metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Dimeth­­oxy-2,2′-[ethyl­ene­dioxy­bis­(nitrilo­methyl­­idyne)]diphenolato}copper(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bSchool of Environmental Science and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 10 July 2007; accepted 21 November 2007; online 21 December 2007)

The title complex, [Cu(C18H18N2O6)], was synthesized by the reaction of copper(II) acetate mono­hydrate with the ligand 4,4′-dimeth­oxy-2,2′-[ethyl­enedioxy­bis(nitrilo­methyl­idyne)]diphenol (H2L). The Cu atom is coordinated by two O atoms and two N atoms of the L2− unit. A bridged dimer is formed through inter­molecular Cu⋯O inter­actions [Cu⋯O = 1.9408 (15) Å], creating a distorted square-pyramidal geometry about the Cu atoms.

Related literature

For related literature, see: Akine et al. (2001[Akine, S., Taniguchi, T. & Nabeshima, T. (2001). Chem. Lett. pp. 682-683.], 2005[Akine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem. 44, 3270-3274.]); Bhadbhade & Srinivas (1993[Bhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122-6125.]); Garnovskii et al. (1993[Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1-69.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Ray et al. (2003[Ray, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961-965.]); Sun et al. (2004[Sun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314-6326.]); Sangeetha et al. (1999[Sangeetha, N. R., Barradi, K., Gupta, C. K., Pal, V. & Manivannan, S. P. (1999). Polyhedron, 18, 1425-1429.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H18N2O6)]

  • Mr = 421.88

  • Monoclinic, P 21 /c

  • a = 15.453 (2) Å

  • b = 7.6408 (11) Å

  • c = 15.927 (2) Å

  • β = 107.686 (2)°

  • V = 1791.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 298 (2) K

  • 0.51 × 0.29 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1996[Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.566, Tmax = 0.787

  • 8649 measured reflections

  • 3138 independent reflections

  • 2600 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.10

  • 3138 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with multidentate salen-type ligands have been extensively studied because such ligands can bind with one, two, or more metal centers involving various modes and allow successful synthesis of homo and/or heteronuclear metal complexes with interesting stereochemistry (Katsuki, 1995; Akine et al., 2005). Furthermore, these complexes are very interesting in many fields, such as catalysis, enzymatic reactions (Garnovskii et al., 1993), magnetism, and molecular architectures(Sun et al., 2004). Research into the copper(II) complexes have been stimulated by, among other things, biological modeling applications, catalysis, design of molecular ferromagnets, and material chemistry (Ray et al., 2003).

In this paper, a novel salen-type bisoxime chelating ligand, 4,4'-dimethoxy-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol, and its mononuclear copper(II) complex, (I), were synthesized. The X-ray crystallography of the title complex reveals the complex crystallizes in the monoclinic system, space group P2(1)/c with a = 15.453 (2) Å, b = 7.6408 (11) Å, c = 15.927 (2) Å, β = 107.686 (2) ° and Z = 4. The copper(II) atom has a tetragonally elongated square-pyramidal configuration with donor atoms O3, O5, N1, and N2 (Cu1—O3: 1.9408 (15) Å; Cu1—O5: 1.9068 (17) Å; Cu1—N1: 2.032 (2) Å; Cu1—N2: 1.9670 (19) Å) forming a near-perfect basal plane and the apical bond Cu1···O3A (2.411 (2) Å) being almost perpendicular to this plane. The copper(II) atom is displaced by 0.164 Å toward the bridging oxygen O3A from the best plane of the donor atoms. The dihedral angle between the coordination plane of O3—Cu1—N1 and that of O5—Cu1—N2 is 15.46 °, indicating slight distortion toward tetrahedral geometry from the square planar structure. The title complex has a stepped conformation as observed in the dimers of [Cu(salamo)] (Akine et al., 2001) and [Cu(salen)] (Bhadbhade & Srinivas, 1993), which forms a head-to-tail structure by the intermolecular contacts between copper(II) and oxygen atoms(Fig. 2). The bond angles related to Cu2O2 are as follows: the angles of O3—Cu1—O3A and O3—Cu1A—O3A are both 85.15 °, the angles of Cu1—O3—Cu1A and Cu1—O3A—Cu1A are the same as 94.85 °. All of the Cu1—O—Cu1A bridging angles fall in the normal range for diphenoxo-bridged copper(II) complexes (Sangeetha et al., 1999). The sum of the four bond angles is 360 ° exactly, indicating Cu1, O3, Cu1A and O3A are coplanar. The Cu1—Cu1A distance in dimer is 3.245 (2) Å.

Related literature top

For related literature, see: Akine et al. (2001, 2005); Bhadbhade & Srinivas (1993); Garnovskii et al. (1993); Katsuki (1995); Ray et al. (2003); Sun et al. (2004); Sangeetha et al. (1999).

Experimental top

A solution of Cu(II) acetate monohydrate (6.7 mg, 0.03 mmol) in ethanol (2 ml) was added dropwise to a solution of 4,4'-dimethoxy-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (12 mg, 0.03 mmol) in acetone (10 ml). The color of the mixing solution turns to green, immediately, and then filtering the solution and the filtrate was allowed to stand at room temperature for about two weeks, the solvent was partially evaporated and obtained dark-brown prismatic single crystals suitable for X-ray crystallographic analysis.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH),O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Structure description top

Metal complexes with multidentate salen-type ligands have been extensively studied because such ligands can bind with one, two, or more metal centers involving various modes and allow successful synthesis of homo and/or heteronuclear metal complexes with interesting stereochemistry (Katsuki, 1995; Akine et al., 2005). Furthermore, these complexes are very interesting in many fields, such as catalysis, enzymatic reactions (Garnovskii et al., 1993), magnetism, and molecular architectures(Sun et al., 2004). Research into the copper(II) complexes have been stimulated by, among other things, biological modeling applications, catalysis, design of molecular ferromagnets, and material chemistry (Ray et al., 2003).

In this paper, a novel salen-type bisoxime chelating ligand, 4,4'-dimethoxy-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol, and its mononuclear copper(II) complex, (I), were synthesized. The X-ray crystallography of the title complex reveals the complex crystallizes in the monoclinic system, space group P2(1)/c with a = 15.453 (2) Å, b = 7.6408 (11) Å, c = 15.927 (2) Å, β = 107.686 (2) ° and Z = 4. The copper(II) atom has a tetragonally elongated square-pyramidal configuration with donor atoms O3, O5, N1, and N2 (Cu1—O3: 1.9408 (15) Å; Cu1—O5: 1.9068 (17) Å; Cu1—N1: 2.032 (2) Å; Cu1—N2: 1.9670 (19) Å) forming a near-perfect basal plane and the apical bond Cu1···O3A (2.411 (2) Å) being almost perpendicular to this plane. The copper(II) atom is displaced by 0.164 Å toward the bridging oxygen O3A from the best plane of the donor atoms. The dihedral angle between the coordination plane of O3—Cu1—N1 and that of O5—Cu1—N2 is 15.46 °, indicating slight distortion toward tetrahedral geometry from the square planar structure. The title complex has a stepped conformation as observed in the dimers of [Cu(salamo)] (Akine et al., 2001) and [Cu(salen)] (Bhadbhade & Srinivas, 1993), which forms a head-to-tail structure by the intermolecular contacts between copper(II) and oxygen atoms(Fig. 2). The bond angles related to Cu2O2 are as follows: the angles of O3—Cu1—O3A and O3—Cu1A—O3A are both 85.15 °, the angles of Cu1—O3—Cu1A and Cu1—O3A—Cu1A are the same as 94.85 °. All of the Cu1—O—Cu1A bridging angles fall in the normal range for diphenoxo-bridged copper(II) complexes (Sangeetha et al., 1999). The sum of the four bond angles is 360 ° exactly, indicating Cu1, O3, Cu1A and O3A are coplanar. The Cu1—Cu1A distance in dimer is 3.245 (2) Å.

For related literature, see: Akine et al. (2001, 2005); Bhadbhade & Srinivas (1993); Garnovskii et al. (1993); Katsuki (1995); Ray et al. (2003); Sun et al. (2004); Sangeetha et al. (1999).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecule structure (I) with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title complex showing the formation of a dimer. Distances of Cu1···O3A [2.411 (2) Å] and pi-pi interactions [2.660 (2) Å].
{4,4'-Dimethoxy-2,2'- [ethylenedioxybis(nitrilomethylidyne)]diphenolato}copper(II) top
Crystal data top
[Cu(C18H18N2O6)]F(000) = 868
Mr = 421.88Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.453 (2) ÅCell parameters from 4146 reflections
b = 7.6408 (11) Åθ = 2.6–28.2°
c = 15.927 (2) ŵ = 1.26 mm1
β = 107.686 (2)°T = 298 K
V = 1791.6 (4) Å3Prismatic, brown
Z = 40.51 × 0.29 × 0.20 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
3138 independent reflections
Radiation source: fine-focus sealed tube2600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000?)
h = 1817
Tmin = 0.566, Tmax = 0.787k = 99
8649 measured reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.4958P]
where P = (Fo2 + 2Fc2)/3
3138 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C18H18N2O6)]V = 1791.6 (4) Å3
Mr = 421.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.453 (2) ŵ = 1.26 mm1
b = 7.6408 (11) ÅT = 298 K
c = 15.927 (2) Å0.51 × 0.29 × 0.20 mm
β = 107.686 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3138 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000?)
2600 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.787Rint = 0.027
8649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
3138 reflectionsΔρmin = 0.40 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.477290 (19)0.02861 (4)0.592030 (18)0.03177 (12)
N10.58032 (14)0.2027 (3)0.63744 (13)0.0346 (5)
N20.39767 (13)0.1437 (3)0.65094 (12)0.0322 (5)
O10.57217 (12)0.3861 (2)0.64483 (13)0.0489 (5)
O20.43329 (12)0.2799 (2)0.71371 (10)0.0390 (4)
O30.56375 (10)0.1234 (2)0.56144 (10)0.0328 (4)
O40.91554 (12)0.2546 (3)0.76874 (13)0.0552 (5)
O50.39007 (11)0.1542 (2)0.55425 (11)0.0393 (4)
O60.03883 (14)0.2491 (3)0.56161 (17)0.0680 (6)
C10.48180 (17)0.4460 (3)0.60408 (17)0.0406 (6)
H1A0.48330.56400.58210.049*
H1B0.45230.37110.55440.049*
C20.42871 (18)0.4441 (3)0.66883 (17)0.0400 (6)
H2A0.36560.47040.63790.048*
H2B0.45160.53560.71210.048*
C30.66344 (17)0.1582 (3)0.67144 (17)0.0380 (6)
H30.70400.24460.70030.046*
C40.69934 (17)0.0146 (3)0.66865 (16)0.0344 (6)
C50.64843 (15)0.1439 (3)0.61155 (15)0.0307 (5)
C60.69354 (16)0.3032 (3)0.60920 (16)0.0359 (6)
H60.66290.39100.57130.043*
C70.78087 (17)0.3335 (4)0.66068 (17)0.0402 (6)
H70.80810.44050.65690.048*
C80.82935 (16)0.2064 (4)0.71851 (17)0.0385 (6)
C90.78927 (17)0.0474 (3)0.72178 (17)0.0390 (6)
H90.82160.03940.75930.047*
C100.9674 (2)0.1302 (5)0.8288 (2)0.0790 (11)
H10A0.93780.10400.87230.118*
H10B1.02670.17690.85730.118*
H10C0.97280.02520.79770.118*
C110.31864 (17)0.0951 (3)0.65357 (16)0.0365 (6)
H110.29250.15870.68940.044*
C120.26844 (17)0.0485 (3)0.60588 (16)0.0356 (6)
C130.30721 (16)0.1661 (3)0.55881 (15)0.0343 (6)
C140.25243 (17)0.3072 (3)0.51642 (18)0.0428 (6)
H140.27580.38650.48470.051*
C150.16610 (18)0.3314 (4)0.52042 (18)0.0455 (7)
H150.13250.42750.49260.055*
C160.12811 (18)0.2130 (4)0.56585 (19)0.0468 (7)
C170.17833 (18)0.0747 (4)0.60834 (19)0.0448 (7)
H170.15330.00340.63930.054*
C180.0041 (2)0.1304 (6)0.6035 (3)0.0805 (11)
H18A0.00430.01600.57850.121*
H18B0.06540.16760.59530.121*
H18C0.02820.12650.66530.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03453 (18)0.02879 (19)0.03462 (18)0.00140 (12)0.01445 (13)0.00478 (13)
N10.0442 (12)0.0240 (11)0.0385 (11)0.0009 (9)0.0168 (10)0.0044 (9)
N20.0400 (12)0.0291 (11)0.0285 (10)0.0012 (9)0.0121 (9)0.0061 (8)
O10.0487 (11)0.0240 (10)0.0756 (14)0.0007 (8)0.0214 (10)0.0039 (9)
O20.0503 (11)0.0383 (10)0.0293 (9)0.0032 (8)0.0134 (8)0.0098 (8)
O30.0297 (9)0.0335 (10)0.0346 (9)0.0040 (7)0.0087 (7)0.0067 (7)
O40.0374 (10)0.0574 (13)0.0605 (13)0.0028 (9)0.0005 (9)0.0010 (10)
O50.0391 (10)0.0341 (10)0.0492 (10)0.0004 (8)0.0200 (8)0.0108 (8)
O60.0435 (12)0.0683 (15)0.0981 (17)0.0101 (10)0.0303 (12)0.0139 (13)
C10.0563 (17)0.0255 (14)0.0393 (15)0.0066 (12)0.0133 (13)0.0008 (11)
C20.0448 (15)0.0320 (15)0.0406 (14)0.0043 (11)0.0091 (12)0.0109 (11)
C30.0418 (15)0.0312 (14)0.0419 (14)0.0063 (11)0.0139 (12)0.0064 (11)
C40.0382 (14)0.0315 (14)0.0361 (13)0.0025 (10)0.0150 (11)0.0008 (11)
C50.0327 (13)0.0320 (14)0.0307 (12)0.0004 (10)0.0145 (10)0.0011 (10)
C60.0341 (13)0.0335 (14)0.0398 (14)0.0005 (11)0.0107 (11)0.0082 (11)
C70.0375 (14)0.0357 (15)0.0492 (16)0.0058 (11)0.0159 (12)0.0001 (12)
C80.0297 (13)0.0452 (16)0.0397 (14)0.0004 (11)0.0094 (11)0.0056 (12)
C90.0379 (14)0.0384 (16)0.0388 (14)0.0083 (11)0.0089 (11)0.0040 (11)
C100.0525 (19)0.085 (3)0.078 (2)0.0001 (18)0.0126 (18)0.013 (2)
C110.0413 (15)0.0361 (15)0.0359 (14)0.0056 (11)0.0175 (12)0.0042 (11)
C120.0367 (13)0.0349 (15)0.0359 (13)0.0037 (11)0.0122 (11)0.0007 (11)
C130.0364 (13)0.0329 (14)0.0323 (13)0.0056 (11)0.0086 (11)0.0012 (11)
C140.0418 (15)0.0362 (15)0.0478 (16)0.0037 (12)0.0097 (12)0.0091 (12)
C150.0411 (15)0.0378 (16)0.0508 (16)0.0015 (12)0.0040 (13)0.0031 (13)
C160.0350 (14)0.0495 (18)0.0562 (17)0.0001 (12)0.0145 (13)0.0043 (14)
C170.0425 (15)0.0445 (17)0.0513 (16)0.0038 (12)0.0204 (13)0.0047 (13)
C180.058 (2)0.090 (3)0.110 (3)0.0051 (19)0.052 (2)0.010 (2)
Geometric parameters (Å, º) top
Cu1—O51.9068 (17)C5—C61.409 (3)
Cu1—O31.9408 (15)C6—C71.369 (3)
Cu1—N21.9670 (19)C6—H60.9300
Cu1—N12.032 (2)C7—C81.390 (4)
N1—C31.279 (3)C7—H70.9300
N1—O11.415 (3)C8—C91.372 (4)
N2—C111.289 (3)C9—H90.9300
N2—O21.432 (2)C10—H10A0.9600
O1—C11.425 (3)C10—H10B0.9600
O2—C21.435 (3)C10—H10C0.9600
O3—C51.319 (3)C11—C121.423 (4)
O4—C81.379 (3)C11—H110.9300
O4—C101.412 (4)C12—C131.415 (3)
O5—C131.308 (3)C12—C171.419 (4)
O6—C161.388 (3)C13—C141.410 (3)
O6—C181.406 (4)C14—C151.367 (4)
C1—C21.500 (3)C14—H140.9300
C1—H1A0.9700C15—C161.395 (4)
C1—H1B0.9700C15—H150.9300
C2—H2A0.9700C16—C171.363 (4)
C2—H2B0.9700C17—H170.9300
C3—C41.438 (3)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.410 (3)C18—H18C0.9600
C4—C91.413 (4)
O5—Cu1—O387.53 (7)C6—C7—C8120.9 (2)
O5—Cu1—N289.62 (8)C6—C7—H7119.5
O3—Cu1—N2164.87 (8)C8—C7—H7119.5
O5—Cu1—N1173.80 (8)C9—C8—O4125.6 (2)
O3—Cu1—N187.50 (7)C9—C8—C7119.0 (2)
N2—Cu1—N194.22 (8)O4—C8—C7115.4 (2)
C3—N1—O1109.3 (2)C8—C9—C4120.5 (2)
C3—N1—Cu1123.67 (17)C8—C9—H9119.7
O1—N1—Cu1126.72 (15)C4—C9—H9119.7
C11—N2—O2110.71 (18)O4—C10—H10A109.5
C11—N2—Cu1128.51 (17)O4—C10—H10B109.5
O2—N2—Cu1119.63 (14)H10A—C10—H10B109.5
N1—O1—C1112.32 (18)O4—C10—H10C109.5
N2—O2—C2109.72 (16)H10A—C10—H10C109.5
C5—O3—Cu1123.45 (14)H10B—C10—H10C109.5
C8—O4—C10117.5 (2)N2—C11—C12125.0 (2)
C13—O5—Cu1130.08 (15)N2—C11—H11117.5
C16—O6—C18117.0 (2)C12—C11—H11117.5
O1—C1—C2110.4 (2)C13—C12—C17120.1 (2)
O1—C1—H1A109.6C13—C12—C11121.5 (2)
C2—C1—H1A109.6C17—C12—C11118.3 (2)
O1—C1—H1B109.6O5—C13—C14118.8 (2)
C2—C1—H1B109.6O5—C13—C12124.4 (2)
H1A—C1—H1B108.1C14—C13—C12116.8 (2)
O2—C2—C1113.3 (2)C15—C14—C13122.3 (2)
O2—C2—H2A108.9C15—C14—H14118.9
C1—C2—H2A108.9C13—C14—H14118.9
O2—C2—H2B108.9C14—C15—C16120.5 (3)
C1—C2—H2B108.9C14—C15—H15119.8
H2A—C2—H2B107.7C16—C15—H15119.8
N1—C3—C4125.3 (2)C17—C16—O6125.8 (3)
N1—C3—H3117.3C17—C16—C15119.6 (2)
C4—C3—H3117.3O6—C16—C15114.5 (3)
C5—C4—C9121.1 (2)C16—C17—C12120.7 (2)
C5—C4—C3121.2 (2)C16—C17—H17119.6
C9—C4—C3117.6 (2)C12—C17—H17119.6
O3—C5—C6119.6 (2)O6—C18—H18A109.5
O3—C5—C4124.3 (2)O6—C18—H18B109.5
C6—C5—C4116.0 (2)H18A—C18—H18B109.5
C7—C6—C5122.4 (2)O6—C18—H18C109.5
C7—C6—H6118.8H18A—C18—H18C109.5
C5—C6—H6118.8H18B—C18—H18C109.5
O5—Cu1—N1—C35.1 (8)C3—C4—C5—C6174.8 (2)
O3—Cu1—N1—C331.6 (2)O3—C5—C6—C7178.9 (2)
N2—Cu1—N1—C3133.3 (2)C4—C5—C6—C71.6 (4)
O5—Cu1—N1—O1168.3 (6)C5—C6—C7—C80.2 (4)
O3—Cu1—N1—O1154.89 (18)C10—O4—C8—C90.0 (4)
N2—Cu1—N1—O140.17 (19)C10—O4—C8—C7179.7 (3)
O5—Cu1—N2—C111.3 (2)C6—C7—C8—C91.7 (4)
O3—Cu1—N2—C1180.4 (4)C6—C7—C8—O4178.0 (2)
N1—Cu1—N2—C11176.4 (2)O4—C8—C9—C4178.3 (2)
O5—Cu1—N2—O2165.28 (15)C7—C8—C9—C41.4 (4)
O3—Cu1—N2—O286.2 (3)C5—C4—C9—C80.4 (4)
N1—Cu1—N2—O29.85 (16)C3—C4—C9—C8176.4 (2)
C3—N1—O1—C1177.0 (2)O2—N2—C11—C12173.7 (2)
Cu1—N1—O1—C18.8 (3)Cu1—N2—C11—C126.2 (4)
C11—N2—O2—C2106.1 (2)N2—C11—C12—C138.2 (4)
Cu1—N2—O2—C285.07 (19)N2—C11—C12—C17173.5 (2)
O5—Cu1—O3—C5136.42 (18)Cu1—O5—C13—C14172.55 (17)
N2—Cu1—O3—C557.1 (4)Cu1—O5—C13—C129.2 (4)
N1—Cu1—O3—C539.87 (18)C17—C12—C13—O5178.7 (2)
O3—Cu1—O5—C13174.0 (2)C11—C12—C13—O50.4 (4)
N2—Cu1—O5—C138.9 (2)C17—C12—C13—C140.4 (4)
N1—Cu1—O5—C13137.2 (6)C11—C12—C13—C14177.9 (2)
N1—O1—C1—C289.8 (2)O5—C13—C14—C15178.0 (2)
N2—O2—C2—C160.0 (3)C12—C13—C14—C150.3 (4)
O1—C1—C2—O251.2 (3)C13—C14—C15—C161.4 (4)
O1—N1—C3—C4173.7 (2)C18—O6—C16—C171.3 (5)
Cu1—N1—C3—C411.9 (4)C18—O6—C16—C15177.7 (3)
N1—C3—C4—C513.5 (4)C14—C15—C16—C171.6 (4)
N1—C3—C4—C9169.8 (2)C14—C15—C16—O6177.4 (3)
Cu1—O3—C5—C6151.11 (17)O6—C16—C17—C12178.1 (3)
Cu1—O3—C5—C429.4 (3)C15—C16—C17—C120.8 (4)
C9—C4—C5—O3178.7 (2)C13—C12—C17—C160.2 (4)
C3—C4—C5—O34.7 (4)C11—C12—C17—C16178.2 (3)
C9—C4—C5—C61.8 (3)

Experimental details

Crystal data
Chemical formula[Cu(C18H18N2O6)]
Mr421.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.453 (2), 7.6408 (11), 15.927 (2)
β (°) 107.686 (2)
V3)1791.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.51 × 0.29 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000?)
Tmin, Tmax0.566, 0.787
No. of measured, independent and
observed [I > 2σ(I)] reflections
8649, 3138, 2600
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.10
No. of reflections3138
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

This work was supported by the Natural Science Foundation of Gansu (grant No. 0604-01) and the Graduate Students Science Innovation Fund (grant No. DXS-2006-80) of Lanzhou Jiaotong University.

References

First citationAkine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem. 44, 3270–3274.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAkine, S., Taniguchi, T. & Nabeshima, T. (2001). Chem. Lett. pp. 682–683.  CSD CrossRef Google Scholar
First citationBhadbhade, M. M. & Srinivas, D. (1993). Inorg. Chem. 32, 6122–6125.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationRay, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961–965.  Web of Science CSD CrossRef CAS Google Scholar
First citationSangeetha, N. R., Barradi, K., Gupta, C. K., Pal, V. & Manivannan, S. P. (1999). Polyhedron, 18, 1425–1429.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314–6326.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds