organic compounds
4-Methyl-1-phenylquinolin-2(1H)-one
aDepartment of Organic Chemistry, Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria, bInstitute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 9, 1113 Sofia, Bulgaria, and cBulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Acad G. Bonchev Street, Building 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: bls@clmc.bas.bg
In the title compound, C16H13NO, the molecules are connected three-dimensionally through non-classical C—H⋯O and C—H⋯π interactions of 3.272 (3), 3.380 (3) and 3.382 (4) Å. Classical hydrogen bonds are not observed. The dihedral angle between the benzyl and quinolin-2(1H)-one mean planes is 87.15 (7)°
Related literature
For related literature, see: Bondensgaard & Jacobsen (1999); Fürstenberg et al. (2006); Kovalska et al. (2006); Martínez & Chacón-García (2005); Perekalin & Lerner (1951); Rajnikant et al. (2002); Schenkel & Aeberli (1957); Shishkina et al. (2005); Staerk et al. (1997); Vasilev et al. (2005); Vincente et al. (2005); Zipper et al. (2004); Sheldrick & Morr (1981).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807061727/pr2017sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807061727/pr2017Isup2.hkl
The title compound was synthesized by dehydro-cyclization (Perekalin et al., 1951) of the respective acetoacetamide (Schenkel et al., 1957). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation from toluene.
All hydrogen atoms were located in a difference map and were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(C or N).
DNA intercalation is one of the interactions of
with small organic molecules, through which effective antitumor agents can be designed (Martínez et al., 2005). A relevant area of research is the finding of fluorescent markers for highly sensitive DNA detection (Staerk et al., 1997; Bondensgaard et al., 1999). For the latter application, few containing quinoline end-groups are established (Zipper et al., 2004), and new representatives with similar and even better efficiency were recently synthesized (Vasilev et al., 2005; Kovalska et al., 2006; Fürstenberg et al., 2006). Herein, we report the structure of (I) which is an oxo-substituted fragment of these dyes – a long known molecule (Perekalin et al., 1951).In the
of (I), only one independent molecule is present. The bond distances and angles in the benzyl and quinolin-2(1H)-one moieties are comparable to those observed in other quinolinone derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). The molecule posses two nearly planar ring systems [r.m.s. deviation of 0.004 (5)Å and 0.021 (4) Å for the benzyl and quinolin-2(1H)-one fragments respectively] which are capable of intercalation, attached to each other in a conformationally fluxional way. The dihedral angle between the benzyl and quinolinone mean planes is 87.15 (7) °.In the π interactions between methyl and benzyl fragments C8—H8A···Cg1i; Cg1 is the centroid of the 1-Phenyl derivative [symmetry code (i): 1 - x, -1/2 + y, 3/2 - z]. The carbonyl O atom forms a bifurcated hydrogen bond. A head-to-tail C4—H4···O1i [symmetry code (i): x - 1,y,z] interaction between quinolinone fragments build up straight chains along a axis. A side-to-side C14—H14···O1i [symmetry code (i): 2 - x, 1/2 + y, 3/2 - z] interaction forms zigzag chains along b.
of (I), the molecules are connected through non-classical C—H···O hydrogen bonds and CH3-For related literature, see: Bondensgaard & Jacobsen (1999); Fürstenberg et al. (2006); Kovalska et al. (2006); Martínez & Chacón-García (2005); Perekalin & Lerner (1951); Rajnikant et al. (2002); Schenkel & Aeberli (1957); Shishkina et al. (2005); Staerk et al. (1997); Vasilev et al. (2005); Vincente et al. (2005); Zipper et al. (2004); Sheldrick & Morr (1981).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H13NO | F(000) = 496 |
Mr = 235.27 | Dx = 1.256 Mg m−3 |
Monoclinic, P21/c | Melting point: not measured K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.984 (2) Å | Cell parameters from 22 reflections |
b = 14.194 (4) Å | θ = 18.2–19.3° |
c = 10.1785 (16) Å | µ = 0.08 mm−1 |
β = 106.631 (15)° | T = 290 K |
V = 1243.7 (5) Å3 | Cubic, pale yellow |
Z = 4 | 0.31 × 0.31 × 0.31 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.053 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.4° |
Graphite monochromator | h = 0→11 |
non–profiled ω/2θ scans | k = −18→18 |
6212 measured reflections | l = −13→12 |
2991 independent reflections | 3 standard reflections every 120 min |
1351 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0699P)2] where P = (Fo2 + 2Fc2)/3 |
2991 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C16H13NO | V = 1243.7 (5) Å3 |
Mr = 235.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.984 (2) Å | µ = 0.08 mm−1 |
b = 14.194 (4) Å | T = 290 K |
c = 10.1785 (16) Å | 0.31 × 0.31 × 0.31 mm |
β = 106.631 (15)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.053 |
6212 measured reflections | 3 standard reflections every 120 min |
2991 independent reflections | intensity decay: none |
1351 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.15 e Å−3 |
2991 reflections | Δρmin = −0.16 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.7036 (2) | 0.45463 (12) | 0.80663 (18) | 0.0468 (5) | |
C1 | 0.5505 (2) | 0.46557 (16) | 0.8116 (2) | 0.0443 (5) | |
C6 | 0.4822 (3) | 0.39507 (15) | 0.8725 (2) | 0.0448 (5) | |
O1 | 0.9282 (2) | 0.37000 (13) | 0.8539 (2) | 0.0763 (6) | |
C2 | 0.4652 (3) | 0.54564 (16) | 0.7571 (2) | 0.0500 (6) | |
H2 | 0.5194 | 0.5981 | 0.7165 | 0.060* | |
C11 | 0.7750 (2) | 0.52552 (15) | 0.7433 (2) | 0.0461 (6) | |
C5 | 0.3277 (3) | 0.40691 (18) | 0.8733 (2) | 0.0535 (6) | |
H5 | 0.2882 | 0.3524 | 0.9123 | 0.064* | |
C4 | 0.2438 (3) | 0.48561 (19) | 0.8192 (2) | 0.0580 (7) | |
H4 | 0.1196 | 0.4968 | 0.8047 | 0.070* | |
C10 | 0.7938 (3) | 0.37699 (17) | 0.8615 (3) | 0.0554 (6) | |
C9 | 0.7218 (3) | 0.30818 (17) | 0.9274 (2) | 0.0580 (7) | |
H9 | 0.7825 | 0.2518 | 0.9753 | 0.070* | |
C3 | 0.3150 (3) | 0.55537 (17) | 0.7623 (2) | 0.0570 (6) | |
H3 | 0.2571 | 0.6117 | 0.7295 | 0.068* | |
C7 | 0.5753 (3) | 0.31498 (16) | 0.9346 (2) | 0.0519 (6) | |
C8 | 0.5092 (3) | 0.24147 (17) | 1.0075 (3) | 0.0711 (8) | |
H8B | 0.4706 | 0.2655 | 1.0736 | 0.107* | |
H8C | 0.5783 | 0.1853 | 1.0437 | 0.107* | |
H8A | 0.4026 | 0.2090 | 0.9385 | 0.107* | |
C16 | 0.7687 (3) | 0.51761 (18) | 0.6074 (3) | 0.0632 (7) | |
H16 | 0.7009 | 0.4576 | 0.5534 | 0.076* | |
C13 | 0.9139 (3) | 0.67027 (18) | 0.7559 (3) | 0.0639 (7) | |
H13 | 0.9747 | 0.7274 | 0.8167 | 0.077* | |
C14 | 0.9077 (3) | 0.66239 (19) | 0.6202 (3) | 0.0627 (7) | |
H14 | 0.9663 | 0.7190 | 0.5738 | 0.075* | |
C12 | 0.8477 (3) | 0.60141 (18) | 0.8181 (3) | 0.0586 (7) | |
H12 | 0.8565 | 0.5980 | 0.8999 | 0.070* | |
C15 | 0.8372 (3) | 0.5863 (2) | 0.5463 (3) | 0.0730 (8) | |
H15 | 0.8372 | 0.5753 | 0.4416 | 0.109 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0390 (10) | 0.0453 (11) | 0.0582 (12) | 0.0007 (9) | 0.0173 (9) | 0.0040 (9) |
C1 | 0.0376 (12) | 0.0499 (13) | 0.0448 (13) | −0.0019 (10) | 0.0110 (10) | −0.0053 (11) |
C6 | 0.0473 (13) | 0.0437 (13) | 0.0441 (12) | −0.0056 (11) | 0.0144 (10) | −0.0078 (10) |
O1 | 0.0509 (11) | 0.0703 (12) | 0.1140 (16) | 0.0136 (9) | 0.0336 (11) | 0.0111 (11) |
C2 | 0.0456 (13) | 0.0505 (14) | 0.0537 (14) | 0.0008 (11) | 0.0138 (11) | 0.0035 (11) |
C11 | 0.0373 (11) | 0.0462 (14) | 0.0563 (14) | −0.0004 (10) | 0.0154 (11) | −0.0018 (11) |
C5 | 0.0496 (14) | 0.0584 (15) | 0.0568 (15) | −0.0079 (12) | 0.0222 (12) | −0.0046 (12) |
C4 | 0.0417 (13) | 0.0720 (17) | 0.0621 (16) | 0.0004 (13) | 0.0179 (12) | −0.0039 (14) |
C10 | 0.0476 (14) | 0.0510 (14) | 0.0680 (16) | 0.0056 (12) | 0.0173 (12) | −0.0013 (12) |
C9 | 0.0574 (15) | 0.0450 (14) | 0.0702 (17) | 0.0051 (12) | 0.0162 (13) | 0.0018 (12) |
C3 | 0.0446 (14) | 0.0624 (16) | 0.0616 (15) | 0.0084 (12) | 0.0115 (12) | 0.0027 (13) |
C7 | 0.0576 (15) | 0.0430 (14) | 0.0558 (14) | −0.0060 (12) | 0.0176 (12) | −0.0063 (11) |
C8 | 0.085 (2) | 0.0497 (15) | 0.0871 (19) | −0.0027 (14) | 0.0388 (17) | 0.0077 (14) |
C16 | 0.0760 (18) | 0.0561 (15) | 0.0619 (17) | −0.0119 (14) | 0.0268 (14) | −0.0051 (13) |
C13 | 0.0516 (15) | 0.0549 (15) | 0.0838 (19) | −0.0149 (12) | 0.0171 (14) | −0.0095 (14) |
C14 | 0.0551 (15) | 0.0554 (16) | 0.084 (2) | −0.0032 (13) | 0.0309 (14) | 0.0065 (14) |
C12 | 0.0526 (14) | 0.0634 (16) | 0.0614 (15) | −0.0088 (13) | 0.0187 (12) | −0.0081 (13) |
C15 | 0.093 (2) | 0.0674 (18) | 0.0687 (18) | −0.0083 (17) | 0.0392 (17) | −0.0007 (15) |
N1—C10 | 1.387 (3) | C9—C7 | 1.342 (3) |
N1—C1 | 1.400 (3) | C9—H9 | 1.0118 |
N1—C11 | 1.441 (3) | C3—H3 | 0.9603 |
C1—C2 | 1.394 (3) | C7—C8 | 1.499 (3) |
C1—C6 | 1.407 (3) | C8—H8B | 0.9069 |
C6—C5 | 1.401 (3) | C8—H8C | 1.0133 |
C6—C7 | 1.445 (3) | C8—H8A | 1.1127 |
O1—C10 | 1.236 (3) | C16—C15 | 1.391 (4) |
C2—C3 | 1.373 (3) | C16—H16 | 1.0983 |
C2—H2 | 1.0382 | C13—C14 | 1.371 (3) |
C11—C12 | 1.372 (3) | C13—C12 | 1.387 (3) |
C11—C16 | 1.372 (3) | C13—H13 | 1.0707 |
C5—C4 | 1.372 (3) | C14—C15 | 1.364 (4) |
C5—H5 | 0.9818 | C14—H14 | 1.1348 |
C4—C3 | 1.392 (3) | C12—H12 | 0.8147 |
C4—H4 | 1.0949 | C15—H15 | 1.0773 |
C10—C9 | 1.439 (3) | ||
C10—N1—C1 | 122.73 (19) | C2—C3—C4 | 121.2 (2) |
C10—N1—C11 | 116.83 (18) | C2—C3—H3 | 120.7 |
C1—N1—C11 | 120.44 (18) | C4—C3—H3 | 118.0 |
C2—C1—N1 | 120.7 (2) | C9—C7—C6 | 119.1 (2) |
C2—C1—C6 | 119.7 (2) | C9—C7—C8 | 120.7 (2) |
N1—C1—C6 | 119.6 (2) | C6—C7—C8 | 120.2 (2) |
C5—C6—C1 | 118.4 (2) | C7—C8—H8B | 113.3 |
C5—C6—C7 | 122.8 (2) | C7—C8—H8C | 116.1 |
C1—C6—C7 | 118.8 (2) | H8B—C8—H8C | 110.5 |
C3—C2—C1 | 120.1 (2) | C7—C8—H8A | 111.6 |
C3—C2—H2 | 121.5 | H8B—C8—H8A | 100.4 |
C1—C2—H2 | 118.4 | H8C—C8—H8A | 103.3 |
C12—C11—C16 | 120.0 (2) | C11—C16—C15 | 119.8 (2) |
C12—C11—N1 | 120.1 (2) | C11—C16—H16 | 115.2 |
C16—C11—N1 | 119.9 (2) | C15—C16—H16 | 124.9 |
C4—C5—C6 | 121.8 (2) | C14—C13—C12 | 120.2 (2) |
C4—C5—H5 | 125.7 | C14—C13—H13 | 120.7 |
C6—C5—H5 | 112.4 | C12—C13—H13 | 119.0 |
C5—C4—C3 | 118.8 (2) | C15—C14—C13 | 119.9 (2) |
C5—C4—H4 | 126.5 | C15—C14—H14 | 121.9 |
C3—C4—H4 | 114.3 | C13—C14—H14 | 118.2 |
O1—C10—N1 | 120.5 (2) | C11—C12—C13 | 119.9 (2) |
O1—C10—C9 | 123.6 (2) | C11—C12—H12 | 114.3 |
N1—C10—C9 | 116.0 (2) | C13—C12—H12 | 125.4 |
C7—C9—C10 | 123.7 (2) | C14—C15—C16 | 120.3 (3) |
C7—C9—H9 | 115.6 | C14—C15—H15 | 121.9 |
C10—C9—H9 | 120.6 | C16—C15—H15 | 117.8 |
C10—N1—C1—C2 | 178.9 (2) | C11—N1—C10—C9 | 178.5 (2) |
C11—N1—C1—C2 | −0.8 (3) | O1—C10—C9—C7 | −179.2 (2) |
C10—N1—C1—C6 | −1.0 (3) | N1—C10—C9—C7 | 1.6 (4) |
C11—N1—C1—C6 | 179.3 (2) | C1—C2—C3—C4 | −1.2 (4) |
C2—C1—C6—C5 | 1.5 (3) | C5—C4—C3—C2 | 1.4 (4) |
N1—C1—C6—C5 | −178.6 (2) | C10—C9—C7—C6 | 0.5 (4) |
C2—C1—C6—C7 | −176.9 (2) | C10—C9—C7—C8 | −178.7 (2) |
N1—C1—C6—C7 | 3.0 (3) | C5—C6—C7—C9 | 178.9 (2) |
N1—C1—C2—C3 | 179.8 (2) | C1—C6—C7—C9 | −2.8 (3) |
C6—C1—C2—C3 | −0.3 (3) | C5—C6—C7—C8 | −1.9 (3) |
C10—N1—C11—C12 | −93.2 (2) | C1—C6—C7—C8 | 176.4 (2) |
C1—N1—C11—C12 | 86.6 (3) | C12—C11—C16—C15 | 0.5 (4) |
C10—N1—C11—C16 | 87.5 (3) | N1—C11—C16—C15 | 179.7 (2) |
C1—N1—C11—C16 | −92.7 (3) | C12—C13—C14—C15 | −0.4 (4) |
C1—C6—C5—C4 | −1.3 (3) | C16—C11—C12—C13 | 0.4 (4) |
C7—C6—C5—C4 | 177.0 (2) | N1—C11—C12—C13 | −178.9 (2) |
C6—C5—C4—C3 | −0.1 (4) | C14—C13—C12—C11 | −0.4 (4) |
C1—N1—C10—O1 | 179.5 (2) | C13—C14—C15—C16 | 1.3 (4) |
C11—N1—C10—O1 | −0.7 (3) | C11—C16—C15—C14 | −1.3 (4) |
C1—N1—C10—C9 | −1.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 1.13 | 2.37 | 3.272 (3) | 135 |
C4—H4···O1ii | 1.09 | 2.63 | 3.380 (3) | 125 |
C8—H8A···Cg1iii | 1.11 | 2.73 | 3.382 (4) | 165 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C16H13NO |
Mr | 235.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 8.984 (2), 14.194 (4), 10.1785 (16) |
β (°) | 106.631 (15) |
V (Å3) | 1243.7 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.31 × 0.31 × 0.31 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6212, 2991, 1351 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.160, 0.97 |
No. of reflections | 2991 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.16 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997); Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 1.13 | 2.37 | 3.272 (3) | 134.5 |
C4—H4···O1ii | 1.09 | 2.63 | 3.380 (3) | 124.8 |
C8—H8A···Cg1iii | 1.11 | 2.73 | 3.382 (4) | 165.4 |
Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The authors thank the National Research Fund of Bulgaria for financial support (grant No. BYX 03.05).
References
Bondensgaard, K. & Jacobsen, J. P. (1999). Bioconjugate Chem. 10, 735–744. Web of Science CrossRef CAS Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fürstenberg, A., Julliard, M. D., Deligeorgiev, T. G., Gadjev, N. I., Vasilev, A. A. & Vauthey, E. (2006). J. Am. Chem. Soc. 128, 7661–7669. Web of Science PubMed Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kovalska, V. B., Tokar, V. P., Losytskyy, M. Yu., Deligeorgiev, T. G., Vasilev, A. A., Gadjev, N. I., Drexhage, K. H. & Yarmoluk, S. M. (2006). J. Biochem. Biophys. Methods, 68, 155–165. Web of Science CrossRef PubMed CAS Google Scholar
Martínez, R. & Chacón-García, L. (2005). Curr. Med. Chem. 12, 127–151. Web of Science PubMed Google Scholar
Perekalin, V. V. & Lerner, O. M. (1951). Zh. Obshch. Khim. 21, 1995–2001. CAS Google Scholar
Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Kristallografiya (Crystallogr. Rep.), 47, 494–496. Google Scholar
Schenkel, H. & Aeberli, M. (1957). US Patent 2 776 983. Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, W. S. & Morr, M. (1981). Acta Cryst. B37, 733–734. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180–o4182. Web of Science CSD CrossRef IUCr Journals Google Scholar
Staerk, D., Hamed, A. A., Pedersen, E. B. & Jacobsen, J. P. (1997). Bioconjugate Chem. 8, 869–877. CAS Google Scholar
Vasilev, A. A., Deligeorgiev, T. G., Gadjev, N. I. & Drexhage, K. H. (2005). Dyes Pigm. 66, 135–142. Web of Science CrossRef CAS Google Scholar
Vincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044–5057. Google Scholar
Zipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. (2004). Nucleic Acids Res. 32, E103, 1–10. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
DNA intercalation is one of the interactions of nucleic acids with small organic molecules, through which effective antitumor agents can be designed (Martínez et al., 2005). A relevant area of research is the finding of fluorescent markers for highly sensitive DNA detection (Staerk et al., 1997; Bondensgaard et al., 1999). For the latter application, few cyanine dyes containing quinoline end-groups are established (Zipper et al., 2004), and new representatives with similar and even better efficiency were recently synthesized (Vasilev et al., 2005; Kovalska et al., 2006; Fürstenberg et al., 2006). Herein, we report the structure of (I) which is an oxo-substituted fragment of these dyes – a long known molecule (Perekalin et al., 1951).
In the unit cell of (I), only one independent molecule is present. The bond distances and angles in the benzyl and quinolin-2(1H)-one moieties are comparable to those observed in other quinolinone derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). The molecule posses two nearly planar ring systems [r.m.s. deviation of 0.004 (5)Å and 0.021 (4) Å for the benzyl and quinolin-2(1H)-one fragments respectively] which are capable of intercalation, attached to each other in a conformationally fluxional way. The dihedral angle between the benzyl and quinolinone mean planes is 87.15 (7) °.
In the crystal structure of (I), the molecules are connected through non-classical C—H···O hydrogen bonds and CH3-π interactions between methyl and benzyl fragments C8—H8A···Cg1i; Cg1 is the centroid of the 1-Phenyl derivative [symmetry code (i): 1 - x, -1/2 + y, 3/2 - z]. The carbonyl O atom forms a bifurcated hydrogen bond. A head-to-tail C4—H4···O1i [symmetry code (i): x - 1,y,z] interaction between quinolinone fragments build up straight chains along a axis. A side-to-side C14—H14···O1i [symmetry code (i): 2 - x, 1/2 + y, 3/2 - z] interaction forms zigzag chains along b.