dy3—Dy8vii3.8753 (14)S4—Dy4v2.831 (3)
Dy4—S5vii2.760 (3)S4—Dy4vi2.831 (3)
Dy4—S5viii2.760 (3)S4—Dy8xi2.861 (3)
Dy4—S4viii2.831 (3)S4—Dy8xii2.861 (3)
Dy4—S4vii2.831 (3)S5—Dy4v2.760 (3)
Dy4—S2vii2.846 (5)S5—Dy4vi2.760 (3)
Dy4—S12viii2.960 (4)S5—Dy3vi2.765 (3)
Dy4—S12vii2.960 (4)S5—Dy3v2.765 (3)
Dy4—Dy4iii3.7822 (8)S6—Dy1iii2.772 (3)
Dy4—Dy4ii3.7822 (8)S6—Dy7iv2.813 (3)
Dy4—Dy8ix3.9612 (17)S6—Dy7xiii2.813 (3)
Dy5—S7v2.794 (4)S7—Dy5vii2.794 (4)
Dy5—S7vi2.794 (4)S7—Dy5viii2.794 (4)
Dy5—S32.803 (4)S7—Dy8ii2.852 (4)
Dy5—S3ii2.803 (4)S8—Dy8ii2.739 (3)
Dy5—S12.892 (5)S8—Dy3v2.841 (3)
Dy5—S12x2.944 (4)S8—Dy3vi2.841 (3)
Dy5—S12i2.944 (4)S9—Sn1iii2.537 (3)
Dy5—S9i3.145 (5)S9—Dy1xiv2.735 (5)
Dy5—Dy5ii3.7822 (8)S9—Dy5xiv3.145 (5)
Dy5—Dy5iii3.7822 (8)S10—Sn1viii2.529 (3)
Dy5—Dy8vi3.9649 (15)S10—Sn1vii2.529 (3)
Dy6—S11vii2.773 (3)S11—Dy6v2.773 (3)
Dy6—S11viii2.773 (3)S11—Dy6vi2.773 (3)
Dy6—S1viii2.802 (3)S11—Dy3vi2.897 (3)
Dy6—S1vii2.802 (3)S11—Dy3v2.897 (3)
Dy6—S3vii2.876 (5)S12—Dy5xiv2.944 (4)
Dy6—S13viii2.939 (3)S12—Dy5xv2.944 (4)
Dy6—S13vii2.939 (3)S12—Dy4vi2.960 (4)
Dy6—S103.145 (5)S12—Dy4v2.960 (4)
Dy6—Dy6iii3.7822 (8)S13—Dy6vi2.939 (3)
Dy6—Dy6ii3.7822 (8)S13—Dy6v2.939 (3)
Dy7—S22.794 (4)S13—Dy7v2.940 (3)
Dy7—S2ii2.794 (4)S13—Dy7vi2.940 (3)
Dy7—S6xi2.813 (3)O14—Dy2vii2.399 (5)
Dy7—S6xii2.813 (3)O14—Dy2viii2.399 (5)
Dy7—S42.837 (5)O14—Dy8vii2.770 (8)
S8—Dy1—S9i146.41 (14)S11vii—Dy6—S1viii149.95 (14)
S8—Dy1—S3124.06 (10)S11viii—Dy6—S1viii86.85 (10)
S9i—Dy1—S378.05 (13)S11vii—Dy6—S1vii86.85 (9)
S8—Dy1—S3ii124.06 (10)S11viii—Dy6—S1vii149.95 (14)
S9i—Dy1—S3ii78.05 (13)S1viii—Dy6—S1vii84.89 (12)
S3—Dy1—S3ii86.14 (13)S11vii—Dy6—S3vii75.16 (11)
S8—Dy1—S6ii76.95 (11)S11viii—Dy6—S3vii75.16 (11)
S9i—Dy1—S6ii78.66 (12)S1viii—Dy6—S3vii74.79 (12)
S3—Dy1—S6ii156.70 (14)S1vii—Dy6—S3vii74.79 (12)
S3ii—Dy1—S6ii89.24 (10)S11vii—Dy6—S13viii138.49 (12)
S8—Dy1—S676.95 (11)S11viii—Dy6—S13viii82.60 (10)
S9i—Dy1—S678.66 (12)S1viii—Dy6—S13viii68.99 (11)
S3—Dy1—S689.24 (10)S1vii—Dy6—S13viii120.66 (12)
S3ii—Dy1—S6156.70 (14)S3vii—Dy6—S13viii138.20 (6)
S6ii—Dy1—S686.02 (13)S11vii—Dy6—S13vii82.60 (10)
S8—Dy1—S1168.38 (12)S11viii—Dy6—S13vii138.49 (12)
S9i—Dy1—S11145.21 (13)S1viii—Dy6—S13vii120.66 (12)
S3—Dy1—S1176.72 (12)S1vii—Dy6—S13vii68.99 (11)
S3ii—Dy1—S1176.72 (12)S3vii—Dy6—S13vii138.20 (6)
S6ii—Dy1—S11124.29 (10)S13viii—Dy6—S13vii80.09 (11)
S6—Dy1—S11124.29 (10)S11vii—Dy6—S1067.46 (10)
S8—Dy1—Dy1ii90.0S11viii—Dy6—S1067.46 (10)
S9i—Dy1—Dy1ii90.0S1viii—Dy6—S10134.86 (8)
S3—Dy1—Dy1ii133.07 (7)S1vii—Dy6—S10134.86 (8)
S3ii—Dy1—Dy1ii46.93 (7)S3vii—Dy6—S10127.89 (13)
S6ii—Dy1—Dy1ii46.99 (6)S13viii—Dy6—S1071.30 (10)
S6—Dy1—Dy1ii133.01 (6)S13vii—Dy6—S1071.30 (10)
S11—Dy1—Dy1ii90.0S11vii—Dy6—Dy6iii133.00 (6)
S8—Dy1—Dy1iii90.0S11viii—Dy6—Dy6iii47.00 (6)
S9i—Dy1—Dy1iii90.0S1viii—Dy6—Dy6iii47.55 (6)
S3—Dy1—Dy1iii46.93 (7)S1vii—Dy6—Dy6iii132.45 (6)
S3ii—Dy1—Dy1iii133.07 (7)S3vii—Dy6—Dy6iii90.0
S6ii—Dy1—Dy1iii133.01 (6)S13viii—Dy6—Dy6iii49.95 (5)
S6—Dy1—Dy1iii46.99 (6)S13vii—Dy6—Dy6iii130.05 (5)
S11—Dy1—Dy1iii90.0S10—Dy6—Dy6iii90.0
Dy1ii—Dy1—Dy1iii180.00 (5)S11vii—Dy6—Dy6ii47.00 (6)
S8—Dy1—Dy5159.81 (9)S11viii—Dy6—Dy6ii133.00 (6)
S9i—Dy1—Dy553.78 (10)S1viii—Dy6—Dy6ii132.45 (6)
S3—Dy1—Dy546.56 (8)S1vii—Dy6—Dy6ii47.55 (6)
S3ii—Dy1—Dy546.56 (8)S3vii—Dy6—Dy6ii90.0
S6ii—Dy1—Dy5116.87 (9)S13viii—Dy6—Dy6ii130.05 (5)
S6—Dy1—Dy5116.87 (9)S13vii—Dy6—Dy6ii49.95 (5)
S11—Dy1—Dy591.43 (9)S10—Dy6—Dy6ii90.0
Dy1ii—Dy1—Dy590.0Dy6iii—Dy6—Dy6ii180.00 (5)
Dy1iii—Dy1—Dy590.0S2—Dy7—S2ii85.20 (14)
S8—Dy1—Dy7iv90.29 (9)S2—Dy7—S6xi87.83 (11)
S9i—Dy1—Dy7iv56.12 (10)S2ii—Dy7—S6xi150.73 (13)
S3—Dy1—Dy7iv117.79 (10)S2—Dy7—S6xii150.73 (13)
S3ii—Dy1—Dy7iv117.79 (10)S2ii—Dy7—S6xii87.83 (11)
S6ii—Dy1—Dy7iv46.02 (7)S6xi—Dy7—S6xii84.49 (13)
S6—Dy1—Dy7iv46.02 (7)S2—Dy7—S475.80 (11)
S11—Dy1—Dy7iv158.67 (9)S2ii—Dy7—S475.80 (11)
Dy1ii—Dy1—Dy7iv90.0S6xi—Dy7—S474.93 (11)
Dy1iii—Dy1—Dy7iv90.0S6xii—Dy7—S474.93 (11)
Dy5—Dy1—Dy7iv109.91 (3)S2—Dy7—S13vii119.86 (13)
S14v—Dy2—O14v0.0 (5)S2ii—Dy7—S13vii68.11 (12)
S14v—Dy2—S14vi104.1 (3)S6xi—Dy7—S13vii138.30 (12)
O14v—Dy2—S14vi104.1 (3)S6xii—Dy7—S13vii83.21 (10)
S14v—Dy2—O14vi104.1 (3)S4—Dy7—S13vii138.23 (6)
O14v—Dy2—O14vi104.1 (3)S2—Dy7—S13viii68.11 (12)
S14vi—Dy2—O14vi0.0 (4)S2ii—Dy7—S13viii119.86 (13)
S14v—Dy2—S773.79 (19)S6xi—Dy7—S13viii83.21 (10)
O14v—Dy2—S773.79 (19)S6xii—Dy7—S13viii138.30 (12)
S14vi—Dy2—S773.79 (19)S4—Dy7—S13viii138.23 (6)
O14vi—Dy2—S773.79 (19)S13vii—Dy7—S13viii80.06 (11)
S14v—Dy2—S574.03 (17)S2—Dy7—Dy7ii132.60 (7)
O14v—Dy2—S574.03 (17)S2ii—Dy7—Dy7ii47.40 (7)
S14vi—Dy2—S574.03 (17)S6xi—Dy7—Dy7ii132.25 (6)
O14vi—Dy2—S574.03 (17)S6xii—Dy7—Dy7ii47.75 (6)
S7—Dy2—S5126.46 (14)S4—Dy7—Dy7ii90.0
S14v—Dy2—S1vii144.2 (2)S13vii—Dy7—Dy7ii49.97 (6)
O14v—Dy2—S1vii144.2 (2)S13viii—Dy7—Dy7ii130.03 (6)
S14vi—Dy2—S1vii78.26 (16)S2—Dy7—Dy7iii47.40 (7)
O14vi—Dy2—S1vii78.26 (16)S2ii—Dy7—Dy7iii132.60 (7)
S7—Dy2—S1vii72.68 (12)S6xi—Dy7—Dy7iii47.75 (6)
S5—Dy2—S1vii138.10 (7)S6xii—Dy7—Dy7iii132.25 (6)
S14v—Dy2—S1viii78.26 (16)S4—Dy7—Dy7iii90.0
O14v—Dy2—S1viii78.26 (16)S13vii—Dy7—Dy7iii130.03 (6)
S14vi—Dy2—S1viii144.2 (2)S13viii—Dy7—Dy7iii49.97 (6)
O14vi—Dy2—S1viii144.2 (2)Dy7ii—Dy7—Dy7iii180.00 (8)
S7—Dy2—S1viii72.68 (12)S2—Dy7—Dy1xii132.94 (8)
S5—Dy2—S1viii138.10 (7)S2ii—Dy7—Dy1xii132.94 (8)
S1vii—Dy2—S1viii80.07 (11)S6xi—Dy7—Dy1xii45.18 (7)
S14v—Dy2—S278.71 (18)S6xii—Dy7—Dy1xii45.18 (7)
O14v—Dy2—S278.71 (18)S4—Dy7—Dy1xii87.21 (9)
S14vi—Dy2—S2143.7 (2)S13vii—Dy7—Dy1xii102.10 (8)
O14vi—Dy2—S2143.7 (2)S13viii—Dy7—Dy1xii102.10 (8)
S7—Dy2—S2138.79 (7)Dy7ii—Dy7—Dy1xii90.0
S5—Dy2—S272.10 (11)Dy7iii—Dy7—Dy1xii90.0
S1vii—Dy2—S2120.68 (12)S8iii—Dy8—S887.33 (13)
S1viii—Dy2—S272.10 (11)S8iii—Dy8—S14v68.79 (14)
S14v—Dy2—S2ii143.7 (2)S8—Dy8—S14v68.79 (14)
O14v—Dy2—S2ii143.7 (2)S8iii—Dy8—O14v68.79 (14)
S14vi—Dy2—S2ii78.71 (18)S8—Dy8—O14v68.79 (14)
O14vi—Dy2—S2ii78.71 (18)S14v—Dy8—O14v0.0 (3)
S7—Dy2—S2ii138.79 (7)S8iii—Dy8—S7137.78 (12)
S5—Dy2—S2ii72.10 (11)S8—Dy8—S779.92 (11)
S1vii—Dy2—S2ii72.10 (11)S14v—Dy8—S769.06 (15)
S1viii—Dy2—S2ii120.68 (12)O14v—Dy8—S769.06 (15)
S2—Dy2—S2ii78.91 (12)S8iii—Dy8—S7iii79.92 (11)
S14v—Dy2—Dy2ii142.03 (14)S8—Dy8—S7iii137.78 (12)
O14v—Dy2—Dy2ii142.03 (14)S14v—Dy8—S7iii69.06 (15)
S14vi—Dy2—Dy2ii37.97 (14)O14v—Dy8—S7iii69.06 (15)
O14vi—Dy2—Dy2ii37.97 (14)S7—Dy8—S7iii83.07 (13)
S7—Dy2—Dy2ii90.0S8iii—Dy8—S4iv145.71 (13)
S5—Dy2—Dy2ii90.0S8—Dy8—S4iv85.03 (10)
S1vii—Dy2—Dy2ii49.97 (6)S14v—Dy8—S4iv136.99 (8)
S1viii—Dy2—Dy2ii130.03 (6)O14v—Dy8—S4iv136.99 (8)
S2—Dy2—Dy2ii129.46 (6)S7—Dy8—S4iv73.29 (12)
S2ii—Dy2—Dy2ii50.54 (6)S7iii—Dy8—S4iv126.09 (13)
S14v—Dy2—Dy2iii37.97 (14)S8iii—Dy8—S4xiii85.03 (10)
O14v—Dy2—Dy2iii37.97 (14)S8—Dy8—S4xiii145.71 (13)
S14vi—Dy2—Dy2iii142.03 (14)S14v—Dy8—S4xiii136.99 (8)
O14vi—Dy2—Dy2iii142.03 (14)O14v—Dy8—S4xiii136.99 (8)
S7—Dy2—Dy2iii90.0S7—Dy8—S4xiii126.09 (13)
S5—Dy2—Dy2iii90.0S7iii—Dy8—S4xiii73.29 (12)
S1vii—Dy2—Dy2iii130.03 (6)S4iv—Dy8—S4xiii82.77 (12)
S1viii—Dy2—Dy2iii49.97 (6)S8iii—Dy8—S673.43 (10)
S2—Dy2—Dy2iii50.54 (6)S8—Dy8—S673.43 (10)
S2ii—Dy2—Dy2iii129.46 (6)S14v—Dy8—S6126.78 (17)
Dy2ii—Dy2—Dy2iii180.00 (6)O14v—Dy8—S6126.78 (17)
O14—Dy3—S5viii75.25 (16)S7—Dy8—S6137.80 (7)
O14—Dy3—S5vii75.25 (16)S7iii—Dy8—S6137.80 (7)
S5viii—Dy3—S5vii86.32 (13)S4iv—Dy8—S672.35 (11)
O14—Dy3—S10140.5 (2)S4xiii—Dy8—S672.35 (11)
S5viii—Dy3—S1076.23 (12)S8iii—Dy8—Dy8ii133.66 (6)
S5vii—Dy3—S1076.23 (12)S8—Dy8—Dy8ii46.34 (6)
O14—Dy3—S8vii70.86 (16)S14v—Dy8—Dy8ii90.0
S5viii—Dy3—S8vii146.11 (13)O14v—Dy8—Dy8ii90.0
S5vii—Dy3—S8vii85.38 (10)S7—Dy8—Dy8ii48.47 (7)
S10—Dy3—S8vii132.79 (8)S7iii—Dy8—Dy8ii131.53 (7)
O14—Dy3—S8viii70.86 (16)S4iv—Dy8—Dy8ii48.62 (6)
S5viii—Dy3—S8viii85.38 (10)S4xiii—Dy8—Dy8ii131.38 (6)
S5vii—Dy3—S8viii146.11 (13)S6—Dy8—Dy8ii90.0
S10—Dy3—S8viii132.79 (8)S8iii—Dy8—Dy8iii46.34 (6)
S8vii—Dy3—S8viii83.46 (11)S8—Dy8—Dy8iii133.66 (6)
O14—Dy3—S11viii133.50 (11)S14v—Dy8—Dy8iii90.0
S5viii—Dy3—S11viii86.83 (9)O14v—Dy8—Dy8iii90.0
S5vii—Dy3—S11viii146.92 (13)S7—Dy8—Dy8iii131.53 (7)
S10—Dy3—S11viii70.70 (11)S7iii—Dy8—Dy8iii48.47 (7)
S8vii—Dy3—S11viii116.65 (11)S4iv—Dy8—Dy8iii131.38 (6)
S8viii—Dy3—S11viii65.12 (11)S4xiii—Dy8—Dy8iii48.62 (6)
O14—Dy3—S11vii133.50 (11)S6—Dy8—Dy8iii90.0
S5viii—Dy3—S11vii146.92 (13)Dy8ii—Dy8—Dy8iii180.0
S5vii—Dy3—S11vii86.83 (9)S8iii—Dy8—Dy3v47.11 (7)
S10—Dy3—S11vii70.70 (11)S8—Dy8—Dy3v47.11 (7)
S8vii—Dy3—S11vii65.12 (11)S14v—Dy8—Dy3v40.19 (15)
S8viii—Dy3—S11vii116.65 (11)O14v—Dy8—Dy3v40.19 (15)
S11viii—Dy3—S11vii81.52 (11)S7—Dy8—Dy3v98.71 (10)
O14—Dy3—Dy3ii90.0S7iii—Dy8—Dy3v98.71 (10)
S5viii—Dy3—Dy3ii133.16 (6)S4iv—Dy8—Dy3v131.84 (7)
S5vii—Dy3—Dy3ii46.84 (6)S4xiii—Dy8—Dy3v131.84 (7)
S10—Dy3—Dy3ii90.0S6—Dy8—Dy3v86.59 (9)
S8vii—Dy3—Dy3ii48.27 (6)Dy8ii—Dy8—Dy3v90.0
S8viii—Dy3—Dy3ii131.73 (6)Dy8iii—Dy8—Dy3v90.0
S11viii—Dy3—Dy3ii130.76 (5)S12—Sn1—S13177.64 (19)
S11vii—Dy3—Dy3ii49.24 (5)S12—Sn1—S10vi91.72 (15)
O14—Dy3—Dy3iii90.0S13—Sn1—S10vi89.85 (14)
S5viii—Dy3—Dy3iii46.84 (6)S12—Sn1—S10v91.72 (15)
S5vii—Dy3—Dy3iii133.16 (6)S13—Sn1—S10v89.85 (14)
S10—Dy3—Dy3iii90.0S10vi—Sn1—S10v96.82 (16)
S8vii—Dy3—Dy3iii131.73 (6)S12—Sn1—S988.85 (14)
S8viii—Dy3—Dy3iii48.27 (6)S13—Sn1—S989.58 (14)
S11viii—Dy3—Dy3iii49.24 (5)S10vi—Sn1—S9179.39 (19)
S11vii—Dy3—Dy3iii130.76 (5)S10v—Sn1—S983.40 (8)
Dy3ii—Dy3—Dy3iii180.00 (3)S12—Sn1—S9ii88.85 (14)
O14—Dy3—Dy8vii45.47 (18)S13—Sn1—S9ii89.58 (13)
S5viii—Dy3—Dy8vii107.98 (9)S10vi—Sn1—S9ii83.40 (8)
S5vii—Dy3—Dy8vii107.98 (9)S10v—Sn1—S9ii179.39 (19)
S10—Dy3—Dy8vii174.01 (11)S9—Sn1—S9ii96.38 (16)
S8vii—Dy3—Dy8vii44.94 (7)Dy6vi—S1—Dy6v84.89 (12)
S8viii—Dy3—Dy8vii44.94 (7)Dy6vi—S1—Dy5105.14 (12)
S11viii—Dy3—Dy8vii104.92 (9)Dy6v—S1—Dy5105.14 (12)
S11vii—Dy3—Dy8vii104.92 (8)Dy6vi—S1—Dy2v150.61 (19)
Dy3ii—Dy3—Dy8vii90.0Dy6v—S1—Dy2v90.17 (6)
Dy3iii—Dy3—Dy8vii90.0Dy5—S1—Dy2v104.12 (12)
S5vii—Dy4—S5viii86.51 (13)Dy6vi—S1—Dy2vi90.17 (6)
S5vii—Dy4—S4viii151.45 (13)Dy6v—S1—Dy2vi150.61 (19)
S5viii—Dy4—S4viii87.87 (10)Dy5—S1—Dy2vi104.12 (12)
S5vii—Dy4—S4vii87.87 (10)Dy2v—S1—Dy2vi80.07 (11)
S5viii—Dy4—S4vii151.45 (13)Dy7—S2—Dy7iii85.20 (14)
S4viii—Dy4—S4vii83.83 (12)Dy7—S2—Dy4v104.92 (13)
S5vii—Dy4—S2vii76.38 (11)Dy7iii—S2—Dy4v104.92 (13)
S5viii—Dy4—S2vii76.38 (11)Dy7—S2—Dy290.90 (5)
S4viii—Dy4—S2vii75.09 (11)Dy7iii—S2—Dy2151.17 (18)
S4vii—Dy4—S2vii75.09 (11)Dy4v—S2—Dy2103.69 (13)
S5vii—Dy4—S12viii137.58 (12)Dy7—S2—Dy2iii151.17 (18)
S5viii—Dy4—S12viii82.10 (11)Dy7iii—S2—Dy2iii90.90 (5)
S4viii—Dy4—S12viii68.88 (12)Dy4v—S2—Dy2iii103.69 (13)
S4vii—Dy4—S12viii119.56 (13)Dy2—S2—Dy2iii78.91 (12)
S2vii—Dy4—S12viii138.40 (7)Dy1—S3—Dy1iii86.14 (13)
S5vii—Dy4—S12vii82.10 (11)Dy1—S3—Dy5iii151.58 (19)
S5viii—Dy4—S12vii137.58 (12)Dy1iii—S3—Dy5iii87.60 (5)
S4viii—Dy4—S12vii119.56 (13)Dy1—S3—Dy587.60 (5)
S4vii—Dy4—S12vii68.88 (12)Dy1iii—S3—Dy5151.58 (19)
S2vii—Dy4—S12vii138.40 (7)Dy5iii—S3—Dy584.86 (13)
S12viii—Dy4—S12vii79.43 (12)Dy1—S3—Dy6v102.89 (13)
S5vii—Dy4—Dy4iii133.25 (7)Dy1iii—S3—Dy6v102.89 (13)
S5viii—Dy4—Dy4iii46.75 (7)Dy5iii—S3—Dy6v105.53 (13)
S4viii—Dy4—Dy4iii48.09 (6)Dy5—S3—Dy6v105.53 (13)
S4vii—Dy4—Dy4iii131.91 (6)Dy4v—S4—Dy4vi83.83 (12)
S2vii—Dy4—Dy4iii90.0Dy4v—S4—Dy7104.18 (12)
S12viii—Dy4—Dy4iii50.28 (6)Dy4vi—S4—Dy7104.18 (12)
S12vii—Dy4—Dy4iii129.72 (6)Dy4v—S4—Dy8xi88.21 (5)
S5vii—Dy4—Dy4ii46.75 (7)Dy4vi—S4—Dy8xi148.43 (17)
S5viii—Dy4—Dy4ii133.25 (7)Dy7—S4—Dy8xi107.38 (12)
S4viii—Dy4—Dy4ii131.91 (6)Dy4v—S4—Dy8xii148.43 (17)
S4vii—Dy4—Dy4ii48.09 (6)Dy4vi—S4—Dy8xii88.21 (5)
S2vii—Dy4—Dy4ii90.0Dy7—S4—Dy8xii107.38 (12)
S12viii—Dy4—Dy4ii129.72 (6)Dy8xi—S4—Dy8xii82.77 (12)
S12vii—Dy4—Dy4ii50.28 (6)Dy4v—S5—Dy4vi86.51 (13)
Dy4iii—Dy4—Dy4ii180.00 (5)Dy4v—S5—Dy3vi159.03 (18)
S5vii—Dy4—Dy345.15 (7)Dy4vi—S5—Dy3vi89.79 (4)
S5viii—Dy4—Dy345.15 (7)Dy4v—S5—Dy3v89.79 (4)
S4viii—Dy4—Dy3132.57 (7)Dy4vi—S5—Dy3v159.03 (18)
S4vii—Dy4—Dy3132.57 (7)Dy3vi—S5—Dy3v86.32 (13)
S2vii—Dy4—Dy385.62 (10)Dy4v—S5—Dy2107.56 (12)
S12viii—Dy4—Dy3103.71 (10)Dy4vi—S5—Dy2107.56 (12)
S12vii—Dy4—Dy3103.71 (10)Dy3vi—S5—Dy293.24 (12)
Dy4iii—Dy4—Dy390.0Dy3v—S5—Dy293.24 (12)
Dy4ii—Dy4—Dy390.0Dy1iii—S6—Dy186.02 (13)
S5vii—Dy4—Dy8ix133.99 (7)Dy1iii—S6—Dy7iv153.67 (17)
S5viii—Dy4—Dy8ix133.99 (7)Dy1—S6—Dy7iv88.80 (5)
S4viii—Dy4—Dy8ix46.20 (7)Dy1iii—S6—Dy7xiii88.80 (5)
S4vii—Dy4—Dy8ix46.20 (7)Dy1—S6—Dy7xiii153.67 (17)
S2vii—Dy4—Dy8ix91.32 (10)Dy7iv—S6—Dy7xiii84.49 (13)
S12viii—Dy4—Dy8ix78.60 (10)Dy1iii—S6—Dy8100.99 (12)
S12vii—Dy4—Dy8ix78.60 (10)Dy1—S6—Dy8100.99 (12)
Dy4iii—Dy4—Dy8ix90.0Dy7iv—S6—Dy8105.34 (11)
Dy4ii—Dy4—Dy8ix90.0Dy7xiii—S6—Dy8105.34 (11)
Dy3—Dy4—Dy8ix176.94 (3)Dy5vii—S7—Dy5viii85.19 (13)
S7v—Dy5—S7vi85.19 (13)Dy5vii—S7—Dy8ii89.21 (5)
S7v—Dy5—S386.84 (11)Dy5viii—S7—Dy8ii152.1 (2)
S7vi—Dy5—S3149.10 (16)Dy5vii—S7—Dy8152.1 (2)
S7v—Dy5—S3ii149.10 (16)Dy5viii—S7—Dy889.21 (5)
S7vi—Dy5—S3ii86.84 (11)Dy8ii—S7—Dy883.07 (13)
S3—Dy5—S3ii84.86 (13)Dy5vii—S7—Dy2108.48 (14)
S7v—Dy5—S174.57 (12)Dy5viii—S7—Dy2108.48 (14)
S7vi—Dy5—S174.57 (12)Dy8ii—S7—Dy299.23 (13)
S3—Dy5—S174.54 (12)Dy8—S7—Dy299.23 (13)
S3ii—Dy5—S174.54 (12)Dy1—S8—Dy8ii108.55 (12)
S7v—Dy5—S12x118.62 (13)Dy1—S8—Dy8108.55 (12)
S7vi—Dy5—S12x67.02 (12)Dy8ii—S8—Dy887.33 (13)
S3—Dy5—S12x141.31 (14)Dy1—S8—Dy3v99.06 (12)
S3ii—Dy5—S12x85.06 (11)Dy8ii—S8—Dy3v152.05 (17)
S1—Dy5—S12x137.24 (8)Dy8—S8—Dy3v87.95 (5)
S7v—Dy5—S12i67.02 (12)Dy1—S8—Dy3vi99.06 (12)
S7vi—Dy5—S12i118.62 (13)Dy8ii—S8—Dy3vi87.95 (5)
S3—Dy5—S12i85.06 (11)Dy8—S8—Dy3vi152.05 (17)
S3ii—Dy5—S12i141.31 (14)Dy3v—S8—Dy3vi83.46 (11)
S1—Dy5—S12i137.24 (8)Sn1—S9—Sn1iii96.38 (16)
S12x—Dy5—S12i79.93 (13)Sn1—S9—Dy1xiv131.79 (8)
S7v—Dy5—S9i133.23 (9)Sn1iii—S9—Dy1xiv131.79 (8)
S7vi—Dy5—S9i133.23 (9)Sn1—S9—Dy5xiv96.74 (13)
S3—Dy5—S9i71.02 (11)Sn1iii—S9—Dy5xiv96.74 (13)
S3ii—Dy5—S9i71.02 (11)Dy1xiv—S9—Dy5xiv81.66 (13)
S1—Dy5—S9i132.68 (13)Sn1viii—S10—Sn1vii96.82 (16)
S12x—Dy5—S9i70.38 (11)Sn1viii—S10—Dy3131.34 (8)
S12i—Dy5—S9i70.38 (11)Sn1vii—S10—Dy3131.34 (8)
S7v—Dy5—Dy5ii132.60 (7)Sn1viii—S10—Dy696.03 (14)
S7vi—Dy5—Dy5ii47.40 (7)Sn1vii—S10—Dy696.03 (14)
S3—Dy5—Dy5ii132.43 (7)Dy3—S10—Dy686.55 (13)
S3ii—Dy5—Dy5ii47.57 (7)Dy6v—S11—Dy6vi85.99 (12)
S1—Dy5—Dy5ii90.0Dy6v—S11—Dy1105.23 (11)
S12x—Dy5—Dy5ii50.03 (6)Dy6vi—S11—Dy1105.23 (11)
S12i—Dy5—Dy5ii129.97 (6)Dy6v—S11—Dy3vi158.35 (16)
S9i—Dy5—Dy5ii90.0Dy6vi—S11—Dy3vi92.23 (4)
S7v—Dy5—Dy5iii47.40 (7)Dy1—S11—Dy3vi96.07 (11)
S7vi—Dy5—Dy5iii132.60 (7)Dy6v—S11—Dy3v92.23 (4)
S3—Dy5—Dy5iii47.57 (7)Dy6vi—S11—Dy3v158.35 (16)
S3ii—Dy5—Dy5iii132.43 (7)Dy1—S11—Dy3v96.07 (11)
S1—Dy5—Dy5iii90.0Dy3vi—S11—Dy3v81.52 (11)
S12x—Dy5—Dy5iii129.97 (6)Sn1—S12—Dy5xiv103.38 (14)
S12i—Dy5—Dy5iii50.03 (6)Sn1—S12—Dy5xv103.38 (14)
S9i—Dy5—Dy5iii90.0Dy5xiv—S12—Dy5xv79.93 (13)
Dy5ii—Dy5—Dy5iii180.0Sn1—S12—Dy4vi104.21 (14)
S7v—Dy5—Dy1132.63 (8)Dy5xiv—S12—Dy4vi152.42 (18)
S7vi—Dy5—Dy1132.63 (8)Dy5xv—S12—Dy4vi93.75 (5)
S3—Dy5—Dy145.84 (7)Sn1—S12—Dy4v104.21 (14)
S3ii—Dy5—Dy145.84 (7)Dy5xiv—S12—Dy4v93.75 (5)
S1—Dy5—Dy188.12 (9)Dy5xv—S12—Dy4v152.42 (18)
S12x—Dy5—Dy1104.13 (10)Dy4vi—S12—Dy4v79.43 (12)
S12i—Dy5—Dy1104.13 (10)Sn1—S13—Dy6vi102.09 (12)
S9i—Dy5—Dy144.56 (9)Sn1—S13—Dy6v102.09 (12)
Dy5ii—Dy5—Dy190.0Dy6vi—S13—Dy6v80.09 (11)
Dy5iii—Dy5—Dy190.0Sn1—S13—Dy7v105.50 (12)
S7v—Dy5—Dy8vi45.99 (8)Dy6vi—S13—Dy7v152.39 (16)
S7vi—Dy5—Dy8vi45.99 (8)Dy6v—S13—Dy7v93.35 (5)
S3—Dy5—Dy8vi132.78 (8)Sn1—S13—Dy7vi105.50 (12)
S3ii—Dy5—Dy8vi132.78 (8)Dy6vi—S13—Dy7vi93.35 (5)
S1—Dy5—Dy8vi88.11 (9)Dy6v—S13—Dy7vi152.39 (16)
S12x—Dy5—Dy8vi78.71 (9)Dy7v—S13—Dy7vi80.06 (11)
S12i—Dy5—Dy8vi78.71 (9)Dy2vii—O14—Dy2viii104.1 (3)
S9i—Dy5—Dy8vi139.21 (9)Dy2vii—O14—Dy3114.6 (2)
Dy5ii—Dy5—Dy8vi90.0Dy2viii—O14—Dy3114.6 (2)
Dy5iii—Dy5—Dy8vi90.0Dy2vii—O14—Dy8vii114.9 (2)
Dy1—Dy5—Dy8vi176.23 (4)Dy2viii—O14—Dy8vii114.9 (2)
S11vii—Dy6—S11viii85.99 (12)Dy3—O14—Dy8vii94.3 (2)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y+1, z1/2; (v) x+1/2, y+1/2, z; (vi) x1/2, y+1/2, z; (vii) x1/2, y1/2, z; (viii) x+1/2, y1/2, z; (ix) x+1/2, y+1/2, z+1/2; (x) x1/2, y+3/2, z1/2; (xi) x+1, y+1, z+1/2; (xii) x, y+1, z+1/2; (xiii) x+1, y+1, z1/2; (xiv) x+1/2, y+3/2, z+1/2; (xv) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaDy8SnS13.61O0.39
Mr1861.27
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)3.7822 (8), 23.620 (5), 21.271 (4)
V3)1900.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)33.80
Crystal size (mm)0.14 × 0.01 × 0.01
Data collection
DiffractometerKUMA KM-4 with CCD area-detector
Absorption correctionNumerical
(CrysAlis; Oxford Diffraction, 2007)
Tmin, Tmax0.104, 0.716
No. of measured, independent and
observed [I > 2σ(I)] reflections
11655, 2287, 1910
Rint0.049
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.038, 0.89
No. of reflections2287
No. of parameters141
No. of restraints1
Δρmax, Δρmin (e Å3)3.05, 1.56
Absolute structureFlack (1983), 1089 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2005), publCIF (Westrip, 2007) and PLATON (Spek, 2003).

 

References

First citationBesançon, P., Carré, D. & Laruelle, P. (1973). Acta Cryst. B29, 1064–1066.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Release 3.0e. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32.6. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSchleid, T. (1991). Z. Anorg. Allg. Chem. 602, 39–47.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds