organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-1-phenyl­quinolin-2(1H)-one

aDepartment of Organic Chemistry, Faculty of Chemistry, University of Sofia, 1126 Sofia, Bulgaria, bInstitute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 9, 1113 Sofia, Bulgaria, and cBulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Acad G. Bonchev Street, Building 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: bls@clmc.bas.bg

(Received 4 July 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C16H13NO, the mol­ecules are connected three-dimensionally through non-classical C—H⋯O and C—H⋯π inter­actions of 3.272 (3), 3.380 (3) and 3.382 (4) Å. Classical hydrogen bonds are not observed. The dihedral angle between the benzyl and quinolin-2(1H)-one mean planes is 87.15 (7)°

Related literature

For related literature, see: Bondensgaard & Jacobsen (1999[Bondensgaard, K. & Jacobsen, J. P. (1999). Bioconjugate Chem. 10, 735-744.]); Fürstenberg et al. (2006[Fürstenberg, A., Julliard, M. D., Deligeorgiev, T. G., Gadjev, N. I., Vasilev, A. A. & Vauthey, E. (2006). J. Am. Chem. Soc. 128, 7661-7669.]); Kovalska et al. (2006[Kovalska, V. B., Tokar, V. P., Losytskyy, M. Yu., Deligeorgiev, T. G., Vasilev, A. A., Gadjev, N. I., Drexhage, K. H. & Yarmoluk, S. M. (2006). J. Biochem. Biophys. Methods, 68, 155-165.]); Martínez & Chacón-García (2005[Martínez, R. & Chacón-García, L. (2005). Curr. Med. Chem. 12, 127-151.]); Perekalin & Lerner (1951[Perekalin, V. V. & Lerner, O. M. (1951). Zh. Obshch. Khim. 21, 1995-2001.]); Rajnikant et al. (2002[Rajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Kristallografiya (Crystallogr. Rep.), 47, 494-496.]); Schenkel & Aeberli (1957[Schenkel, H. & Aeberli, M. (1957). US Patent 2 776 983.]); Shishkina et al. (2005[Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180-o4182.]); Staerk et al. (1997[Staerk, D., Hamed, A. A., Pedersen, E. B. & Jacobsen, J. P. (1997). Bioconjugate Chem. 8, 869-877.]); Vasilev et al. (2005[Vasilev, A. A., Deligeorgiev, T. G., Gadjev, N. I. & Drexhage, K. H. (2005). Dyes Pigm. 66, 135-142.]); Vincente et al. (2005[Vincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044-5057.]); Zipper et al. (2004[Zipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. (2004). Nucleic Acids Res. 32, E103, 1-10.]); Sheldrick & Morr (1981[Sheldrick, W. S. & Morr, M. (1981). Acta Cryst. B37, 733-734.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO

  • Mr = 235.27

  • Monoclinic, P 21 /c

  • a = 8.984 (2) Å

  • b = 14.194 (4) Å

  • c = 10.1785 (16) Å

  • β = 106.631 (15)°

  • V = 1243.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 (2) K

  • 0.31 × 0.31 × 0.31 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6212 measured reflections

  • 2991 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.160

  • S = 0.97

  • 2991 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 1.13 2.37 3.272 (3) 135
C4—H4⋯O1ii 1.09 2.63 3.380 (3) 125
C8—H8ACg1iii 1.11 2.73 3.382 (4) 165
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

DNA intercalation is one of the interactions of nucleic acids with small organic molecules, through which effective antitumor agents can be designed (Martínez et al., 2005). A relevant area of research is the finding of fluorescent markers for highly sensitive DNA detection (Staerk et al., 1997; Bondensgaard et al., 1999). For the latter application, few cyanine dyes containing quinoline end-groups are established (Zipper et al., 2004), and new representatives with similar and even better efficiency were recently synthesized (Vasilev et al., 2005; Kovalska et al., 2006; Fürstenberg et al., 2006). Herein, we report the structure of (I) which is an oxo-substituted fragment of these dyes – a long known molecule (Perekalin et al., 1951).

In the unit cell of (I), only one independent molecule is present. The bond distances and angles in the benzyl and quinolin-2(1H)-one moieties are comparable to those observed in other quinolinone derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). The molecule posses two nearly planar ring systems [r.m.s. deviation of 0.004 (5)Å and 0.021 (4) Å for the benzyl and quinolin-2(1H)-one fragments respectively] which are capable of intercalation, attached to each other in a conformationally fluxional way. The dihedral angle between the benzyl and quinolinone mean planes is 87.15 (7) °.

In the crystal structure of (I), the molecules are connected through non-classical C—H···O hydrogen bonds and CH3-π interactions between methyl and benzyl fragments C8—H8A···Cg1i; Cg1 is the centroid of the 1-Phenyl derivative [symmetry code (i): 1 - x, -1/2 + y, 3/2 - z]. The carbonyl O atom forms a bifurcated hydrogen bond. A head-to-tail C4—H4···O1i [symmetry code (i): x - 1,y,z] interaction between quinolinone fragments build up straight chains along a axis. A side-to-side C14—H14···O1i [symmetry code (i): 2 - x, 1/2 + y, 3/2 - z] interaction forms zigzag chains along b.

Related literature top

For related literature, see: Bondensgaard & Jacobsen (1999); Fürstenberg et al. (2006); Kovalska et al. (2006); Martínez & Chacón-García (2005); Perekalin & Lerner (1951); Rajnikant et al. (2002); Schenkel & Aeberli (1957); Shishkina et al. (2005); Staerk et al. (1997); Vasilev et al. (2005); Vincente et al. (2005); Zipper et al. (2004); Sheldrick & Morr (1981).

Experimental top

The title compound was synthesized by dehydro-cyclization (Perekalin et al., 1951) of the respective acetoacetamide (Schenkel et al., 1957). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation from toluene.

Refinement top

All hydrogen atoms were located in a difference map and were constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(C or N).

Structure description top

DNA intercalation is one of the interactions of nucleic acids with small organic molecules, through which effective antitumor agents can be designed (Martínez et al., 2005). A relevant area of research is the finding of fluorescent markers for highly sensitive DNA detection (Staerk et al., 1997; Bondensgaard et al., 1999). For the latter application, few cyanine dyes containing quinoline end-groups are established (Zipper et al., 2004), and new representatives with similar and even better efficiency were recently synthesized (Vasilev et al., 2005; Kovalska et al., 2006; Fürstenberg et al., 2006). Herein, we report the structure of (I) which is an oxo-substituted fragment of these dyes – a long known molecule (Perekalin et al., 1951).

In the unit cell of (I), only one independent molecule is present. The bond distances and angles in the benzyl and quinolin-2(1H)-one moieties are comparable to those observed in other quinolinone derivatives (Rajnikant et al., 2002; Vincente et al., 2005; Shishkina et al., 2005). The molecule posses two nearly planar ring systems [r.m.s. deviation of 0.004 (5)Å and 0.021 (4) Å for the benzyl and quinolin-2(1H)-one fragments respectively] which are capable of intercalation, attached to each other in a conformationally fluxional way. The dihedral angle between the benzyl and quinolinone mean planes is 87.15 (7) °.

In the crystal structure of (I), the molecules are connected through non-classical C—H···O hydrogen bonds and CH3-π interactions between methyl and benzyl fragments C8—H8A···Cg1i; Cg1 is the centroid of the 1-Phenyl derivative [symmetry code (i): 1 - x, -1/2 + y, 3/2 - z]. The carbonyl O atom forms a bifurcated hydrogen bond. A head-to-tail C4—H4···O1i [symmetry code (i): x - 1,y,z] interaction between quinolinone fragments build up straight chains along a axis. A side-to-side C14—H14···O1i [symmetry code (i): 2 - x, 1/2 + y, 3/2 - z] interaction forms zigzag chains along b.

For related literature, see: Bondensgaard & Jacobsen (1999); Fürstenberg et al. (2006); Kovalska et al. (2006); Martínez & Chacón-García (2005); Perekalin & Lerner (1951); Rajnikant et al. (2002); Schenkel & Aeberli (1957); Shishkina et al. (2005); Staerk et al. (1997); Vasilev et al. (2005); Vincente et al. (2005); Zipper et al. (2004); Sheldrick & Morr (1981).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the structure and the atom-numbering scheme of (I) showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of an arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular packing in (I). All H atoms not involved in the short contact interactions have been omitted for clarity [symmetry codes: (i) 1 + x,y,z; (ii) 2 - x, -1/2 + y, 3/2 - z; (iii) 2 - x, -1/2 + y, 3/2 - z; (iv) 1 - x, 1 - y, 1 - z]. The dotted lines indicate the C—H···O and C—H···π interactions.
4-Methyl-1-phenylquinolin-2(1H)-one top
Crystal data top
C16H13NOF(000) = 496
Mr = 235.27Dx = 1.256 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.984 (2) ÅCell parameters from 22 reflections
b = 14.194 (4) Åθ = 18.2–19.3°
c = 10.1785 (16) ŵ = 0.08 mm1
β = 106.631 (15)°T = 290 K
V = 1243.7 (5) Å3Cubic, pale yellow
Z = 40.31 × 0.31 × 0.31 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.4°
Graphite monochromatorh = 011
non–profiled ω/2θ scansk = 1818
6212 measured reflectionsl = 1312
2991 independent reflections3 standard reflections every 120 min
1351 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0699P)2]
where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H13NOV = 1243.7 (5) Å3
Mr = 235.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.984 (2) ŵ = 0.08 mm1
b = 14.194 (4) ÅT = 290 K
c = 10.1785 (16) Å0.31 × 0.31 × 0.31 mm
β = 106.631 (15)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.053
6212 measured reflections3 standard reflections every 120 min
2991 independent reflections intensity decay: none
1351 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 0.97Δρmax = 0.15 e Å3
2991 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7036 (2)0.45463 (12)0.80663 (18)0.0468 (5)
C10.5505 (2)0.46557 (16)0.8116 (2)0.0443 (5)
C60.4822 (3)0.39507 (15)0.8725 (2)0.0448 (5)
O10.9282 (2)0.37000 (13)0.8539 (2)0.0763 (6)
C20.4652 (3)0.54564 (16)0.7571 (2)0.0500 (6)
H20.51940.59810.71650.060*
C110.7750 (2)0.52552 (15)0.7433 (2)0.0461 (6)
C50.3277 (3)0.40691 (18)0.8733 (2)0.0535 (6)
H50.28820.35240.91230.064*
C40.2438 (3)0.48561 (19)0.8192 (2)0.0580 (7)
H40.11960.49680.80470.070*
C100.7938 (3)0.37699 (17)0.8615 (3)0.0554 (6)
C90.7218 (3)0.30818 (17)0.9274 (2)0.0580 (7)
H90.78250.25180.97530.070*
C30.3150 (3)0.55537 (17)0.7623 (2)0.0570 (6)
H30.25710.61170.72950.068*
C70.5753 (3)0.31498 (16)0.9346 (2)0.0519 (6)
C80.5092 (3)0.24147 (17)1.0075 (3)0.0711 (8)
H8B0.47060.26551.07360.107*
H8C0.57830.18531.04370.107*
H8A0.40260.20900.93850.107*
C160.7687 (3)0.51761 (18)0.6074 (3)0.0632 (7)
H160.70090.45760.55340.076*
C130.9139 (3)0.67027 (18)0.7559 (3)0.0639 (7)
H130.97470.72740.81670.077*
C140.9077 (3)0.66239 (19)0.6202 (3)0.0627 (7)
H140.96630.71900.57380.075*
C120.8477 (3)0.60141 (18)0.8181 (3)0.0586 (7)
H120.85650.59800.89990.070*
C150.8372 (3)0.5863 (2)0.5463 (3)0.0730 (8)
H150.83720.57530.44160.109 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0390 (10)0.0453 (11)0.0582 (12)0.0007 (9)0.0173 (9)0.0040 (9)
C10.0376 (12)0.0499 (13)0.0448 (13)0.0019 (10)0.0110 (10)0.0053 (11)
C60.0473 (13)0.0437 (13)0.0441 (12)0.0056 (11)0.0144 (10)0.0078 (10)
O10.0509 (11)0.0703 (12)0.1140 (16)0.0136 (9)0.0336 (11)0.0111 (11)
C20.0456 (13)0.0505 (14)0.0537 (14)0.0008 (11)0.0138 (11)0.0035 (11)
C110.0373 (11)0.0462 (14)0.0563 (14)0.0004 (10)0.0154 (11)0.0018 (11)
C50.0496 (14)0.0584 (15)0.0568 (15)0.0079 (12)0.0222 (12)0.0046 (12)
C40.0417 (13)0.0720 (17)0.0621 (16)0.0004 (13)0.0179 (12)0.0039 (14)
C100.0476 (14)0.0510 (14)0.0680 (16)0.0056 (12)0.0173 (12)0.0013 (12)
C90.0574 (15)0.0450 (14)0.0702 (17)0.0051 (12)0.0162 (13)0.0018 (12)
C30.0446 (14)0.0624 (16)0.0616 (15)0.0084 (12)0.0115 (12)0.0027 (13)
C70.0576 (15)0.0430 (14)0.0558 (14)0.0060 (12)0.0176 (12)0.0063 (11)
C80.085 (2)0.0497 (15)0.0871 (19)0.0027 (14)0.0388 (17)0.0077 (14)
C160.0760 (18)0.0561 (15)0.0619 (17)0.0119 (14)0.0268 (14)0.0051 (13)
C130.0516 (15)0.0549 (15)0.0838 (19)0.0149 (12)0.0171 (14)0.0095 (14)
C140.0551 (15)0.0554 (16)0.084 (2)0.0032 (13)0.0309 (14)0.0065 (14)
C120.0526 (14)0.0634 (16)0.0614 (15)0.0088 (13)0.0187 (12)0.0081 (13)
C150.093 (2)0.0674 (18)0.0687 (18)0.0083 (17)0.0392 (17)0.0007 (15)
Geometric parameters (Å, º) top
N1—C101.387 (3)C9—C71.342 (3)
N1—C11.400 (3)C9—H91.0118
N1—C111.441 (3)C3—H30.9603
C1—C21.394 (3)C7—C81.499 (3)
C1—C61.407 (3)C8—H8B0.9069
C6—C51.401 (3)C8—H8C1.0133
C6—C71.445 (3)C8—H8A1.1127
O1—C101.236 (3)C16—C151.391 (4)
C2—C31.373 (3)C16—H161.0983
C2—H21.0382C13—C141.371 (3)
C11—C121.372 (3)C13—C121.387 (3)
C11—C161.372 (3)C13—H131.0707
C5—C41.372 (3)C14—C151.364 (4)
C5—H50.9818C14—H141.1348
C4—C31.392 (3)C12—H120.8147
C4—H41.0949C15—H151.0773
C10—C91.439 (3)
C10—N1—C1122.73 (19)C2—C3—C4121.2 (2)
C10—N1—C11116.83 (18)C2—C3—H3120.7
C1—N1—C11120.44 (18)C4—C3—H3118.0
C2—C1—N1120.7 (2)C9—C7—C6119.1 (2)
C2—C1—C6119.7 (2)C9—C7—C8120.7 (2)
N1—C1—C6119.6 (2)C6—C7—C8120.2 (2)
C5—C6—C1118.4 (2)C7—C8—H8B113.3
C5—C6—C7122.8 (2)C7—C8—H8C116.1
C1—C6—C7118.8 (2)H8B—C8—H8C110.5
C3—C2—C1120.1 (2)C7—C8—H8A111.6
C3—C2—H2121.5H8B—C8—H8A100.4
C1—C2—H2118.4H8C—C8—H8A103.3
C12—C11—C16120.0 (2)C11—C16—C15119.8 (2)
C12—C11—N1120.1 (2)C11—C16—H16115.2
C16—C11—N1119.9 (2)C15—C16—H16124.9
C4—C5—C6121.8 (2)C14—C13—C12120.2 (2)
C4—C5—H5125.7C14—C13—H13120.7
C6—C5—H5112.4C12—C13—H13119.0
C5—C4—C3118.8 (2)C15—C14—C13119.9 (2)
C5—C4—H4126.5C15—C14—H14121.9
C3—C4—H4114.3C13—C14—H14118.2
O1—C10—N1120.5 (2)C11—C12—C13119.9 (2)
O1—C10—C9123.6 (2)C11—C12—H12114.3
N1—C10—C9116.0 (2)C13—C12—H12125.4
C7—C9—C10123.7 (2)C14—C15—C16120.3 (3)
C7—C9—H9115.6C14—C15—H15121.9
C10—C9—H9120.6C16—C15—H15117.8
C10—N1—C1—C2178.9 (2)C11—N1—C10—C9178.5 (2)
C11—N1—C1—C20.8 (3)O1—C10—C9—C7179.2 (2)
C10—N1—C1—C61.0 (3)N1—C10—C9—C71.6 (4)
C11—N1—C1—C6179.3 (2)C1—C2—C3—C41.2 (4)
C2—C1—C6—C51.5 (3)C5—C4—C3—C21.4 (4)
N1—C1—C6—C5178.6 (2)C10—C9—C7—C60.5 (4)
C2—C1—C6—C7176.9 (2)C10—C9—C7—C8178.7 (2)
N1—C1—C6—C73.0 (3)C5—C6—C7—C9178.9 (2)
N1—C1—C2—C3179.8 (2)C1—C6—C7—C92.8 (3)
C6—C1—C2—C30.3 (3)C5—C6—C7—C81.9 (3)
C10—N1—C11—C1293.2 (2)C1—C6—C7—C8176.4 (2)
C1—N1—C11—C1286.6 (3)C12—C11—C16—C150.5 (4)
C10—N1—C11—C1687.5 (3)N1—C11—C16—C15179.7 (2)
C1—N1—C11—C1692.7 (3)C12—C13—C14—C150.4 (4)
C1—C6—C5—C41.3 (3)C16—C11—C12—C130.4 (4)
C7—C6—C5—C4177.0 (2)N1—C11—C12—C13178.9 (2)
C6—C5—C4—C30.1 (4)C14—C13—C12—C110.4 (4)
C1—N1—C10—O1179.5 (2)C13—C14—C15—C161.3 (4)
C11—N1—C10—O10.7 (3)C11—C16—C15—C141.3 (4)
C1—N1—C10—C91.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i1.132.373.272 (3)135
C4—H4···O1ii1.092.633.380 (3)125
C8—H8A···Cg1iii1.112.733.382 (4)165
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H13NO
Mr235.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.984 (2), 14.194 (4), 10.1785 (16)
β (°) 106.631 (15)
V3)1243.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.31 × 0.31
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6212, 2991, 1351
Rint0.053
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.160, 0.97
No. of reflections2991
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997); Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i1.132.373.272 (3)134.5
C4—H4···O1ii1.092.633.380 (3)124.8
C8—H8A···Cg1iii1.112.733.382 (4)165.4
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the National Research Fund of Bulgaria for financial support (grant No. BYX 03.05).

References

First citationBondensgaard, K. & Jacobsen, J. P. (1999). Bioconjugate Chem. 10, 735–744.  Web of Science CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFürstenberg, A., Julliard, M. D., Deligeorgiev, T. G., Gadjev, N. I., Vasilev, A. A. & Vauthey, E. (2006). J. Am. Chem. Soc. 128, 7661–7669.  Web of Science PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKovalska, V. B., Tokar, V. P., Losytskyy, M. Yu., Deligeorgiev, T. G., Vasilev, A. A., Gadjev, N. I., Drexhage, K. H. & Yarmoluk, S. M. (2006). J. Biochem. Biophys. Methods, 68, 155–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartínez, R. & Chacón-García, L. (2005). Curr. Med. Chem. 12, 127–151.  Web of Science PubMed Google Scholar
First citationPerekalin, V. V. & Lerner, O. M. (1951). Zh. Obshch. Khim. 21, 1995–2001.  CAS Google Scholar
First citationRajnikant, Gupta, V. K., Deshmukh, M. B., Varghese, B. & Dinesh (2002). Kristallografiya (Crystallogr. Rep.), 47, 494–496.  Google Scholar
First citationSchenkel, H. & Aeberli, M. (1957). US Patent 2 776 983.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, W. S. & Morr, M. (1981). Acta Cryst. B37, 733–734.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShishkina, S. V., Shishkin, O. V., Ukrainets, I. V. & Sidorenko, L. V. (2005). Acta Cryst. E61, o4180–o4182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStaerk, D., Hamed, A. A., Pedersen, E. B. & Jacobsen, J. P. (1997). Bioconjugate Chem. 8, 869–877.  CAS Google Scholar
First citationVasilev, A. A., Deligeorgiev, T. G., Gadjev, N. I. & Drexhage, K. H. (2005). Dyes Pigm. 66, 135–142.  Web of Science CrossRef CAS Google Scholar
First citationVincente, J., Abad, J.-A., López, J.-A., Jones, P. J., Najera, C. & Botella-Segura, L. (2005). Organometallics, 24, 5044–5057.  Google Scholar
First citationZipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. (2004). Nucleic Acids Res. 32, E103, 1–10.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds