metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-N-(3-pyridyl­meth­yl)pyridine-4-carboxamide] nitrate monohydrate]

aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 13 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, {[Ag(C12H11N3O)]NO3·H2O}n, the Ag atom is coordinated by two N atoms from the heterocyclic ligand, giving a linear polycationic chain. Two long Ag⋯Onitrate inter­actions [2.667 (3) and 2.840 (3) Å] result in a three-dimensional network. The water mol­ecule consolidates the network structure by forming hydrogen bonds, one to the polycationic chain and one to the nitrate anion.

Related literature

For related literature, see: Cordes & Hanton (2007[Cordes, D. B. & Hanton, L. R. (2007). Inorg. Chem. 46, 1634-1644.]); Kumar et al. (2006[Kumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 1903-1909.]); Tong et al. (2002[Tong, M.-L., Wu, Y.-M., Ru, J., Chen, X.-M., Chang, H.-C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846-4848.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H11N3O)]NO3·H2O

  • Mr = 401.13

  • Monoclinic, P 21 /c

  • a = 12.177 (2) Å

  • b = 13.022 (3) Å

  • c = 8.9109 (18) Å

  • β = 94.21 (3)°

  • V = 1409.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 (2) K

  • 0.6 × 0.4 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.503, Tmax = 0.742

  • 14304 measured reflections

  • 3230 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.101

  • S = 1.06

  • 3230 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1Wi 0.86 2.04 2.837 (4) 154
O1W—H1WA⋯O1 0.85 1.94 2.790 (4) 174
O1W—H1WB⋯O3ii 0.85 2.04 2.886 (4) 171
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reactions of silver(I) salts with flexible pyridyl type ligands have received considerable attention (Cordes et al., 2007; Kumar et al., 2006; Tong et al., 2002). Here, we report a new silver(I) complex (Fig. 1), which was prepared by the reaction of N-(3-pyridinylmethyl)-4-pyridine-carboxamide acting as a bidentate bridge ligand with AgNO3. In the cation, the Ag(I) atom is in a linear coordination environment and the Ag1—N1A and Ag1—N3 bond length are 2.152 (3) and 2.157 (3) Å, respectively. The N3—Ag1—N1i (i = -1 + x, 0.5 - y, 1/2 + z) bond angle is 172.55 (15) °, indicating that the N–Ag–N skeleton that gives rise to a chain structure is distorted by the presence of two Ag···Onitrate interactions. If these are regarded as formal bonds, the compound may be described as a three dimensional network structure (Fig. 2).

Related literature top

For related literature, see: Cordes & Hanton (2007); Kumar et al. (2006); Tong et al. (2002).

Experimental top

An aqueous solution (5 ml) of silver nitrate (1.0 mmol) was layered carefully over a methanol (5 ml) solution of N-(4-pyridylmethyl)-4-pyridinecarboxamide (1.0 mmol) in a tube, which was covered and kept away from light. Colorless crystals were obtained after two weeks. These were washed with methanol and collected in 50% yield. CHN elemental analysis: found C 35.86, H 3.55, N 13.79%; calc. for C12H13AgN4O5: C 35.93, H 3.27, N 13.96%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, N—H distances of 0.86 Å and OW1—H distances of 0.85 Å, and with Uiso(H) = 1.2Ueq(C, N or O).

Structure description top

The reactions of silver(I) salts with flexible pyridyl type ligands have received considerable attention (Cordes et al., 2007; Kumar et al., 2006; Tong et al., 2002). Here, we report a new silver(I) complex (Fig. 1), which was prepared by the reaction of N-(3-pyridinylmethyl)-4-pyridine-carboxamide acting as a bidentate bridge ligand with AgNO3. In the cation, the Ag(I) atom is in a linear coordination environment and the Ag1—N1A and Ag1—N3 bond length are 2.152 (3) and 2.157 (3) Å, respectively. The N3—Ag1—N1i (i = -1 + x, 0.5 - y, 1/2 + z) bond angle is 172.55 (15) °, indicating that the N–Ag–N skeleton that gives rise to a chain structure is distorted by the presence of two Ag···Onitrate interactions. If these are regarded as formal bonds, the compound may be described as a three dimensional network structure (Fig. 2).

For related literature, see: Cordes & Hanton (2007); Kumar et al. (2006); Tong et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2003); cell refinement: CrystalClear (Rigaku/MSC, 2003); data reduction: CrystalClear (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry-generated atoms in the plot are related by (-1 + x, 0.5 - y, 1/2 + z).
[Figure 2] Fig. 2. Crystal packing viewed down the c axis.
catena-Poly[[silver(I)-µ-N-(3-pyridylmethyl)pyridine-4-carboxamide] nitrate monohydrate] top
Crystal data top
[Ag(C12H11N3O)]NO3·H2OF(000) = 800
Mr = 401.13Dx = 1.891 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5866 reflections
a = 12.177 (2) Åθ = 3.2–27.5°
b = 13.022 (3) ŵ = 1.46 mm1
c = 8.9109 (18) ÅT = 293 K
β = 94.21 (3)°Block, colorless
V = 1409.2 (5) Å30.6 × 0.4 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3230 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2003)
h = 1515
Tmin = 0.503, Tmax = 0.742k = 1616
14304 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2355P]
where P = (Fo2 + 2Fc2)/3
3230 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ag(C12H11N3O)]NO3·H2OV = 1409.2 (5) Å3
Mr = 401.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.177 (2) ŵ = 1.46 mm1
b = 13.022 (3) ÅT = 293 K
c = 8.9109 (18) Å0.6 × 0.4 × 0.2 mm
β = 94.21 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3230 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2003)
2399 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.742Rint = 0.065
14304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
3230 reflectionsΔρmin = 0.43 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.01568 (2)0.32484 (2)0.11987 (4)0.04917 (14)
N30.1306 (2)0.3030 (2)0.0011 (3)0.0377 (7)
C90.1867 (3)0.3832 (3)0.0444 (4)0.0453 (9)
H9A0.16440.44860.01760.054*
C70.2524 (3)0.1954 (3)0.1219 (4)0.0426 (9)
H7A0.27310.12910.14670.051*
C80.1637 (3)0.2107 (3)0.0387 (4)0.0448 (9)
H8A0.12490.15370.00870.054*
C110.3109 (3)0.2785 (3)0.1690 (4)0.0321 (7)
C100.2755 (3)0.3746 (3)0.1283 (4)0.0418 (9)
H10A0.31200.43310.15800.050*
C120.4107 (3)0.2716 (3)0.2571 (4)0.0348 (8)
N40.4370 (2)0.1789 (2)0.3061 (3)0.0396 (7)
H4A0.39620.12730.28720.047*
C130.5327 (3)0.1630 (3)0.3904 (4)0.0444 (9)
H13A0.54310.22310.45200.053*
H13B0.51880.10510.45760.053*
C40.6375 (3)0.1431 (3)0.2938 (4)0.0335 (8)
C50.7368 (3)0.1578 (3)0.3533 (4)0.0358 (8)
H5A0.73650.18490.44990.043*
N10.8337 (2)0.1358 (2)0.2817 (3)0.0387 (7)
C10.8340 (3)0.0972 (3)0.1428 (4)0.0472 (9)
H1B0.90070.07980.09170.057*
C20.7385 (3)0.0825 (3)0.0737 (4)0.0485 (10)
H2A0.74100.05770.02430.058*
C30.6391 (3)0.1044 (3)0.1492 (4)0.0413 (9)
H3A0.57380.09330.10380.050*
O10.4653 (2)0.3480 (2)0.2803 (3)0.0550 (8)
O20.0055 (2)0.1263 (3)0.1929 (4)0.0669 (8)
N20.0802 (3)0.0813 (3)0.2490 (3)0.0427 (7)
O30.1439 (3)0.1264 (3)0.3279 (4)0.0735 (9)
O1W0.6452 (2)0.4755 (2)0.2057 (4)0.0624 (8)
H1WA0.59320.43320.22670.075*
H1WB0.70330.43930.19280.075*
O40.0959 (3)0.0117 (2)0.2228 (4)0.0702 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03123 (18)0.0563 (2)0.0621 (2)0.00455 (13)0.01775 (14)0.00438 (15)
N30.0300 (16)0.0400 (18)0.0435 (18)0.0011 (13)0.0066 (13)0.0052 (13)
C90.042 (2)0.034 (2)0.061 (3)0.0054 (17)0.0109 (19)0.0029 (18)
C70.041 (2)0.033 (2)0.057 (2)0.0023 (16)0.0209 (18)0.0077 (16)
C80.039 (2)0.043 (2)0.055 (2)0.0071 (17)0.0197 (18)0.0027 (18)
C110.0277 (17)0.0366 (19)0.0319 (18)0.0012 (15)0.0013 (14)0.0008 (14)
C100.039 (2)0.035 (2)0.053 (2)0.0021 (17)0.0105 (17)0.0004 (17)
C120.0267 (18)0.042 (2)0.0363 (19)0.0045 (16)0.0048 (14)0.0007 (16)
N40.0270 (15)0.0483 (19)0.0448 (18)0.0020 (13)0.0127 (13)0.0045 (14)
C130.032 (2)0.062 (3)0.041 (2)0.0028 (18)0.0105 (16)0.0027 (17)
C40.0324 (19)0.0360 (18)0.0324 (18)0.0020 (15)0.0060 (15)0.0046 (14)
C50.0305 (18)0.041 (2)0.0373 (19)0.0019 (15)0.0103 (15)0.0014 (15)
N10.0285 (16)0.0443 (17)0.0447 (18)0.0018 (14)0.0108 (13)0.0025 (14)
C10.036 (2)0.056 (3)0.050 (2)0.0012 (18)0.0028 (17)0.0017 (19)
C20.045 (2)0.066 (3)0.036 (2)0.002 (2)0.0075 (17)0.0058 (18)
C30.037 (2)0.048 (2)0.041 (2)0.0032 (17)0.0150 (16)0.0004 (17)
O10.0404 (16)0.0537 (17)0.073 (2)0.0142 (13)0.0212 (14)0.0028 (14)
O20.055 (2)0.068 (2)0.080 (2)0.0126 (16)0.0235 (16)0.0100 (18)
N20.0371 (18)0.050 (2)0.0413 (18)0.0045 (15)0.0028 (14)0.0039 (15)
O30.066 (2)0.076 (2)0.082 (2)0.0028 (18)0.0310 (18)0.0178 (18)
O1W0.0471 (17)0.0461 (17)0.094 (2)0.0057 (14)0.0067 (15)0.0046 (15)
O40.068 (2)0.0443 (18)0.098 (3)0.0020 (16)0.0053 (18)0.0006 (16)
Geometric parameters (Å, º) top
Ag1—N1i2.152 (3)C13—H13A0.9700
Ag1—N32.157 (3)C13—H13B0.9700
N3—C81.324 (5)C4—C51.369 (5)
N3—C91.328 (5)C4—C31.382 (5)
C9—C101.363 (5)C5—N11.331 (4)
C9—H9A0.9300C5—H5A0.9300
C7—C81.369 (5)N1—C11.336 (5)
C7—C111.378 (5)N1—Ag1ii2.152 (3)
C7—H7A0.9300C1—C21.368 (5)
C8—H8A0.9300C1—H1B0.9300
C11—C101.381 (5)C2—C31.370 (5)
C11—C121.497 (5)C2—H2A0.9300
C10—H10A0.9300C3—H3A0.9300
C12—O11.222 (4)O2—N21.220 (4)
C12—N41.331 (4)N2—O31.234 (4)
N4—C131.447 (5)N2—O41.245 (4)
N4—H4A0.8600O1W—H1WA0.8499
C13—C41.508 (5)O1W—H1WB0.8500
N1i—Ag1—N3172.19 (11)C4—C13—H13A108.7
C8—N3—C9117.3 (3)N4—C13—H13B108.7
C8—N3—Ag1122.0 (2)C4—C13—H13B108.7
C9—N3—Ag1120.5 (2)H13A—C13—H13B107.6
N3—C9—C10123.3 (3)C5—C4—C3117.3 (3)
N3—C9—H9A118.3C5—C4—C13119.3 (3)
C10—C9—H9A118.3C3—C4—C13123.3 (3)
C8—C7—C11119.8 (3)N1—C5—C4124.2 (3)
C8—C7—H7A120.1N1—C5—H5A117.9
C11—C7—H7A120.1C4—C5—H5A117.9
N3—C8—C7123.0 (3)C5—N1—C1117.8 (3)
N3—C8—H8A118.5C5—N1—Ag1ii120.4 (2)
C7—C8—H8A118.5C1—N1—Ag1ii121.6 (2)
C7—C11—C10117.0 (3)N1—C1—C2121.7 (4)
C7—C11—C12124.8 (3)N1—C1—H1B119.2
C10—C11—C12118.3 (3)C2—C1—H1B119.2
C9—C10—C11119.6 (4)C1—C2—C3120.0 (4)
C9—C10—H10A120.2C1—C2—H2A120.0
C11—C10—H10A120.2C3—C2—H2A120.0
O1—C12—N4122.4 (3)C2—C3—C4119.0 (3)
O1—C12—C11120.8 (3)C2—C3—H3A120.5
N4—C12—C11116.8 (3)C4—C3—H3A120.5
C12—N4—C13121.5 (3)O2—N2—O3121.6 (4)
C12—N4—H4A119.2O2—N2—O4119.9 (4)
C13—N4—H4A119.2O3—N2—O4118.4 (3)
N4—C13—C4114.1 (3)H1WA—O1W—H1WB105.6
N4—C13—H13A108.7
C8—N3—C9—C100.2 (6)C11—C12—N4—C13179.1 (3)
Ag1—N3—C9—C10175.6 (3)C12—N4—C13—C487.7 (4)
C9—N3—C8—C70.6 (6)N4—C13—C4—C5160.2 (3)
Ag1—N3—C8—C7175.9 (3)N4—C13—C4—C323.9 (5)
C11—C7—C8—N30.5 (7)C3—C4—C5—N11.0 (5)
C8—C7—C11—C100.1 (6)C13—C4—C5—N1175.1 (3)
C8—C7—C11—C12178.4 (4)C4—C5—N1—C10.2 (5)
N3—C9—C10—C110.3 (6)C4—C5—N1—Ag1ii174.5 (3)
C7—C11—C10—C90.4 (6)C5—N1—C1—C21.5 (6)
C12—C11—C10—C9178.1 (3)Ag1ii—N1—C1—C2172.8 (3)
C7—C11—C12—O1171.7 (4)N1—C1—C2—C32.2 (6)
C10—C11—C12—O16.7 (5)C1—C2—C3—C41.3 (6)
C7—C11—C12—N47.3 (6)C5—C4—C3—C20.3 (5)
C10—C11—C12—N4174.2 (3)C13—C4—C3—C2175.7 (4)
O1—C12—N4—C130.0 (6)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1Wiii0.862.042.837 (4)154
O1W—H1WA···O10.851.942.790 (4)174
O1W—H1WB···O3ii0.852.042.886 (4)171
Symmetry codes: (ii) x+1, y+1/2, z1/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(C12H11N3O)]NO3·H2O
Mr401.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.177 (2), 13.022 (3), 8.9109 (18)
β (°) 94.21 (3)
V3)1409.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.6 × 0.4 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2003)
Tmin, Tmax0.503, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
14304, 3230, 2399
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.101, 1.06
No. of reflections3230
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.43

Computer programs: CrystalClear (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1Wi0.862.042.837 (4)153.7
O1W—H1WA···O10.851.942.790 (4)174.3
O1W—H1WB···O3ii0.852.042.886 (4)170.5
Symmetry codes: (i) x+1, y1/2, z1/2; (ii) x+1, y+1/2, z1/2.
 

References

First citationCordes, D. B. & Hanton, L. R. (2007). Inorg. Chem. 46, 1634–1644.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 1903–1909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTong, M.-L., Wu, Y.-M., Ru, J., Chen, X.-M., Chang, H.-C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds