organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-{2-[(S)-(2′-Benzo­yl­oxy-1,1′-bi­naphthyl-2-yl)oxycarbonyl­amino]-3-phenylpropanamido­meth­yl}pyridinium picrate acetone solvate

aInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic, bBiology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic, and cInstitute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: fejfarov@fzu.cz

(Received 16 November 2007; accepted 12 December 2007; online 21 December 2007)

In the crystal structure of the title compound, C43H34N3O5+·C6H2N3O7·C3H6O, the large dimension and shape of the cation are responsible for the elongation of the ortho­rhom­bic unit cell. The ions and acetone mol­ecules are linked together by a system of hydrogen bonds involving an inter­molecular hydrogen bond between one N atom of the cation and the O atom of acetone and two inter­molecular hydrogen bonds between the cation N atoms and the O atoms of the picrate anion. No intra­molecular hydrogen bonds exist in the structure. The dihedral angle between the two naphthalene ring systems is 76.16 (13)°. The chiral C atom has a known R configuration, but this cannot be confirmed from this X-ray analysis.

Related literature

For general background, see: Secco et al. (2004[Secco, J. M., Quiňoá E., & Riguera R. (2004). Chem. Rev. 104, 17-117.]); Hušek & Šimek (2006[Hušek, P. & Šimek, P. (2006). Curr. Pharm. Anal. 2, 23-43.]); Freimueller & Altorfer (2002[Freimueller, S. & Altorfer, H. (2002). J. Pharm. Biomed. 30, 209-218.]); Fransson & Ragnarsson (1998[Fransson, B. & Ragnarsson, U. (1998). J. Chromatogr. A, 827, 31-36.]); Christenssen et al. (1995[Christenssen, E. B., Hansen, S. H. & Rasmussen, S. N. (1995). J. Chromatogr. B, 670, 243-249.]); Latypov et al. (1999[Latypov, S., Aganov, A. V., Tahara, S. & Fukushi, Y. (1999). Tetrahedron, 55, 7305-7318.]); Fukushi et al. (1994a[Fukushi, Y., Yajima, C. & Mizutani, J. (1994a). Tetrahedron Lett. 35, 599-602.],b[Fukushi, Y., Yajima, C. & Mizutani, J. (1994b). Tetrahedron Lett. 50, 9417-9420.]); Růžička et al. (2000[Růžička, J., Streinz, L., Šaman, D., Wimmer, Z., Zarevúcka, B., Koutek, B. & Lešetický, L. (2000). Coll. Czech. Chem. Commun. 65, 695-707.]); Vodička et al. (2003[Vodička, P., Streinz, L., Koutek, B., Buděšínský, M., Ondráček, J. & Cisařová, I. (2003). Chirality, 15, 472-478.]).

[Scheme 1]

Experimental

Crystal data
  • C43H34N3O5+·C6H2N3O7·C3H6O

  • Mr = 958.9

  • Orthorhombic, P 21 21 21

  • a = 8.5021 (19) Å

  • b = 10.6178 (19) Å

  • c = 51.189 (10) Å

  • V = 4621.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.24 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur2 diffractometer with Sapphire2 CCD detector

  • Absorption correction: none

  • 8240 measured reflections

  • 4723 independent reflections

  • 2429 reflections with I > 3σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.061

  • S = 1.11

  • 4723 reflections

  • 557 parameters

  • H-atom parameters not refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O58 0.87 1.98 2.800 (4) 159
N8—H8⋯O67 0.87 2.09 2.873 (4) 149
N12—H10⋯O71i 0.87 2.27 3.106 (4) 160
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Chiral derivatizing agents are relatively very efficient substances for derivatization of enantiomers to enable their separation by HPLC and/or spectral determination (Secco et al., 2004). Among them, the alkylchloroformates are very popular for analysis of e.g. peptides, amines or alcohols, because of their ability to react under mild conditions giving stable and largely well determined diastereomers (Hušek et al., 2006). (-)-Menthyl chloroformate or (+)-[(1-(9-fluorenyl)-ethyl]-chloroformates are good examples of such agents (Freimueller et al., 2002; Fransson et al., 1998; Christenssen et al., 1995). In order to expand the available chiral chloroformate derivatives, we have elaborated the synthesis of chloroformate containing 1-(2-hydroxynaphtha-len-1-yl)naphthalen-2-yl benzoate as a chiral auxiliary. In the bi-naphthyl auxiliary, the presence of voluminous aromatic groups and their spatial orientation massively affects the NMR chemical shifts of particular diastereomers, yielding relatively large differences of Δδ in spectra (Latypov et al., 1999; Fukushi et al., 1994a,b). Thus chiral analysis is very effective. Since the orientation of aromatic rings as well as the configuration of the molecular skeleton play an important role in the chiral analysis, the knowledge of spatial orientation of particular substituents is important for e.g. deduction of general rules useful for prediction of the absolute configuration (Růžička et al.,2000). X ray analysis may be of great benefit in this effort (Vodička et al., 2003).

The crystal structure of the title compound is linked together by a system of hydrogen bonds (Table 1). For NMR analyses, positions of hydrogen atoms H8, H17 and H18 in relation to aromatic rings C15a—C24a (forming the plane A), C15b—C24b (plane B) and C46—C51 (plane C) are particularly important. Mutual angles between planes defined by these aromatic rings are 76.16 (13)° (A—B), 90.60 (13)° (B—C) and 69.30 (13)° (A—C) respectively. The distances of H8 from the planes A, B and C are -4.445 (8), 3.977 (9) and -0.825 (12) Å, respectively, while distances to the nearest carbons C15a, C15b and C47 are 6.307 (3), 6.010 (4) and 3.840 (4) Å. The distances of H17 are -0.642 (10), 6.009 (3) and -0.386 (12) Å from the planes A, B and C, and 5.933 (3), 6.108 (3) and 6.507 (4) Å from the carbons C15a, C15b and C47. For hydrogen H18 we found distances of -0.806 (10) 6.429 (5) and 0.818 (12) Å from the planes A, B and C and distances 5.883 (3), 6.752 (3) and 6.633 (4) Å to the nearest carbons C15a, C15b and C47.

Related literature top

For general background, see: Secco et al. (2004); Hušek & Šimek (2006); Freimueller & Altorfer (2002); Fransson & Ragnarsson (1998); Christenssen et al. (1995); Latypov et al. (1999); Fukushi et al. (1994a,b); Růžička et al. (2000); Vodička et al. (2003).

Experimental top

The title compound was prepared from (R)-2'-(chlorocarbonyloxy)-1,1'-binaphtyl-2-yl benzoate (162 mg, 1,06 mmol), pyridine (256 uL, 3,18 mmol) and (S)-2-amino-3-phenyl-N-(pyridin-2-ylmethyl) propan-amide (512 mg, 1.06 mmol) by mixing under cooling (0°C) in total amount of 12 mL of CHCl3. The reaction mixture was stirred at RT for two hours, and then washed with conc. sodium bicarbonate (12 ml), water (12 ml) and dried over magnesium sulfate. After the evaporation of the solvent, the crude product was filtered through a silica column (15 g) with a mixture of diethyl ether/THF (2/1) giving 616 mg of oily product.

In order to obtain crystals suitable for X-ray analysis, the above mentioned compound (30 mg, 0.044 mmol) was mixed with picric acid (10.2 mg, 0.044 mmol) in 0.5 ml of CHCl3 at room temperature. After 30 min at RT the solvent was removed under reduced vacuum giving 40.2 mg (100%) of product. Pure crystals were obtained by re-crystalization (20 mg) from the mixture of 0.5 ml octane and 1.0 ml acetone at room temperature.

Refinement top

Hydrogen atoms were constrained to ideal positions, and isotropic temperature parameters of hydrogen atoms were calculated as 1.2Ueq of the parent atom.

The 1-(2-(benzoyloxy)naphthalen-1-yl)naphthalen-2-yl fragment was refined as a rigid body with two positions in order to save parameters and to cut high angle mostly unobserved reflections without lowering the observations/parameters ratio. The ADP parameters of the molecule were refined as common to both positions. The validity of using the common ADP parameters has been proven by comparison with TLS refinement which refines independent TLS tenzors for each molecular position. The TLS refinement converged with slightly worse R values.

Structure description top

Chiral derivatizing agents are relatively very efficient substances for derivatization of enantiomers to enable their separation by HPLC and/or spectral determination (Secco et al., 2004). Among them, the alkylchloroformates are very popular for analysis of e.g. peptides, amines or alcohols, because of their ability to react under mild conditions giving stable and largely well determined diastereomers (Hušek et al., 2006). (-)-Menthyl chloroformate or (+)-[(1-(9-fluorenyl)-ethyl]-chloroformates are good examples of such agents (Freimueller et al., 2002; Fransson et al., 1998; Christenssen et al., 1995). In order to expand the available chiral chloroformate derivatives, we have elaborated the synthesis of chloroformate containing 1-(2-hydroxynaphtha-len-1-yl)naphthalen-2-yl benzoate as a chiral auxiliary. In the bi-naphthyl auxiliary, the presence of voluminous aromatic groups and their spatial orientation massively affects the NMR chemical shifts of particular diastereomers, yielding relatively large differences of Δδ in spectra (Latypov et al., 1999; Fukushi et al., 1994a,b). Thus chiral analysis is very effective. Since the orientation of aromatic rings as well as the configuration of the molecular skeleton play an important role in the chiral analysis, the knowledge of spatial orientation of particular substituents is important for e.g. deduction of general rules useful for prediction of the absolute configuration (Růžička et al.,2000). X ray analysis may be of great benefit in this effort (Vodička et al., 2003).

The crystal structure of the title compound is linked together by a system of hydrogen bonds (Table 1). For NMR analyses, positions of hydrogen atoms H8, H17 and H18 in relation to aromatic rings C15a—C24a (forming the plane A), C15b—C24b (plane B) and C46—C51 (plane C) are particularly important. Mutual angles between planes defined by these aromatic rings are 76.16 (13)° (A—B), 90.60 (13)° (B—C) and 69.30 (13)° (A—C) respectively. The distances of H8 from the planes A, B and C are -4.445 (8), 3.977 (9) and -0.825 (12) Å, respectively, while distances to the nearest carbons C15a, C15b and C47 are 6.307 (3), 6.010 (4) and 3.840 (4) Å. The distances of H17 are -0.642 (10), 6.009 (3) and -0.386 (12) Å from the planes A, B and C, and 5.933 (3), 6.108 (3) and 6.507 (4) Å from the carbons C15a, C15b and C47. For hydrogen H18 we found distances of -0.806 (10) 6.429 (5) and 0.818 (12) Å from the planes A, B and C and distances 5.883 (3), 6.752 (3) and 6.633 (4) Å to the nearest carbons C15a, C15b and C47.

For general background, see: Secco et al. (2004); Hušek & Šimek (2006); Freimueller & Altorfer (2002); Fransson & Ragnarsson (1998); Christenssen et al. (1995); Latypov et al. (1999); Fukushi et al. (1994a,b); Růžička et al. (2000); Vodička et al. (2003).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound, showing 30% displacement ellipsoids for non-H atoms. [Symmetry codes: (i) 1/2 + x, 1.5 - y, 1 - z]
[Figure 2] Fig. 2. View of the unit cell of the title structure down the axis a.
(R)-2-{2-[(S)-(2'-Benzoyloxy-1,1'-binaphthyl-2- yl)oxycarbonylamino]-3-phenylpropanamidomethyl}pyridinium picrate acetone solvate top
Crystal data top
C43H34N3O5+·C6H2N3O7·C3H6OF(000) = 2000
Mr = 958.9Dx = 1.378 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8240 reflections
a = 8.5021 (19) Åθ = 3.3–26.5°
b = 10.6178 (19) ŵ = 0.10 mm1
c = 51.189 (10) ÅT = 110 K
V = 4621.0 (16) Å3Prism, colourless
Z = 40.24 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
2429 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.063
Graphite monochromatorθmax = 25.2°, θmin = 2.5°
Detector resolution: 8.3438 pixels mm-1h = 1010
Rotation method data acquisition using ω scansk = 1212
8240 measured reflectionsl = 6262
4723 independent reflections
Refinement top
Refinement on F2144 constraints
R[F > 3σ(F)] = 0.035H-atom parameters not refined
wR(F) = 0.061Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
S = 1.11(Δ/σ)max = 0.003
4723 reflectionsΔρmax = 0.20 e Å3
557 parametersΔρmin = 0.18 e Å3
0 restraints
Crystal data top
C43H34N3O5+·C6H2N3O7·C3H6OV = 4621.0 (16) Å3
Mr = 958.9Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5021 (19) ŵ = 0.10 mm1
b = 10.6178 (19) ÅT = 110 K
c = 51.189 (10) Å0.24 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
2429 reflections with I > 3σ(I)
8240 measured reflectionsRint = 0.063
4723 independent reflections
Refinement top
R[F > 3σ(F)] = 0.0350 restraints
wR(F) = 0.061H-atom parameters not refined
S = 1.11Δρmax = 0.20 e Å3
4723 reflectionsΔρmin = 0.18 e Å3
557 parameters
Special details top

Experimental. All tested samples were very weakly diffracting, especially with the used CCD detector Sapphire II. We used an exposure time 100 s / degree but most reflections above resolution 0.9 were unobserved.

Because of the cell parameter c above 50 Å and not very sharp diffraction spots there was danger of overlaps. In order to avoid them we used very fine scan width in omega, 0.5°, and moderate detector-to-sample distance 50 mm. The remaining overlaps were detected by the CrysAlis software using the overlap threshold parameter determined from the overlaps histogram.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

Because the cell parameter c was >50 Å and reflections were not very sharp there was danger of overlaps. In order to avoid this we used a very fine scan width in omega, 0.5°, and moderate detector-to-sample distance 50 mm. The remaining overlaps were detected by the CrysAlis software using the overlap threshold parameter determined from the overlaps histogram.

The program used for refinement, Jana2006, uses a weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3735 (3)1.3560 (3)0.32138 (5)0.0337 (13)
H10.4175431.3014860.3110150.0405*
C20.2671 (4)1.3147 (4)0.33910 (7)0.0272 (15)
C30.1960 (4)1.4012 (4)0.35516 (7)0.0324 (15)
H20.1190751.3743720.3676960.0389*
C40.2353 (5)1.5260 (4)0.35325 (7)0.0402 (17)
H30.1870131.5863770.3646830.0482*
C50.3437 (4)1.5653 (4)0.33497 (8)0.0392 (16)
H40.3698761.6528530.3333150.047*
C60.4135 (5)1.4773 (4)0.31920 (7)0.0362 (15)
H50.4909641.502670.3066190.0434*
C70.2335 (4)1.1751 (3)0.33999 (6)0.0340 (15)
H60.144371.1597850.3510510.030 (10)*
H70.2023571.1466940.3229570.0409*
N80.3653 (3)1.1014 (3)0.34897 (5)0.0282 (11)
H80.4245431.0631870.3376050.0338*
C90.3985 (4)1.0904 (3)0.37464 (7)0.0258 (14)
O100.3226 (3)1.1421 (2)0.39173 (4)0.0372 (9)
C110.5425 (4)1.0092 (3)0.38071 (6)0.0235 (13)
H90.5666990.959780.3655290.0282*
N120.5082 (3)0.9289 (3)0.40280 (5)0.0247 (10)
H100.5333110.9541860.418420.0297*
C130.4387 (4)0.8163 (3)0.39979 (7)0.0247 (14)
O140.4071 (2)0.7660 (2)0.42428 (4)0.0240 (8)
C250.6838 (4)1.0914 (3)0.38759 (6)0.0319 (13)
H170.6685591.1280070.4045540.0383*
H180.7743221.0390380.3903680.0383*
C260.7238 (4)1.1933 (4)0.36832 (7)0.0271 (15)
C270.6969 (4)1.3165 (4)0.37471 (7)0.0396 (16)
H190.6507741.3368150.3913090.0475*
C280.7352 (5)1.4119 (4)0.35755 (10)0.061 (2)
H200.7149791.4979680.3621950.0728*
C290.8017 (5)1.3842 (5)0.33407 (9)0.055 (2)
H210.8284951.450840.3221940.0661*
C300.8307 (4)1.2612 (5)0.32730 (7)0.0459 (17)
H220.8779671.2419760.3107440.0551*
C310.7914 (4)1.1641 (4)0.34448 (8)0.0357 (15)
H230.8110921.0779640.3398170.0429*
O320.4080 (3)0.7645 (2)0.37962 (4)0.0327 (9)
O430.0559 (3)0.8465 (2)0.40354 (4)0.0296 (9)
C440.0722 (5)0.7933 (3)0.39202 (7)0.0315 (15)
O450.1811 (3)0.7526 (2)0.40388 (4)0.0429 (10)
C460.0580 (5)0.7975 (3)0.36292 (7)0.0306 (14)
C470.0724 (5)0.8455 (3)0.35052 (7)0.0368 (15)
H300.1565780.8811130.36060.0441*
C480.0826 (5)0.8424 (4)0.32338 (7)0.0420 (16)
H310.1737150.8751380.3146350.0504*
C490.0404 (5)0.7915 (4)0.30918 (7)0.0458 (17)
H320.0346680.7897460.2904590.055*
C500.1704 (5)0.7437 (4)0.32153 (7)0.0444 (17)
H330.2539740.70660.3115340.0533*
C510.1806 (5)0.7491 (3)0.34856 (7)0.0375 (16)
H340.2733060.7189490.3572440.0451*
C520.5784 (5)1.0890 (4)0.28160 (7)0.0307 (15)
C530.6813 (5)1.1589 (4)0.26370 (7)0.0332 (15)
C540.7792 (5)1.1038 (4)0.24614 (7)0.0354 (17)
H350.8433021.1549690.2349260.0424*
C550.7864 (4)0.9765 (4)0.24445 (7)0.0359 (16)
C560.6964 (4)0.8991 (4)0.26019 (7)0.0342 (15)
H360.7006080.809150.2583420.0411*
C570.6013 (4)0.9541 (4)0.27847 (7)0.0299 (15)
O580.4836 (3)1.1358 (2)0.29746 (4)0.0362 (9)
N590.6788 (4)1.2958 (4)0.26340 (6)0.0442 (16)
O600.5793 (3)1.3525 (2)0.27646 (5)0.0524 (11)
O610.7751 (3)1.3524 (3)0.25004 (5)0.0641 (13)
N620.8880 (4)0.9174 (4)0.22507 (7)0.0558 (16)
O630.9632 (4)0.9864 (3)0.21057 (5)0.0797 (14)
O640.8937 (3)0.8008 (3)0.22376 (5)0.0649 (13)
N650.5155 (4)0.8671 (3)0.29508 (6)0.0368 (13)
O660.4882 (3)0.7597 (3)0.28651 (4)0.0474 (10)
O670.4813 (3)0.8977 (2)0.31746 (5)0.0444 (10)
C680.0373 (4)0.3993 (4)0.52921 (7)0.0334 (15)
C690.0980 (4)0.3221 (3)0.50723 (7)0.0528 (17)
H370.0258610.2547020.5036590.0634*
H380.1986870.2877180.5118460.0634*
H390.1087790.3739220.4919670.0634*
C700.1201 (4)0.4574 (4)0.52564 (7)0.069 (2)
H400.1301830.487230.5080130.0826*
H410.2001640.3958030.5290650.0826*
H420.1317610.526710.5375220.0826*
O710.1143 (3)0.4176 (2)0.54866 (4)0.0409 (9)
C15a0.3259 (3)0.6511 (3)0.42482 (5)0.0248 (10)
C16a0.1794 (5)0.6530 (4)0.43568 (8)0.0209 (9)
C17a0.0956 (5)0.5364 (4)0.43687 (8)0.0215 (9)
C18a0.1660 (5)0.4242 (4)0.42779 (8)0.0231 (10)
C19a0.0801 (6)0.3101 (4)0.42842 (8)0.0269 (10)
H11a0.12770.23360.422280.0322*
C20a0.0698 (6)0.3085 (4)0.43771 (9)0.0286 (10)
H12a0.12780.23090.437890.0343*
C21a0.1399 (5)0.4181 (4)0.44696 (8)0.0287 (10)
H13a0.24520.41530.453690.0344*
C22a0.0602 (5)0.5298 (4)0.44654 (8)0.0268 (10)
H14a0.11040.60470.452900.0321*
C23a0.3987 (5)0.5408 (4)0.41606 (8)0.0270 (10)
H15a0.50360.54380.409150.0324*
C24a0.3204 (6)0.4292 (4)0.41736 (8)0.0271 (10)
H16a0.36980.35360.411190.0325*
C15b0.0516 (3)0.8620 (3)0.43089 (5)0.0248 (11)
C16b0.1091 (5)0.7695 (4)0.44672 (8)0.0209 (10)
C17b0.1053 (5)0.7916 (4)0.47426 (8)0.0215 (10)
C18b0.0396 (5)0.9038 (4)0.48427 (8)0.0231 (10)
C19b0.0405 (5)0.9261 (4)0.51154 (9)0.0269 (11)
H11b0.00421.00220.518400.0322*
C20b0.1047 (5)0.8398 (4)0.52804 (9)0.0286 (11)
H12b0.10600.85590.546490.0343*
C21b0.1684 (5)0.7283 (4)0.51844 (9)0.0287 (11)
H13b0.21190.66770.530340.0344*
C22b0.1696 (5)0.7043 (4)0.49224 (9)0.0268 (11)
H14b0.21450.62720.485920.0321*
C23b0.0161 (5)0.9730 (4)0.44039 (8)0.0270 (11)
H15b0.05851.03390.428470.0324*
C24b0.0215 (5)0.9942 (4)0.46659 (8)0.0271 (11)
H16b0.06701.07070.473130.0325*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.041 (2)0.028 (2)0.032 (2)0.0049 (18)0.0024 (18)0.0063 (18)
C20.028 (2)0.023 (3)0.031 (2)0.002 (2)0.009 (2)0.006 (2)
C30.033 (3)0.032 (3)0.032 (2)0.005 (2)0.000 (2)0.004 (2)
C40.049 (3)0.040 (3)0.032 (3)0.013 (2)0.004 (2)0.005 (2)
C50.049 (3)0.029 (3)0.039 (2)0.004 (3)0.012 (2)0.003 (3)
C60.039 (3)0.029 (3)0.040 (3)0.004 (2)0.002 (2)0.004 (2)
C70.024 (2)0.043 (3)0.036 (2)0.005 (2)0.000 (2)0.001 (2)
N80.026 (2)0.036 (2)0.0231 (19)0.0045 (16)0.0053 (15)0.0057 (16)
C90.025 (2)0.026 (2)0.027 (2)0.011 (2)0.002 (2)0.000 (2)
O100.0399 (16)0.0430 (17)0.0286 (14)0.0077 (15)0.0084 (13)0.0083 (14)
C110.030 (2)0.022 (2)0.019 (2)0.003 (2)0.0011 (18)0.0032 (19)
N120.0325 (18)0.023 (2)0.0185 (16)0.0074 (17)0.0045 (15)0.0029 (16)
C130.015 (2)0.026 (3)0.033 (2)0.001 (2)0.002 (2)0.004 (2)
O140.0300 (14)0.0196 (14)0.0223 (13)0.0077 (12)0.0032 (11)0.0036 (12)
C250.030 (2)0.031 (2)0.034 (2)0.003 (2)0.007 (2)0.005 (2)
C260.019 (2)0.032 (3)0.030 (2)0.009 (2)0.0017 (18)0.009 (2)
C270.039 (3)0.028 (3)0.051 (3)0.008 (2)0.013 (2)0.010 (3)
C280.053 (3)0.040 (3)0.089 (4)0.001 (3)0.007 (3)0.019 (3)
C290.038 (3)0.060 (4)0.067 (4)0.005 (3)0.003 (3)0.035 (3)
C300.020 (2)0.081 (4)0.037 (3)0.013 (3)0.005 (2)0.006 (3)
C310.025 (2)0.044 (3)0.039 (3)0.007 (2)0.004 (2)0.006 (3)
O320.0446 (17)0.0328 (16)0.0207 (13)0.0119 (14)0.0040 (13)0.0044 (14)
O430.0301 (15)0.0312 (16)0.0274 (14)0.0045 (14)0.0067 (12)0.0016 (13)
C440.033 (3)0.022 (3)0.039 (3)0.005 (2)0.002 (2)0.001 (2)
O450.0346 (16)0.0524 (19)0.0418 (15)0.0073 (16)0.0002 (14)0.0011 (15)
C460.033 (3)0.027 (2)0.032 (2)0.006 (2)0.003 (2)0.001 (2)
C470.031 (3)0.043 (3)0.036 (3)0.002 (2)0.007 (2)0.001 (2)
C480.034 (3)0.061 (3)0.031 (3)0.005 (3)0.001 (2)0.008 (2)
C490.052 (3)0.057 (3)0.029 (2)0.023 (3)0.006 (3)0.008 (2)
C500.042 (3)0.047 (3)0.044 (3)0.007 (3)0.016 (2)0.010 (2)
C510.038 (3)0.036 (3)0.038 (3)0.004 (2)0.006 (2)0.000 (2)
C520.033 (3)0.037 (3)0.023 (2)0.001 (2)0.009 (2)0.003 (2)
C530.043 (3)0.029 (3)0.028 (2)0.005 (3)0.006 (2)0.003 (2)
C540.038 (3)0.041 (3)0.027 (2)0.001 (2)0.003 (2)0.007 (2)
C550.035 (3)0.053 (3)0.020 (2)0.014 (2)0.008 (2)0.004 (2)
C560.039 (3)0.042 (3)0.022 (2)0.006 (2)0.008 (2)0.007 (2)
C570.030 (2)0.035 (3)0.025 (2)0.003 (2)0.000 (2)0.004 (2)
O580.0394 (16)0.0388 (17)0.0303 (14)0.0044 (14)0.0078 (13)0.0018 (13)
N590.044 (3)0.061 (3)0.028 (2)0.001 (2)0.001 (2)0.000 (2)
O600.071 (2)0.047 (2)0.0388 (17)0.0078 (19)0.0080 (17)0.0090 (15)
O610.056 (2)0.064 (2)0.073 (2)0.0160 (18)0.0239 (18)0.0065 (18)
N620.054 (3)0.072 (3)0.042 (3)0.020 (3)0.009 (2)0.013 (3)
O630.081 (2)0.095 (3)0.063 (2)0.028 (2)0.0428 (19)0.027 (2)
O640.064 (2)0.076 (2)0.0542 (19)0.019 (2)0.0184 (17)0.010 (2)
N650.034 (2)0.042 (2)0.035 (2)0.0005 (19)0.0021 (18)0.005 (2)
O660.0566 (19)0.0454 (19)0.0402 (16)0.0083 (16)0.0009 (14)0.0101 (16)
O670.0567 (19)0.0448 (18)0.0317 (15)0.0014 (15)0.0130 (15)0.0084 (14)
C680.030 (3)0.034 (3)0.036 (2)0.001 (2)0.002 (2)0.003 (2)
C690.052 (3)0.046 (3)0.060 (3)0.013 (3)0.009 (2)0.018 (3)
C700.040 (3)0.092 (4)0.075 (3)0.020 (3)0.014 (3)0.030 (3)
O710.0362 (16)0.0541 (18)0.0324 (15)0.0070 (15)0.0060 (13)0.0062 (15)
C15a0.0317 (18)0.0246 (18)0.0181 (15)0.0010 (15)0.0014 (13)0.0017 (14)
C16a0.0219 (16)0.0226 (15)0.0181 (14)0.0018 (13)0.0014 (12)0.0009 (12)
C17a0.0258 (17)0.0206 (17)0.0182 (15)0.0008 (14)0.0001 (13)0.0014 (13)
C18a0.0256 (17)0.0206 (17)0.0232 (15)0.0033 (14)0.0011 (13)0.0035 (13)
C19a0.0370 (18)0.0181 (17)0.0254 (16)0.0036 (14)0.0015 (14)0.0030 (13)
C20a0.0319 (18)0.0217 (18)0.0320 (17)0.0031 (14)0.0021 (15)0.0025 (14)
C21a0.0262 (18)0.0250 (17)0.0348 (17)0.0014 (15)0.0027 (14)0.0006 (15)
C22a0.0337 (18)0.0221 (17)0.0246 (16)0.0059 (14)0.0022 (14)0.0013 (13)
C23a0.0216 (16)0.0320 (18)0.0275 (16)0.0002 (15)0.0038 (13)0.0115 (14)
C24a0.0336 (18)0.0261 (18)0.0216 (16)0.0078 (15)0.0009 (14)0.0098 (13)
C15b0.0237 (19)0.0249 (18)0.026 (2)0.0060 (13)0.0037 (13)0.0009 (13)
C16b0.0188 (17)0.0194 (16)0.0245 (17)0.0014 (11)0.0002 (12)0.0006 (12)
C17b0.0221 (17)0.0189 (17)0.0235 (18)0.0024 (12)0.0017 (12)0.0019 (12)
C18b0.0249 (18)0.0184 (18)0.0262 (19)0.0015 (12)0.0011 (13)0.0031 (13)
C19b0.0279 (19)0.0233 (18)0.0294 (19)0.0008 (13)0.0058 (13)0.0084 (13)
C20b0.0291 (19)0.0342 (19)0.0224 (19)0.0001 (13)0.0029 (14)0.0035 (14)
C21b0.0314 (19)0.0280 (19)0.0266 (19)0.0057 (13)0.0003 (14)0.0005 (13)
C22b0.0279 (19)0.0208 (18)0.0317 (19)0.0011 (13)0.0061 (13)0.0033 (13)
C23b0.0342 (18)0.0164 (18)0.0305 (19)0.0017 (13)0.0090 (13)0.0007 (13)
C24b0.0276 (19)0.0152 (18)0.038 (2)0.0009 (13)0.0000 (13)0.0075 (13)
Geometric parameters (Å, º) top
N1—H10.870C53—C541.357 (5)
N1—C21.354 (5)C53—N591.454 (6)
N1—C61.336 (5)C54—H350.960
C2—C31.373 (5)C54—C551.356 (6)
C2—C71.510 (5)C55—C561.382 (5)
C3—H20.960C55—N621.458 (5)
C3—C41.370 (6)C56—H360.960
C4—H30.960C56—C571.368 (5)
C4—C51.378 (5)C57—N651.452 (5)
C5—H40.960N59—O601.235 (5)
C5—C61.370 (5)N59—O611.224 (5)
C6—H50.960N62—O631.223 (5)
C7—H60.960N62—O641.241 (6)
C7—H70.960N65—O661.243 (4)
C7—N81.442 (5)N65—O671.226 (4)
N8—H80.870C68—C691.485 (5)
N8—C91.349 (4)C68—C701.485 (5)
C9—O101.218 (4)C68—O711.207 (4)
C9—C111.529 (5)C69—H370.960
C11—H90.960C69—H380.960
C11—N121.445 (4)C69—H390.960
C11—C251.527 (5)C70—H400.960
N12—H100.870C70—H410.960
N12—C131.342 (4)C70—H420.960
C13—O141.389 (4)C15a—C16a1.364 (5)
C13—O321.199 (4)C15a—C23a1.399 (5)
O14—C15a1.402 (3)C16a—C17a1.430 (6)
C25—H170.960C16a—C16b1.485 (6)
C25—H180.960C17a—C18a1.412 (6)
C25—C261.503 (5)C17a—C22a1.416 (6)
C26—C271.368 (6)C18a—C19a1.416 (6)
C26—C311.384 (5)C18a—C24a1.418 (7)
C27—H190.960C19a—H11a0.960
C27—C281.380 (6)C19a—C20a1.360 (7)
C28—H200.960C20a—H12a0.960
C28—C291.361 (7)C20a—C21a1.391 (7)
C29—H210.960C21a—H13a0.960
C29—C301.374 (7)C21a—C22a1.365 (7)
C30—H220.960C22a—H14a0.960
C30—C311.395 (6)C23a—H15a0.960
C31—H230.960C23a—C24a1.361 (6)
O43—C441.361 (5)C24a—H16a0.960
O43—C15b1.410 (3)C15b—C16b1.364 (5)
C44—O451.189 (5)C15b—C23b1.399 (5)
C44—C461.495 (5)C16b—C17b1.430 (6)
C46—C471.375 (5)C17b—C18b1.412 (6)
C46—C511.375 (5)C17b—C22b1.416 (6)
C47—H300.960C18b—C19b1.416 (6)
C47—C481.393 (5)C18b—C24b1.418 (6)
C48—H310.960C19b—H11b0.960
C48—C491.383 (6)C19b—C20b1.360 (7)
C49—H320.960C20b—H12b0.960
C49—C501.371 (6)C20b—C21b1.391 (7)
C50—H330.960C21b—H13b0.960
C50—C511.387 (5)C21b—C22b1.365 (6)
C51—H340.960C22b—H14b0.960
C52—C531.468 (5)C23b—H15b0.960
C52—C571.454 (6)C23b—C24b1.361 (6)
C52—O581.248 (4)C24b—H16b0.960
H1—N1—C2118.7C53—C54—C55119.9 (4)
H1—N1—C6118.7H35—C54—C55120.0
C2—N1—C6122.5 (3)C54—C55—C56122.1 (4)
N1—C2—C3118.6 (3)C54—C55—N62120.0 (4)
N1—C2—C7117.7 (3)C56—C55—N62117.9 (4)
C3—C2—C7123.8 (3)C55—C56—H36120.9
C2—C3—H2120.1C55—C56—C57118.1 (4)
C2—C3—C4119.8 (3)H36—C56—C57120.9
H2—C3—C4120.1C52—C57—C56125.1 (3)
C3—C4—H3119.9C52—C57—N65119.7 (3)
C3—C4—C5120.3 (4)C56—C57—N65115.2 (3)
H3—C4—C5119.9C53—N59—O60119.5 (3)
C4—C5—H4120.5C53—N59—O61119.2 (3)
C4—C5—C6118.9 (4)O60—N59—O61121.3 (4)
H4—C5—C6120.5C55—N62—O63117.7 (4)
N1—C6—C5119.9 (3)C55—N62—O64119.3 (4)
N1—C6—H5120.1O63—N62—O64123.0 (4)
C5—C6—H5120.1C57—N65—O66118.1 (3)
C2—C7—H6109.5C57—N65—O67119.8 (3)
C2—C7—H7109.5O66—N65—O67121.9 (3)
C2—C7—N8113.3 (3)C69—C68—C70116.7 (3)
H6—C7—H7105.3C69—C68—O71121.7 (3)
H6—C7—N8109.5C70—C68—O71121.6 (3)
H7—C7—N8109.5C68—C69—H37109.5
C7—N8—H8119.3C68—C69—H38109.5
C7—N8—C9121.3 (3)C68—C69—H39109.5
H8—N8—C9119.3H37—C69—H38109.5
N8—C9—O10123.4 (3)H37—C69—H39109.5
N8—C9—C11114.5 (3)H38—C69—H39109.5
O10—C9—C11122.2 (3)C68—C70—H40109.5
C9—C11—H9108.4C68—C70—H41109.5
C9—C11—N12109.3 (3)C68—C70—H42109.5
C9—C11—C25110.7 (3)H40—C70—H41109.5
H9—C11—N12110.8H40—C70—H42109.5
H9—C11—C25109.3H41—C70—H42109.5
N12—C11—C25108.4 (2)O14—C15a—C16a116.4 (3)
C11—N12—H10119.2O14—C15a—C23a120.3 (3)
C11—N12—C13121.6 (3)C16a—C15a—C23a123.2 (3)
H10—N12—C13119.2C15a—C16a—C17a117.4 (4)
N12—C13—O14108.9 (3)C15a—C16a—C16b122.3 (4)
N12—C13—O32127.1 (3)C17a—C16a—C16b120.3 (4)
O14—C13—O32123.9 (3)C16a—C17a—C18a120.3 (4)
C13—O14—C15a116.6 (2)C16a—C17a—C22a121.6 (4)
C11—C25—H17109.5C18a—C17a—C22a118.0 (4)
C11—C25—H18109.5C17a—C18a—C19a119.7 (4)
C11—C25—C26116.0 (3)C17a—C18a—C24a119.0 (4)
H17—C25—H18102.1C19a—C18a—C24a121.2 (4)
H17—C25—C26109.5C18a—C19a—H11a119.9
H18—C25—C26109.5C18a—C19a—C20a120.2 (4)
C25—C26—C27119.6 (3)H11a—C19a—C20a119.9
C25—C26—C31120.8 (3)C19a—C20a—H12a119.7
C27—C26—C31119.7 (4)C19a—C20a—C21a120.6 (4)
C26—C27—H19119.7H12a—C20a—C21a119.7
C26—C27—C28120.7 (4)C20a—C21a—H13a119.7
H19—C27—C28119.7C20a—C21a—C22a120.6 (4)
C27—C28—H20119.9H13a—C21a—C22a119.7
C27—C28—C29120.2 (4)C17a—C22a—C21a120.9 (4)
H20—C28—C29119.9C17a—C22a—H14a119.6
C28—C29—H21119.9C21a—C22a—H14a119.6
C28—C29—C30120.2 (4)C15a—C23a—H15a120.1
H21—C29—C30119.9C15a—C23a—C24a119.8 (4)
C29—C30—H22120.0H15a—C23a—C24a120.1
C29—C30—C31120.0 (4)C18a—C24a—C23a120.3 (4)
H22—C30—C31120.0C18a—C24a—H16a119.9
C26—C31—C30119.3 (4)C23a—C24a—H16a119.9
C26—C31—H23120.3O43—C15b—C16b119.8 (3)
C30—C31—H23120.3O43—C15b—C23b117.0 (3)
C44—O43—C15b117.3 (2)C16b—C15b—C23b123.2 (3)
O43—C44—O45123.5 (3)C16a—C16b—C15b121.2 (3)
O43—C44—C46110.8 (3)C16a—C16b—C17b121.4 (4)
O45—C44—C46125.7 (4)C15b—C16b—C17b117.4 (4)
C44—C46—C47122.4 (3)C16b—C17b—C18b120.3 (4)
C44—C46—C51117.4 (3)C16b—C17b—C22b121.6 (4)
C47—C46—C51120.2 (3)C18b—C17b—C22b118.0 (4)
C46—C47—H30119.9C17b—C18b—C19b119.7 (4)
C46—C47—C48120.1 (3)C17b—C18b—C24b119.0 (4)
H30—C47—C48119.9C19b—C18b—C24b121.2 (4)
C47—C48—H31120.5C18b—C19b—H11b119.9
C47—C48—C49119.1 (4)C18b—C19b—C20b120.2 (4)
H31—C48—C49120.4H11b—C19b—C20b119.9
C48—C49—H32119.6C19b—C20b—H12b119.7
C48—C49—C50120.8 (4)C19b—C20b—C21b120.6 (4)
H32—C49—C50119.6H12b—C20b—C21b119.7
C49—C50—H33120.2C20b—C21b—H13b119.7
C49—C50—C51119.6 (4)C20b—C21b—C22b120.6 (4)
H33—C50—C51120.2H13b—C21b—C22b119.7
C46—C51—C50120.1 (4)C17b—C22b—C21b120.9 (4)
C46—C51—H34120.0C17b—C22b—H14b119.6
C50—C51—H34120.0C21b—C22b—H14b119.6
C53—C52—C57110.5 (3)C15b—C23b—H15b120.1
C53—C52—O58126.1 (4)C15b—C23b—C24b119.8 (4)
C57—C52—O58123.4 (3)H15b—C23b—C24b120.1
C52—C53—C54124.1 (4)C18b—C24b—C23b120.3 (4)
C52—C53—N59120.2 (3)C18b—C24b—H16b119.9
C54—C53—N59115.6 (3)C23b—C24b—H16b119.9
C53—C54—H35120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O580.871.982.800 (4)159
N8—H8···O670.872.092.873 (4)149
N12—H10···O71i0.872.273.106 (4)160
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC43H34N3O5+·C6H2N3O7·C3H6O
Mr958.9
Crystal system, space groupOrthorhombic, P212121
Temperature (K)110
a, b, c (Å)8.5021 (19), 10.6178 (19), 51.189 (10)
V3)4621.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur2
diffractometer with Sapphire2 CCD detector
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
8240, 4723, 2429
Rint0.063
(sin θ/λ)max1)0.600
Refinement
R[F > 3σ(F)], wR(F), S 0.035, 0.061, 1.11
No. of reflections4723
No. of parameters557
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O580.871.982.800 (4)159
N8—H8···O670.872.092.873 (4)149
N12—H10···O71i0.872.273.106 (4)160
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The project was supported by the Grant Agency of the Czech Republic (project Nos. 203/05/2141, 303/06/1674 and 202/05/0421).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChristenssen, E. B., Hansen, S. H. & Rasmussen, S. N. (1995). J. Chromatogr. B, 670, 243–249.  Google Scholar
First citationFransson, B. & Ragnarsson, U. (1998). J. Chromatogr. A, 827, 31–36.  Web of Science CrossRef CAS Google Scholar
First citationFreimueller, S. & Altorfer, H. (2002). J. Pharm. Biomed. 30, 209–218.  Google Scholar
First citationFukushi, Y., Yajima, C. & Mizutani, J. (1994a). Tetrahedron Lett. 35, 599–602.  CrossRef CAS Web of Science Google Scholar
First citationFukushi, Y., Yajima, C. & Mizutani, J. (1994b). Tetrahedron Lett. 50, 9417–9420.  CrossRef Web of Science Google Scholar
First citationHušek, P. & Šimek, P. (2006). Curr. Pharm. Anal. 2, 23–43.  Google Scholar
First citationLatypov, S., Aganov, A. V., Tahara, S. & Fukushi, Y. (1999). Tetrahedron, 55, 7305–7318.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRůžička, J., Streinz, L., Šaman, D., Wimmer, Z., Zarevúcka, B., Koutek, B. & Lešetický, L. (2000). Coll. Czech. Chem. Commun. 65, 695–707.  Google Scholar
First citationSecco, J. M., Quiňoá E., & Riguera R. (2004). Chem. Rev. 104, 17-117.  Google Scholar
First citationVodička, P., Streinz, L., Koutek, B., Buděšínský, M., Ondráček, J. & Cisařová, I. (2003). Chirality, 15, 472–478.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds