organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-N′-[(1Z)-1-(2-hydr­­oxy-5-methyl­phen­yl)-2-methyl­propyl­­idene]benzohydrazide

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: tsucjg@163.com

(Received 13 November 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, C18H20N2O3, adopts a cis conformation with respect to the C=N double bond. The crystal structure is stabilized by intra­molecular N—H⋯O and inter­molecular O—H⋯O hydrogen bonds.

Related literature

For further details of the chemistry of the title compound, see: Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]); Salem (1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /c

  • a = 11.2144 (11) Å

  • b = 11.2887 (11) Å

  • c = 13.6535 (13) Å

  • β = 107.000 (2)°

  • V = 1653.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.25 × 0.22 × 0.16 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.991

  • 8523 measured reflections

  • 2924 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.139

  • S = 1.00

  • 2924 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.98 2.6413 (18) 133
O2—H2⋯O1i 0.82 1.96 2.7249 (17) 155
O1—H1⋯O3ii 0.82 1.90 2.6787 (18) 158
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27) and SAINT (Version 7.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 (Version 1.27) and SAINT (Version 7.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc.,Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their ability to coordinate metal ions (Salem, 1998) and their biological activity (Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.

The title molecule displays a cis conformation with respect to the C8=N2 double bond (Fig. 1). The dihedral angle between the two benzene rings is 75.01 (6)°. The crystal structure is stabilized by intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (Table 1. and Fig. 2).

Related literature top

For further details of the chemistry of the title compound, see: Carcelli et al. (1995); Salem (1998).

Experimental top

2-hydroxybenzohydrazide (0.01 mol,1.52 g) was dissolved in anhydrous ethanol (50 ml) and 1-(2-hydroxy-5-methylphenyl)-2-methylpropan-1-one (0.01 mol, 1.78 g) was added. The reaction mixture was refluxed for 6 h with stirring, and the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (1.0 mmol, 0.31 g) was dissolved in dimethylformamide (15 ml) and kept at room temperature for 30 d to obtain colourless single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with CH(methyl) = 0.96 Å, C—H(tertiary) = 0.98 Å, C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, N—H =0.86 Å and with Uiso(H) =1.5Ueq(Cmethyl, O) and 1.2Ueq(Caromatic, Ctertiary, N).

Structure description top

The chemistry of aroylhydrazones continues to attract much attention due to their ability to coordinate metal ions (Salem, 1998) and their biological activity (Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.

The title molecule displays a cis conformation with respect to the C8=N2 double bond (Fig. 1). The dihedral angle between the two benzene rings is 75.01 (6)°. The crystal structure is stabilized by intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (Table 1. and Fig. 2).

For further details of the chemistry of the title compound, see: Carcelli et al. (1995); Salem (1998).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram showing intramolecular N—H···O and intermolecular O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Hydroxy-N'-[(1Z)-1-(2-hydroxy-5-methylphenyl)-2- methylpropylidene]benzohydrazide top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2019 reflections
a = 11.2144 (11) Åθ = 2.6–23.2°
b = 11.2887 (11) ŵ = 0.09 mm1
c = 13.6535 (13) ÅT = 273 K
β = 107.000 (2)°Block, yellow
V = 1653.0 (3) Å30.25 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube2094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1310
Tmin = 0.987, Tmax = 0.991k = 1213
8523 measured reflectionsl = 1016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0879P)2]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C18H20N2O3V = 1653.0 (3) Å3
Mr = 312.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2144 (11) ŵ = 0.09 mm1
b = 11.2887 (11) ÅT = 273 K
c = 13.6535 (13) Å0.25 × 0.22 × 0.16 mm
β = 107.000 (2)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2094 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.991Rint = 0.026
8523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2924 reflectionsΔρmin = 0.15 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14313 (13)0.32510 (11)0.31013 (11)0.0609 (4)
H10.15000.39650.32150.091*
O20.01561 (11)0.20180 (13)0.04931 (10)0.0629 (4)
H20.04610.21490.09600.094*
O30.20731 (11)0.03822 (11)0.10448 (9)0.0555 (4)
N10.01360 (13)0.10594 (12)0.11865 (10)0.0445 (4)
H1A0.03460.14420.09100.053*
N20.03470 (14)0.05414 (12)0.21453 (11)0.0444 (4)
C10.21322 (16)0.29390 (14)0.24792 (13)0.0426 (4)
C20.21798 (15)0.17485 (15)0.22370 (12)0.0397 (4)
C30.28605 (16)0.14187 (17)0.15787 (14)0.0496 (5)
H30.28920.06230.14120.060*
C40.34956 (16)0.22417 (19)0.11622 (14)0.0546 (5)
C50.34352 (18)0.34066 (19)0.14234 (14)0.0566 (5)
H50.38570.39720.11560.068*
C60.27685 (18)0.37622 (17)0.20703 (14)0.0553 (5)
H60.27440.45600.22350.066*
C70.4215 (2)0.1856 (2)0.04319 (17)0.0788 (7)
H7A0.47350.24950.03370.118*
H7B0.36400.16440.02160.118*
H7C0.47250.11840.07130.118*
C80.14484 (16)0.08723 (14)0.26466 (13)0.0416 (4)
C90.20075 (18)0.03997 (16)0.37216 (14)0.0538 (5)
H90.21790.10890.41780.065*
C100.1119 (2)0.0383 (2)0.40763 (17)0.0856 (8)
H10A0.03600.00420.40180.128*
H10B0.14950.06050.47770.128*
H10C0.09380.10810.36580.128*
C110.3253 (2)0.0202 (2)0.38364 (17)0.0832 (7)
H11A0.31380.08530.33660.125*
H11B0.35840.04900.45240.125*
H11C0.38240.03570.36920.125*
C120.13535 (15)0.09610 (14)0.06947 (13)0.0399 (4)
C130.18372 (15)0.16196 (14)0.02863 (12)0.0394 (4)
C140.11049 (17)0.21255 (15)0.08482 (13)0.0443 (4)
C150.1663 (2)0.27366 (17)0.17470 (15)0.0580 (5)
H150.11750.30590.21250.070*
C160.2935 (2)0.28657 (18)0.20782 (16)0.0655 (6)
H160.33010.32830.26780.079*
C170.3677 (2)0.23870 (19)0.15361 (16)0.0633 (6)
H170.45380.24830.17620.076*
C180.31253 (17)0.17651 (16)0.06546 (15)0.0522 (5)
H180.36270.14310.02930.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0832 (10)0.0437 (7)0.0734 (9)0.0020 (7)0.0506 (8)0.0056 (7)
O20.0526 (8)0.0929 (11)0.0496 (8)0.0065 (7)0.0248 (7)0.0118 (7)
O30.0500 (8)0.0617 (8)0.0590 (8)0.0089 (6)0.0224 (7)0.0137 (6)
N10.0446 (8)0.0515 (9)0.0388 (8)0.0079 (6)0.0144 (7)0.0083 (7)
N20.0531 (9)0.0425 (8)0.0390 (8)0.0005 (7)0.0159 (7)0.0044 (6)
C10.0462 (10)0.0433 (10)0.0424 (10)0.0036 (8)0.0193 (8)0.0023 (8)
C20.0377 (9)0.0448 (10)0.0356 (9)0.0011 (7)0.0091 (7)0.0026 (7)
C30.0451 (10)0.0563 (11)0.0489 (11)0.0003 (8)0.0159 (9)0.0156 (9)
C40.0395 (10)0.0822 (15)0.0439 (11)0.0058 (9)0.0150 (9)0.0101 (10)
C50.0545 (12)0.0673 (13)0.0523 (12)0.0135 (10)0.0222 (10)0.0019 (10)
C60.0665 (13)0.0441 (10)0.0600 (12)0.0056 (9)0.0258 (10)0.0020 (9)
C70.0599 (13)0.119 (2)0.0680 (15)0.0099 (12)0.0356 (12)0.0210 (13)
C80.0488 (10)0.0365 (9)0.0405 (10)0.0040 (8)0.0145 (8)0.0015 (8)
C90.0671 (13)0.0478 (11)0.0421 (11)0.0050 (9)0.0090 (9)0.0029 (8)
C100.103 (2)0.0882 (18)0.0617 (14)0.0075 (14)0.0178 (14)0.0322 (13)
C110.0838 (17)0.0863 (17)0.0682 (15)0.0305 (13)0.0047 (13)0.0085 (13)
C120.0441 (10)0.0372 (9)0.0424 (10)0.0035 (7)0.0189 (8)0.0023 (7)
C130.0462 (10)0.0373 (9)0.0374 (9)0.0018 (7)0.0161 (8)0.0043 (7)
C140.0482 (10)0.0467 (10)0.0395 (10)0.0063 (8)0.0154 (8)0.0023 (8)
C150.0756 (15)0.0597 (12)0.0397 (11)0.0133 (10)0.0185 (10)0.0026 (9)
C160.0818 (16)0.0580 (13)0.0460 (12)0.0033 (11)0.0021 (11)0.0042 (9)
C170.0544 (12)0.0653 (13)0.0603 (13)0.0054 (10)0.0012 (10)0.0001 (11)
C180.0468 (11)0.0572 (11)0.0542 (12)0.0003 (9)0.0172 (9)0.0044 (10)
Geometric parameters (Å, º) top
O1—C11.3615 (19)C7—H7C0.9600
O1—H10.8200C8—C91.515 (2)
O2—C141.360 (2)C9—C101.513 (3)
O2—H20.8200C9—C111.519 (3)
O3—C121.2377 (19)C9—H90.9800
N1—C121.338 (2)C10—H10A0.9600
N1—N21.3909 (19)C10—H10B0.9600
N1—H1A0.8600C10—H10C0.9600
N2—C81.280 (2)C11—H11A0.9600
C1—C61.385 (2)C11—H11B0.9600
C1—C21.389 (2)C11—H11C0.9600
C2—C31.389 (2)C12—C131.489 (2)
C2—C81.494 (2)C13—C181.393 (2)
C3—C41.389 (3)C13—C141.399 (2)
C3—H30.9300C14—C151.387 (3)
C4—C51.369 (3)C15—C161.372 (3)
C4—C71.518 (2)C15—H150.9300
C5—C61.373 (3)C16—C171.376 (3)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—C181.374 (3)
C7—H7A0.9600C17—H170.9300
C7—H7B0.9600C18—H180.9300
C1—O1—H1109.5C10—C9—H9106.6
C14—O2—H2109.5C8—C9—H9106.6
C12—N1—N2119.78 (13)C11—C9—H9106.6
C12—N1—H1A120.1C9—C10—H10A109.5
N2—N1—H1A120.1C9—C10—H10B109.5
C8—N2—N1115.46 (14)H10A—C10—H10B109.5
O1—C1—C6122.51 (15)C9—C10—H10C109.5
O1—C1—C2117.92 (15)H10A—C10—H10C109.5
C6—C1—C2119.56 (16)H10B—C10—H10C109.5
C1—C2—C3118.68 (16)C9—C11—H11A109.5
C1—C2—C8119.21 (14)C9—C11—H11B109.5
C3—C2—C8122.03 (15)H11A—C11—H11B109.5
C2—C3—C4122.00 (18)C9—C11—H11C109.5
C2—C3—H3119.0H11A—C11—H11C109.5
C4—C3—H3119.0H11B—C11—H11C109.5
C5—C4—C3117.72 (16)O3—C12—N1122.33 (15)
C5—C4—C7121.53 (18)O3—C12—C13120.26 (15)
C3—C4—C7120.74 (19)N1—C12—C13117.38 (13)
C4—C5—C6121.73 (17)C18—C13—C14117.82 (16)
C4—C5—H5119.1C18—C13—C12116.76 (14)
C6—C5—H5119.1C14—C13—C12125.40 (15)
C5—C6—C1120.31 (18)O2—C14—C15120.87 (16)
C5—C6—H6119.8O2—C14—C13118.95 (15)
C1—C6—H6119.8C15—C14—C13120.18 (17)
C4—C7—H7A109.5C16—C15—C14120.07 (18)
C4—C7—H7B109.5C16—C15—H15120.0
H7A—C7—H7B109.5C14—C15—H15120.0
C4—C7—H7C109.5C15—C16—C17121.00 (19)
H7A—C7—H7C109.5C15—C16—H16119.5
H7B—C7—H7C109.5C17—C16—H16119.5
N2—C8—C2122.85 (15)C18—C17—C16118.89 (19)
N2—C8—C9118.46 (15)C18—C17—H17120.6
C2—C8—C9118.62 (15)C16—C17—H17120.6
C10—C9—C8113.01 (17)C17—C18—C13122.03 (18)
C10—C9—C11112.20 (18)C17—C18—H18119.0
C8—C9—C11111.40 (16)C13—C18—H18119.0
C12—N1—N2—C8166.53 (15)C2—C8—C9—C10174.27 (17)
O1—C1—C2—C3178.11 (16)N2—C8—C9—C11124.62 (19)
C6—C1—C2—C30.6 (3)C2—C8—C9—C1158.3 (2)
O1—C1—C2—C81.2 (2)N2—N1—C12—O32.8 (2)
C6—C1—C2—C8177.50 (16)N2—N1—C12—C13174.85 (14)
C1—C2—C3—C40.3 (3)O3—C12—C13—C1813.7 (2)
C8—C2—C3—C4177.10 (16)N1—C12—C13—C18163.97 (15)
C2—C3—C4—C50.2 (3)O3—C12—C13—C14168.03 (16)
C2—C3—C4—C7179.04 (17)N1—C12—C13—C1414.3 (2)
C3—C4—C5—C60.3 (3)C18—C13—C14—O2178.59 (16)
C7—C4—C5—C6178.90 (19)C12—C13—C14—O20.4 (2)
C4—C5—C6—C10.0 (3)C18—C13—C14—C150.7 (2)
O1—C1—C6—C5178.17 (18)C12—C13—C14—C15178.97 (16)
C2—C1—C6—C50.5 (3)O2—C14—C15—C16178.11 (17)
N1—N2—C8—C20.4 (2)C13—C14—C15—C161.2 (3)
N1—N2—C8—C9176.55 (14)C14—C15—C16—C170.6 (3)
C1—C2—C8—N293.6 (2)C15—C16—C17—C180.5 (3)
C3—C2—C8—N283.1 (2)C16—C17—C18—C130.9 (3)
C1—C2—C8—C983.3 (2)C14—C13—C18—C170.3 (3)
C3—C2—C8—C999.94 (19)C12—C13—C18—C17178.06 (17)
N2—C8—C9—C102.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.6413 (18)133
O2—H2···O1i0.821.962.7249 (17)155
O1—H1···O3ii0.821.902.6787 (18)158
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.2144 (11), 11.2887 (11), 13.6535 (13)
β (°) 107.000 (2)
V3)1653.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.16
Data collection
DiffractometerBruker APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.987, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8523, 2924, 2094
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.139, 1.00
No. of reflections2924
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.6413 (18)133.4
O2—H2···O1i0.821.962.7249 (17)154.6
O1—H1···O3ii0.821.902.6787 (18)157.9
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–09).

References

First citationBruker (2005). APEX2 (Version 1.27) and SAINT (Version 7.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds