organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Dioxo-1,10-phenanthrolin-1-ium chloride

aChalmers Tekniska Högskola, Department of Chemical and Biological Engineering, 41296 Göteborg, Sweden, and bUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark
*Correspondence e-mail: adb@chem.sdu.dk

(Received 26 July 2007; accepted 21 November 2007; online 6 December 2007)

The title compound, C12H7N2O2+·Cl, is isostructural with its bromide analogue. The compound exhibits a layered structure in which all atoms lie on a crystallographic mirror plane. N+—H⋯Cl hydrogen bonds, C—H⋯O and C—H⋯Cl contacts are formed within each layer. The perpendicular separation between the layers is 3.141 (1) Å.

Related literature

For the isostructural bromide analogue, see: Bomfim et al. (2003[Bomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, o244-o246.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7N2O2+·Cl

  • Mr = 246.65

  • Orthorhombic, P n m a

  • a = 14.2870 (11) Å

  • b = 6.2833 (5) Å

  • c = 12.0019 (10) Å

  • V = 1077.40 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 (2) K

  • 0.40 × 0.07 × 0.04 mm

Data collection
  • Bruker Nonius X8-APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.744, Tmax = 0.986

  • 4229 measured reflections

  • 1028 independent reflections

  • 758 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.04

  • 1028 reflections

  • 106 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.88 (1) 2.27 (2) 3.067 (2) 150 (3)
C1—H1A⋯O1i 0.93 2.27 3.074 (3) 145
C3—H3A⋯Cl1ii 0.93 2.87 3.755 (3) 161
C8—H8A⋯Cl1iii 0.93 2.91 3.545 (3) 127
C9—H9A⋯Cl1iii 0.93 2.93 3.556 (3) 126
C10—H10A⋯O2iv 0.93 2.27 3.196 (3) 177
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker Nonius, 2004[Bruker Nonius (2004). APEX2. Version 1.0-22. Bruker Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C12H7N2O2+.Cl-, was obtained as a by-product from an attempted synthesis of a metal-organic framework (MOF). It is isostructural with its bromide analogue (Bomfim, et al., 2003).

Related literature top

For the isostructural bromide analogue, see: Bomfim et al. (2003).

Experimental top

5,6-Dioxo-1,10-phenanthroline (40 mg, 0.19 mmol) was dissolved in 10 ml of water at room temperature with stirring and HCl(aq) was added until the pH was 4. When all of the compound had dissolved, K3[Mn(CN)6] (31 mg, 0.1 mmol) and NH4Cl (5 mg, 0.1 mmol) were added and the mixture was left to stand overnight at 277 K, yielding yellow crystals of the title compound.

Refinement top

H atoms bound to C atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atom bound to N1 was located in a difference Fourier map and refined with an isotropic displacement parameter, with the N—H distance restrained to be 0.87 (1) Å.

Structure description top

The title compound, C12H7N2O2+.Cl-, was obtained as a by-product from an attempted synthesis of a metal-organic framework (MOF). It is isostructural with its bromide analogue (Bomfim, et al., 2003).

For the isostructural bromide analogue, see: Bomfim et al. (2003).

Computing details top

Data collection: APEX2 (Bruker Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2000); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms. The dashed line denotes the N+—H···Cl- hydrogen bond.
5,6-Dioxo-1,10-phenanthrolin-1-ium chloride top
Crystal data top
C12H7N2O2+·ClF(000) = 504
Mr = 246.65Dx = 1.521 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1190 reflections
a = 14.2870 (11) Åθ = 2.9–24.1°
b = 6.2833 (5) ŵ = 0.34 mm1
c = 12.0019 (10) ÅT = 298 K
V = 1077.40 (15) Å3Needle, yellow
Z = 40.40 × 0.07 × 0.04 mm
Data collection top
Bruker Nonius X8-APEXII CCD
diffractometer
1028 independent reflections
Radiation source: fine-focus sealed tube758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scansθmax = 25.1°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1612
Tmin = 0.744, Tmax = 0.986k = 74
4229 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
1028 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C12H7N2O2+·ClV = 1077.40 (15) Å3
Mr = 246.65Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.2870 (11) ŵ = 0.34 mm1
b = 6.2833 (5) ÅT = 298 K
c = 12.0019 (10) Å0.40 × 0.07 × 0.04 mm
Data collection top
Bruker Nonius X8-APEXII CCD
diffractometer
1028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
758 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.986Rint = 0.028
4229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
1028 reflectionsΔρmin = 0.16 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29410 (5)0.25000.51333 (6)0.0466 (3)
O10.82632 (14)0.25000.63231 (19)0.0638 (7)
O20.85156 (15)0.25000.4091 (2)0.0956 (10)
N10.50089 (15)0.25000.58192 (19)0.0360 (6)
H10.4519 (15)0.25000.538 (2)0.071 (11)*
N20.52192 (15)0.25000.36021 (18)0.0401 (6)
C10.4820 (2)0.25000.6909 (2)0.0447 (7)
H1A0.42020.25000.71530.054*
C20.5539 (2)0.25000.7667 (2)0.0482 (8)
H2A0.54130.25000.84270.058*
C30.6444 (2)0.25000.7295 (2)0.0438 (7)
H3A0.69380.25000.77990.053*
C40.66185 (18)0.25000.6159 (2)0.0376 (7)
C50.7592 (2)0.25000.5718 (2)0.0452 (7)
C60.7731 (2)0.25000.4455 (3)0.0511 (8)
C70.68991 (19)0.25000.3738 (2)0.0399 (7)
C80.6968 (2)0.25000.2584 (2)0.0479 (8)
H8A0.75530.25000.22430.057*
C90.6174 (2)0.25000.1954 (2)0.0515 (8)
H9A0.62090.25000.11800.062*
C100.5318 (2)0.25000.2487 (2)0.0481 (8)
H10A0.47800.25000.20520.058*
C110.60042 (18)0.25000.4196 (2)0.0328 (6)
C120.58855 (18)0.25000.5415 (2)0.0333 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0402 (5)0.0572 (5)0.0423 (5)0.0000.0037 (3)0.000
O10.0424 (12)0.0960 (18)0.0529 (14)0.0000.0163 (10)0.000
O20.0350 (14)0.194 (3)0.0580 (17)0.0000.0115 (11)0.000
N10.0338 (14)0.0369 (12)0.0372 (15)0.0000.0020 (11)0.000
N20.0422 (14)0.0412 (13)0.0367 (14)0.0000.0096 (11)0.000
C10.0453 (17)0.0453 (17)0.0436 (19)0.0000.0167 (14)0.000
C20.060 (2)0.0528 (18)0.0314 (17)0.0000.0067 (15)0.000
C30.0484 (18)0.0486 (17)0.0346 (17)0.0000.0045 (14)0.000
C40.0368 (17)0.0424 (16)0.0337 (16)0.0000.0033 (12)0.000
C50.0343 (17)0.0584 (18)0.0428 (18)0.0000.0063 (14)0.000
C60.0348 (18)0.076 (2)0.0425 (18)0.0000.0052 (14)0.000
C70.0392 (17)0.0458 (17)0.0348 (16)0.0000.0033 (12)0.000
C80.0483 (18)0.0588 (18)0.0365 (17)0.0000.0096 (14)0.000
C90.066 (2)0.057 (2)0.0312 (18)0.0000.0008 (15)0.000
C100.0542 (19)0.0502 (17)0.0397 (18)0.0000.0159 (15)0.000
C110.0369 (16)0.0310 (14)0.0305 (15)0.0000.0011 (12)0.000
C120.0349 (17)0.0301 (14)0.0348 (16)0.0000.0016 (12)0.000
Geometric parameters (Å, º) top
O1—C51.202 (3)C4—C121.376 (3)
O2—C61.203 (3)C4—C51.488 (4)
N1—C11.335 (3)C5—C61.530 (4)
N1—C121.343 (3)C6—C71.468 (4)
N1—H10.88 (1)C7—C81.388 (4)
N2—C111.329 (3)C7—C111.392 (4)
N2—C101.345 (3)C8—C91.363 (4)
C1—C21.373 (4)C8—H8A0.930
C1—H1A0.930C9—C101.381 (4)
C2—C31.368 (4)C9—H9A0.930
C2—H2A0.930C10—H10A0.930
C3—C41.386 (4)C11—C121.473 (3)
C3—H3A0.930
C1—N1—C12122.8 (2)O2—C6—C5118.8 (3)
C1—N1—H1115 (2)C7—C6—C5118.4 (2)
C12—N1—H1122 (2)C8—C7—C11117.4 (3)
C11—N2—C10116.4 (2)C8—C7—C6121.8 (3)
N1—C1—C2119.8 (3)C11—C7—C6120.8 (3)
N1—C1—H1A120.1C9—C8—C7119.6 (3)
C2—C1—H1A120.1C9—C8—H8A120.2
C3—C2—C1119.4 (3)C7—C8—H8A120.2
C3—C2—H2A120.3C8—C9—C10118.7 (3)
C1—C2—H2A120.3C8—C9—H9A120.6
C2—C3—C4119.4 (3)C10—C9—H9A120.6
C2—C3—H3A120.3N2—C10—C9123.6 (3)
C4—C3—H3A120.3N2—C10—H10A118.2
C12—C4—C3120.1 (2)C9—C10—H10A118.2
C12—C4—C5118.8 (3)N2—C11—C7124.3 (2)
C3—C4—C5121.1 (2)N2—C11—C12115.8 (2)
O1—C5—C4122.1 (3)C7—C11—C12119.9 (2)
O1—C5—C6119.7 (3)N1—C12—C4118.4 (3)
C4—C5—C6118.3 (2)N1—C12—C11117.8 (2)
O2—C6—C7122.8 (3)C4—C12—C11123.8 (2)
C12—N1—C1—C20.0C7—C8—C9—C100.0
N1—C1—C2—C30.0C11—N2—C10—C90.0
C1—C2—C3—C40.0C8—C9—C10—N20.0
C2—C3—C4—C120.0C10—N2—C11—C70.0
C2—C3—C4—C5180.0C10—N2—C11—C12180.0
C12—C4—C5—O1180.0C8—C7—C11—N20.0
C3—C4—C5—O10.0C6—C7—C11—N2180.0
C12—C4—C5—C60.0C8—C7—C11—C12180.0
C3—C4—C5—C6180.0C6—C7—C11—C120.0
O1—C5—C6—O20.0C1—N1—C12—C40.0
C4—C5—C6—O2180.0C1—N1—C12—C11180.0
O1—C5—C6—C7180.0C3—C4—C12—N10.0
C4—C5—C6—C70.0C5—C4—C12—N1180.0
O2—C6—C7—C80.0C3—C4—C12—C11180.0
C5—C6—C7—C8180.0C5—C4—C12—C110.0
O2—C6—C7—C11180.0N2—C11—C12—N10.0
C5—C6—C7—C110.0C7—C11—C12—N1180.0
C11—C7—C8—C90.0N2—C11—C12—C4180.0
C6—C7—C8—C9180.0C7—C11—C12—C40.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.27 (2)3.067 (2)150 (3)
C1—H1A···O1i0.932.273.074 (3)145
C3—H3A···Cl1ii0.932.873.755 (3)161
C8—H8A···Cl1iii0.932.913.545 (3)127
C9—H9A···Cl1iii0.932.933.556 (3)126
C10—H10A···O2iv0.932.273.196 (3)177
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H7N2O2+·Cl
Mr246.65
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)14.2870 (11), 6.2833 (5), 12.0019 (10)
V3)1077.40 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.40 × 0.07 × 0.04
Data collection
DiffractometerBruker Nonius X8-APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.744, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
4229, 1028, 758
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.04
No. of reflections1028
No. of parameters106
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.16

Computer programs: APEX2 (Bruker Nonius, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.88 (1)2.27 (2)3.067 (2)150 (3)
C1—H1A···O1i0.932.273.074 (3)145
C3—H3A···Cl1ii0.932.873.755 (3)161
C8—H8A···Cl1iii0.932.913.545 (3)127
C9—H9A···Cl1iii0.932.933.556 (3)126
C10—H10A···O2iv0.932.273.196 (3)177
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2.
 

Acknowledgements

This work was undertaken as part of the Nordic–Baltic Network in Crystal Engineering and Supramolecular Materials, funded by Nordforsk. ADB is grateful to the Danish Natural Science Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

References

First citationBomfim, J. A. S., Filgueiras, C. A. L., Howie, R. A. & Wardell, J. L. (2003). Acta Cryst. E59, o244–o246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker Nonius (2004). APEX2. Version 1.0-22. Bruker Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds