organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­benzo­yl)-N,N′-di­cyclo­hexyl­urea

aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: pengyu@lzu.edu.cn

(Received 14 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, C20H27BrN2O2, mol­ecules are linked into one-dimensional chains through (amide)N—H⋯O=C(amide) inter­molecular hydrogen bonds.

Related literature

For related literature, see: Bohne et al. (2005[Bohne, C., Ihmels, H., Waidelich, M. & Yihwa, C. (2005). J. Am. Chem. Soc. 127, 17158-17159.]); Bondy et al. (2004[Bondy, C. R., Gale, P. A. & Loeb, S. J. (2004). J. Am. Chem. Soc. 126, 5030-5031.]); Bruker (2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); Ślebioda (1995[Ślebioda, M. (1995). Tetrahedron, 51, 7829-7834.]). For literature on related crystal structures, see: Ball et al. (1990[Ball, R. G., Brown, R. S. & Bennet, A. J. (1990). Acta Cryst. C46, 2491-2493.]); Chérioux et al. (2002[Chérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27-o29.]); Gallagher et al. (1999[Gallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607-1610.]); Govindasamy & Subramanian (1997[Govindasamy, L. & Subramanian, E. (1997). Acta Cryst. C53, 927-928.]); Toniolo et al. (1990[Toniolo, C., Valle, G., Crisma, M., Moretto, V., Izdebski, J., Pelka, J. & Schneider, C. H. (1990). Helv. Chim. Acta, 73, 626-634.]); Wu et al. (2006[Wu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435-o437.]).

[Scheme 1]

Experimental

Crystal data
  • C20H27BrN2O2

  • Mr = 407.35

  • Monoclinic, P 21 /n

  • a = 13.501 (2) Å

  • b = 9.5621 (10) Å

  • c = 16.306 (2) Å

  • β = 114.443 (6)°

  • V = 1916.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 113 (2) K

  • 0.38 × 0.16 × 0.14 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (REQABS; Jacobson, 1998[Jacobson, R. A. (1998). REQABS. Version 1.1. MSC, The Woodlands, Texas, USA.]) Tmin = 0.484, Tmax = 0.739

  • 17461 measured reflections

  • 4526 independent reflections

  • 3651 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.078

  • S = 1.06

  • 4526 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.898 (10) 2.072 (11) 2.961 (2) 170 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Jacobson, 1999[Jacobson, R. A. (1999). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565]); software used to prepare material for publication: CrystalStructure (Rigaku, 1999[Rigaku (1999). CrystalStructure. Version 3.7.0. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The first conscious total synthesis of a natural product was that of urea in 1828 by Wohler, which marks the beginnings of organic synthesis. Since then, many urea derivatives have been prepared and have demonstrated a wide range of uses, including fluorescence probes (Bohne et al., 2005) and anion receptors (Bondy et al., 2004).

The title compound, an N-acylurea derivative, can be conveniently prepared from dicyclohexylcarbodiimide (DCC) and p-bromobenzoic acid according to reported methods (Ślebioda, 1995). The molecular structure is shown in Fig.1. Each cyclohexyl group adopts the chair conformation, as is required for energy minimization. The two carbonyl groups are twisted substantially at the central atom, N1, with a dihedral angle of 66.43 (10)° between the O1/C7/N1 and O2/C14/N2 planes, which increases the distance between atoms O1 and N2. As a result, no intramolecular N2–H2A···O1 hydrogen bond is formed. However, molecules are linked into chains through (amide) N–H···O=C (amide) intermolecular hydrogen bonds, reinforced by C–H···O=C interactions. Surprisingly, this supramolecular arrangement is not observed in a closely related X-ray structure (Gallagher et al., 1999).

Related literature top

For related literature, see: Bohne et al. (2005); Bondy et al. (2004); Ślebioda (1995). For literature on related X-ray structures, see: Ball et al. (1990); Chérioux et al. (2002); Gallagher et al. (1999); Govindasamy & Subramanian (1997); Toniolo et al. (1990); Wu et al. (2006); Bruker (2000).

Experimental top

p-bromobenzoic acid (201 mg, 1 mmol) was dissolved in CHCl3 (5 ml) and DCC (206 mg, 1 mmol) and N,N-dimethylpyridin-4-amine (122 mg, 1 mmol) were added to the solution. The resulting mixture was stirred for 1 h at 298 K. After evaporation of the solvent, a colorless solid was isolated. Single crystals suitable for X-ray structure determination were obtained by slow evaporation of a EtOAc solution over a period of several days.

Refinement top

The H atom bonded to N2 was found in a difference map and refined freely to obtain an unbiased geometry for the hydrogen bonding scheme. The H atoms bonded to C were placed geometrically (C—H values were set to 1.00, 0.99 and 0.95 A° for atoms CH2 and CH, respectively) and refined with a riding model, with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The first conscious total synthesis of a natural product was that of urea in 1828 by Wohler, which marks the beginnings of organic synthesis. Since then, many urea derivatives have been prepared and have demonstrated a wide range of uses, including fluorescence probes (Bohne et al., 2005) and anion receptors (Bondy et al., 2004).

The title compound, an N-acylurea derivative, can be conveniently prepared from dicyclohexylcarbodiimide (DCC) and p-bromobenzoic acid according to reported methods (Ślebioda, 1995). The molecular structure is shown in Fig.1. Each cyclohexyl group adopts the chair conformation, as is required for energy minimization. The two carbonyl groups are twisted substantially at the central atom, N1, with a dihedral angle of 66.43 (10)° between the O1/C7/N1 and O2/C14/N2 planes, which increases the distance between atoms O1 and N2. As a result, no intramolecular N2–H2A···O1 hydrogen bond is formed. However, molecules are linked into chains through (amide) N–H···O=C (amide) intermolecular hydrogen bonds, reinforced by C–H···O=C interactions. Surprisingly, this supramolecular arrangement is not observed in a closely related X-ray structure (Gallagher et al., 1999).

For related literature, see: Bohne et al. (2005); Bondy et al. (2004); Ślebioda (1995). For literature on related X-ray structures, see: Ball et al. (1990); Chérioux et al. (2002); Gallagher et al. (1999); Govindasamy & Subramanian (1997); Toniolo et al. (1990); Wu et al. (2006); Bruker (2000).

Computing details top

Data collection: CrystalClear (Jacobson, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 1999).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-(4-Bromobenzoyl)-N,N'-dicyclohexylurea top
Crystal data top
C20H27BrN2O2F(000) = 848
Mr = 407.35Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 4164 reflections
a = 13.501 (2) Åθ = 1.7–27.9°
b = 9.5621 (10) ŵ = 2.16 mm1
c = 16.306 (2) ÅT = 113 K
β = 114.443 (6)°Prism, colorless
V = 1916.3 (4) Å30.38 × 0.16 × 0.14 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
4526 independent reflections
Radiation source: Rotating anode3651 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.044
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω scansh = 1717
Absorption correction: multi-scan
(REQABS; Jacobson, 1998)
k = 1212
Tmin = 0.484, Tmax = 0.739l = 2120
17461 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
4526 reflections(Δ/σ)max = 0.003
231 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.44 e Å3
Crystal data top
C20H27BrN2O2V = 1916.3 (4) Å3
Mr = 407.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.501 (2) ŵ = 2.16 mm1
b = 9.5621 (10) ÅT = 113 K
c = 16.306 (2) Å0.38 × 0.16 × 0.14 mm
β = 114.443 (6)°
Data collection top
Rigaku Saturn CCD
diffractometer
4526 independent reflections
Absorption correction: multi-scan
(REQABS; Jacobson, 1998)
3651 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.739Rint = 0.044
17461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
4526 reflectionsΔρmin = 0.44 e Å3
231 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.615319 (17)0.39160 (2)1.092233 (14)0.03591 (9)
N10.86443 (11)0.53780 (15)0.80694 (9)0.0172 (3)
N20.67615 (11)0.53992 (16)0.73657 (10)0.0180 (3)
O10.95485 (9)0.68643 (13)0.92419 (8)0.0226 (3)
O20.76754 (10)0.34042 (13)0.73292 (8)0.0234 (3)
C10.69576 (14)0.4583 (2)1.02792 (12)0.0233 (4)
C20.69278 (15)0.5987 (2)1.00682 (13)0.0267 (4)
H20.65080.66241.02400.032*
C30.75215 (15)0.6450 (2)0.96011 (13)0.0246 (4)
H30.75190.74140.94600.029*
C40.81235 (13)0.55047 (19)0.93373 (11)0.0176 (4)
C50.81418 (14)0.40955 (19)0.95585 (12)0.0205 (4)
H50.85510.34500.93810.025*
C60.75616 (14)0.3634 (2)1.00396 (12)0.0223 (4)
H60.75810.26771.02020.027*
C70.88221 (13)0.60122 (18)0.88777 (12)0.0179 (4)
C80.94261 (14)0.55666 (19)0.76516 (12)0.0199 (4)
H80.99070.63720.79630.024*
C91.01578 (15)0.4287 (2)0.77921 (14)0.0259 (4)
H9A0.97020.34520.75310.031*
H9B1.05740.41220.84450.031*
C101.09504 (16)0.4493 (2)0.73482 (14)0.0331 (5)
H10A1.14620.52600.76560.040*
H10B1.13800.36280.74150.040*
C111.03445 (17)0.4842 (2)0.63510 (14)0.0361 (5)
H11A0.98780.40430.60320.043*
H11B1.08740.50070.60860.043*
C120.96424 (17)0.6143 (2)0.62288 (14)0.0341 (5)
H12A0.92380.63380.55780.041*
H12B1.01170.69560.65070.041*
C130.88348 (15)0.5955 (2)0.66570 (13)0.0268 (4)
H13A0.84240.68340.65990.032*
H13B0.83080.52100.63350.032*
C140.76568 (14)0.4618 (2)0.75616 (11)0.0180 (4)
C150.56540 (13)0.48403 (19)0.69141 (12)0.0180 (4)
H150.57020.38530.67330.022*
C160.50196 (16)0.5682 (2)0.60708 (13)0.0313 (5)
H16A0.53920.56390.56610.038*
H16B0.49870.66730.62330.038*
C170.38642 (16)0.5099 (2)0.55931 (15)0.0399 (6)
H17A0.34520.56680.50510.048*
H17B0.38990.41280.53960.048*
C180.32755 (16)0.5114 (2)0.62076 (18)0.0509 (7)
H18A0.31890.60910.63680.061*
H18B0.25420.47020.58900.061*
C190.39104 (16)0.4288 (2)0.70547 (16)0.0403 (6)
H19A0.39340.32930.68960.048*
H19B0.35350.43440.74620.048*
C200.50804 (16)0.4842 (2)0.75473 (14)0.0296 (5)
H20A0.50630.58050.77640.036*
H20B0.54870.42450.80770.036*
H2A0.6851 (15)0.6326 (10)0.7456 (12)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03720 (13)0.04748 (17)0.03229 (13)0.01255 (10)0.02362 (10)0.00410 (10)
N10.0147 (7)0.0164 (8)0.0206 (8)0.0024 (6)0.0075 (6)0.0004 (6)
N20.0154 (7)0.0136 (9)0.0238 (8)0.0013 (6)0.0070 (6)0.0024 (7)
O10.0190 (6)0.0223 (7)0.0233 (7)0.0054 (6)0.0056 (5)0.0015 (6)
O20.0213 (6)0.0140 (7)0.0322 (8)0.0006 (5)0.0084 (6)0.0032 (6)
C10.0217 (9)0.0320 (12)0.0174 (9)0.0071 (8)0.0093 (8)0.0027 (9)
C20.0257 (10)0.0269 (12)0.0320 (11)0.0048 (8)0.0165 (9)0.0102 (9)
C30.0259 (10)0.0198 (11)0.0297 (10)0.0034 (8)0.0132 (8)0.0030 (9)
C40.0141 (8)0.0212 (10)0.0151 (8)0.0030 (7)0.0037 (7)0.0019 (8)
C50.0164 (8)0.0239 (11)0.0194 (9)0.0003 (8)0.0057 (7)0.0005 (8)
C60.0218 (9)0.0244 (11)0.0191 (9)0.0012 (8)0.0067 (8)0.0040 (8)
C70.0145 (8)0.0166 (10)0.0198 (9)0.0026 (7)0.0045 (7)0.0037 (8)
C80.0171 (9)0.0203 (10)0.0252 (10)0.0019 (7)0.0117 (8)0.0001 (8)
C90.0188 (9)0.0267 (11)0.0306 (11)0.0044 (8)0.0087 (8)0.0030 (9)
C100.0221 (10)0.0396 (13)0.0405 (12)0.0087 (9)0.0159 (9)0.0002 (11)
C110.0321 (11)0.0479 (14)0.0351 (12)0.0045 (10)0.0209 (10)0.0050 (11)
C120.0348 (11)0.0463 (14)0.0290 (11)0.0046 (10)0.0210 (10)0.0048 (10)
C130.0245 (10)0.0332 (12)0.0264 (10)0.0058 (9)0.0144 (8)0.0065 (9)
C140.0176 (9)0.0184 (10)0.0179 (9)0.0019 (7)0.0074 (7)0.0019 (8)
C150.0141 (8)0.0162 (10)0.0219 (9)0.0008 (7)0.0055 (7)0.0019 (8)
C160.0314 (11)0.0229 (11)0.0270 (11)0.0040 (9)0.0006 (9)0.0023 (9)
C170.0268 (11)0.0284 (13)0.0408 (13)0.0028 (9)0.0096 (10)0.0015 (10)
C180.0150 (10)0.0391 (14)0.0841 (19)0.0034 (10)0.0060 (12)0.0301 (14)
C190.0277 (11)0.0528 (15)0.0518 (15)0.0179 (10)0.0279 (11)0.0276 (12)
C200.0262 (10)0.0367 (13)0.0304 (11)0.0088 (9)0.0163 (9)0.0101 (10)
Geometric parameters (Å, º) top
Br1—C11.9048 (18)C10—H10A0.9900
N1—C71.379 (2)C10—H10B0.9900
N1—C141.441 (2)C11—C121.526 (3)
N1—C81.485 (2)C11—H11A0.9900
N2—C141.342 (2)C11—H11B0.9900
N2—C151.467 (2)C12—C131.529 (2)
N2—H2A0.898 (9)C12—H12A0.9900
O1—C71.223 (2)C12—H12B0.9900
O2—C141.225 (2)C13—H13A0.9900
C1—C61.380 (3)C13—H13B0.9900
C1—C21.382 (3)C15—C161.516 (2)
C2—C31.387 (3)C15—C201.526 (2)
C2—H20.9500C15—H151.0000
C3—C41.397 (3)C16—C171.531 (3)
C3—H30.9500C16—H16A0.9900
C4—C51.393 (3)C16—H16B0.9900
C4—C71.507 (2)C17—C181.515 (3)
C5—C61.390 (2)C17—H17A0.9900
C5—H50.9500C17—H17B0.9900
C6—H60.9500C18—C191.512 (3)
C8—C131.528 (2)C18—H18A0.9900
C8—C91.529 (3)C18—H18B0.9900
C8—H81.0000C19—C201.540 (3)
C9—C101.532 (3)C19—H19A0.9900
C9—H9A0.9900C19—H19B0.9900
C9—H9B0.9900C20—H20A0.9900
C10—C111.524 (3)C20—H20B0.9900
C7—N1—C14121.65 (14)C11—C12—C13111.49 (17)
C7—N1—C8120.63 (14)C11—C12—H12A109.3
C14—N1—C8117.50 (14)C13—C12—H12A109.3
C14—N2—C15123.18 (15)C11—C12—H12B109.3
C14—N2—H2A117.5 (12)C13—C12—H12B109.3
C15—N2—H2A118.8 (12)H12A—C12—H12B108.0
C6—C1—C2121.85 (17)C8—C13—C12110.81 (16)
C6—C1—Br1118.30 (15)C8—C13—H13A109.5
C2—C1—Br1119.85 (14)C12—C13—H13A109.5
C1—C2—C3118.86 (18)C8—C13—H13B109.5
C1—C2—H2120.6C12—C13—H13B109.5
C3—C2—H2120.6H13A—C13—H13B108.1
C2—C3—C4120.33 (18)O2—C14—N2125.83 (16)
C2—C3—H3119.8O2—C14—N1121.54 (16)
C4—C3—H3119.8N2—C14—N1112.60 (16)
C5—C4—C3119.75 (17)N2—C15—C16109.75 (14)
C5—C4—C7119.52 (16)N2—C15—C20110.93 (14)
C3—C4—C7120.56 (17)C16—C15—C20111.03 (16)
C6—C5—C4119.98 (17)N2—C15—H15108.3
C6—C5—H5120.0C16—C15—H15108.3
C4—C5—H5120.0C20—C15—H15108.3
C1—C6—C5119.22 (18)C15—C16—C17110.02 (16)
C1—C6—H6120.4C15—C16—H16A109.7
C5—C6—H6120.4C17—C16—H16A109.7
O1—C7—N1122.99 (16)C15—C16—H16B109.7
O1—C7—C4120.93 (16)C17—C16—H16B109.7
N1—C7—C4115.88 (15)H16A—C16—H16B108.2
N1—C8—C13110.98 (14)C18—C17—C16111.28 (18)
N1—C8—C9111.83 (15)C18—C17—H17A109.4
C13—C8—C9112.02 (16)C16—C17—H17A109.4
N1—C8—H8107.2C18—C17—H17B109.4
C13—C8—H8107.2C16—C17—H17B109.4
C9—C8—H8107.2H17A—C17—H17B108.0
C8—C9—C10111.13 (16)C19—C18—C17110.18 (17)
C8—C9—H9A109.4C19—C18—H18A109.6
C10—C9—H9A109.4C17—C18—H18A109.6
C8—C9—H9B109.4C19—C18—H18B109.6
C10—C9—H9B109.4C17—C18—H18B109.6
H9A—C9—H9B108.0H18A—C18—H18B108.1
C11—C10—C9111.13 (16)C18—C19—C20111.59 (18)
C11—C10—H10A109.4C18—C19—H19A109.3
C9—C10—H10A109.4C20—C19—H19A109.3
C11—C10—H10B109.4C18—C19—H19B109.3
C9—C10—H10B109.4C20—C19—H19B109.3
H10A—C10—H10B108.0H19A—C19—H19B108.0
C10—C11—C12110.37 (17)C15—C20—C19110.18 (16)
C10—C11—H11A109.6C15—C20—H20A109.6
C12—C11—H11A109.6C19—C20—H20A109.6
C10—C11—H11B109.6C15—C20—H20B109.6
C12—C11—H11B109.6C19—C20—H20B109.6
H11A—C11—H11B108.1H20A—C20—H20B108.1
C6—C1—C2—C30.1 (3)C13—C8—C9—C1054.1 (2)
Br1—C1—C2—C3179.88 (14)C8—C9—C10—C1155.5 (2)
C1—C2—C3—C41.0 (3)C9—C10—C11—C1257.0 (2)
C2—C3—C4—C51.1 (3)C10—C11—C12—C1357.3 (2)
C2—C3—C4—C7176.41 (17)N1—C8—C13—C12179.79 (15)
C3—C4—C5—C60.0 (3)C9—C8—C13—C1254.0 (2)
C7—C4—C5—C6175.39 (15)C11—C12—C13—C855.7 (2)
C2—C1—C6—C51.2 (3)C15—N2—C14—O26.6 (3)
Br1—C1—C6—C5179.06 (13)C15—N2—C14—N1175.26 (14)
C4—C5—C6—C11.1 (3)C7—N1—C14—O2125.42 (18)
C14—N1—C7—O1166.44 (16)C8—N1—C14—O260.0 (2)
C8—N1—C7—O17.9 (2)C7—N1—C14—N256.4 (2)
C14—N1—C7—C418.6 (2)C8—N1—C14—N2118.19 (17)
C8—N1—C7—C4167.06 (14)C14—N2—C15—C16124.11 (18)
C5—C4—C7—O1117.18 (19)C14—N2—C15—C20112.83 (19)
C3—C4—C7—O158.1 (2)N2—C15—C16—C17179.70 (16)
C5—C4—C7—N157.9 (2)C20—C15—C16—C1757.3 (2)
C3—C4—C7—N1126.75 (18)C15—C16—C17—C1857.9 (2)
C7—N1—C8—C13131.60 (17)C16—C17—C18—C1957.3 (2)
C14—N1—C8—C1343.0 (2)C17—C18—C19—C2056.3 (2)
C7—N1—C8—C9102.52 (19)N2—C15—C20—C19178.56 (17)
C14—N1—C8—C982.87 (19)C16—C15—C20—C1956.2 (2)
N1—C8—C9—C10179.38 (15)C18—C19—C20—C1555.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.90 (1)2.07 (1)2.961 (2)170 (2)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H27BrN2O2
Mr407.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)13.501 (2), 9.5621 (10), 16.306 (2)
β (°) 114.443 (6)
V3)1916.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.38 × 0.16 × 0.14
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(REQABS; Jacobson, 1998)
Tmin, Tmax0.484, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
17461, 4526, 3651
Rint0.044
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.078, 1.06
No. of reflections4526
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.44

Computer programs: CrystalClear (Jacobson, 1999), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.898 (10)2.072 (11)2.961 (2)170 (2)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial support from the Research Fund for New Faculty at the State Key Laboratory of Applied Organic Chemistry.

References

First citationBall, R. G., Brown, R. S. & Bennet, A. J. (1990). Acta Cryst. C46, 2491–2493.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBohne, C., Ihmels, H., Waidelich, M. & Yihwa, C. (2005). J. Am. Chem. Soc. 127, 17158–17159.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondy, C. R., Gale, P. A. & Loeb, S. J. (2004). J. Am. Chem. Soc. 126, 5030–5031.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChérioux, F., Therrien, B., Stoeckli-Evans, H. & Süss-Fink, G. (2002). Acta Cryst. E58, o27–o29.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565  CrossRef CAS IUCr Journals Google Scholar
First citationGallagher, J. F., Kenny, P. T. M. & Sheehy, M. J. (1999). Acta Cryst. C55, 1607–1610.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGovindasamy, L. & Subramanian, E. (1997). Acta Cryst. C53, 927–928.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. A. (1998). REQABS. Version 1.1. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationJacobson, R. A. (1999). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1999). CrystalStructure. Version 3.7.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationŚlebioda, M. (1995). Tetrahedron, 51, 7829–7834.  Google Scholar
First citationToniolo, C., Valle, G., Crisma, M., Moretto, V., Izdebski, J., Pelka, J. & Schneider, C. H. (1990). Helv. Chim. Acta, 73, 626–634.  CSD CrossRef CAS Web of Science Google Scholar
First citationWu, L., Liu, H.-M., Zhao, W.-T. & Zhang, W.-Q. (2006). Acta Cryst. C62, o435–o437.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds