metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 5-ferrocenyl-3-(4-methyl­phen­yl)-2-pyrazoline-1-di­thio­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: yhliuyzu@yahoo.com.cn

(Received 15 November 2007; accepted 11 December 2007; online 18 December 2007)

In the title compound, [Fe(C5H5)(C23H21N2S2)], the cyclo­penta­dienyl rings of the ferrocenyl unit deviate slightly from the eclipsed form. In the pyrazoline ring, the N atom bonded to S-benzyl dithio­carbazate exhibits unconventional sp2-hybrid character in order to form an extended conjugated system. The pyrazoline ring displays an envelope conformation. The mol­ecules are linked into chains along the b axis via C—H⋯S inter­molecular hydrogen bonds.

Related literature

For related literature, see: Fahrni et al. (2003[Fahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799-3812.]); Huang & Katzenellenbogen (2000[Huang, Y. R. & Katzenellenbogen, J. A. (2000). Org. Lett. 18, 2833-2836.]); Huang et al. (1998[Huang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589-892.]); Liu et al. (2007[Liu, X.-L., Liu, Y.-H., Dai, X.-Q., Zhao, Y. & Tong, B.-W. (2007). Acta Cryst. E63, o4019.]); Rivett et al. (1979[Rivett, D. E., Rosevear, J. & Wilshire, J. F. K. (1979). Aust. J. Chem. 32, 1601-1605.]); Shi et al. (2004[Shi, Y.-C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541-1546.]); Sun et al. (2004[Sun, W. O., Dong, R. Z. & Young, S. K. (2004). Mater. Sci. Eng. C24, 131-134.]); Wiley et al. (1958[Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. C. (1958). J. Org. Chem. 23, 732-738.]); Wilkinson et al. (1990[Wilkinson, F., Kelly, G. P., Michael, C. & Oelkrug, D. (1990). J. Photochem. Photobiol. A, 52, 309-320.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C23H21N2S2)]

  • Mr = 510.50

  • Triclinic, [P \overline 1]

  • a = 9.178 (1) Å

  • b = 10.468 (2) Å

  • c = 13.216 (2) Å

  • α = 99.37 (1)°

  • β = 101.55 (2)°

  • γ = 96.12 (1)°

  • V = 1214.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 296 (2) K

  • 0.33 × 0.31 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker. (2002). SMART (Version 5.62), SAINT (Version 6.02). (2002), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.805

  • 10742 measured reflections

  • 5528 independent reflections

  • 5035 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.088

  • S = 0.99

  • 5528 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2002[Bruker. (2002). SMART (Version 5.62), SAINT (Version 6.02). (2002), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker. (2002). SMART (Version 5.62), SAINT (Version 6.02). (2002), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2002[Bruker. (2002). SMART (Version 5.62), SAINT (Version 6.02). (2002), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Pyrazoline derivatives are an important class of conjugated fluorescent dyes emitting blue fluorescence and have been extensively applied in the industry due to the high fluorescence quantum yield (Wilkinson et al., 1990; Rivett et al., 1979). For example, pyrazolines have been widely used as optical brightening agents for textiles, paper and fabrics and as a hole-conveying medium in photoconductive materials (Sun et al., 2004; Huang & Katzenellenbogen, 2000; Wiley et al., 1958). We found that ferrocene derivatives have good properties of fluorescence and coordination chemistry with many metal ions (Huang et al., 1998; Shi et al., 2004). Continuing our research (Liu et al., 2007) we report the synthesis and structure of the title compound, (I).

In the structure of (I), the substituted ring (Cps) and unsubstituted ring (Cp) of the ferrocenyl moiety are slightly deprived from eclipsed form, with the five pseudo-torsion angles in the range 10.5 (2) — 10.9 (3)°. The distances from central Fe(II) ion to Cps center [Cg(1)] and to Cp center [Cg(2)] are 1.651 (3) Å and 1.656 (2) Å, respectively. The angle Cg(1)–Fe–Cg(2) is 177.9 (3)° and the central Fe(II) ion is located almost in the middle of the two cyclopentadiene rings which are not parallel because their dihedral angle is 2.3 (4)° (Fig. 1).

In the pyrazolinyl ring, the C=N and C–N bond lengths are in agreement with those found in similar structures (Fahrni et al., 2003). However, the N–N bond length is longer than those found in the above-cited structures. But the bond distance of C21–N1 is shorter than a C–N single bond and slight longer than a C=N double bond. It might contribute to unclassical sp2-hybrid N1 atom which is evident from the sum of the three angles around the N1 atom being 360° (Table 1) and that atoms C21, N1, N2 and C13 are co-planar. Furthemore, atoms S2, C21, N1, N2, C13 along with adjacent phenyl ring result in a large cojugated system.

In its packing diagram, the molecules of (I) are linked into two invers chains via C— H···S intermolecular hydrogen-bonds with C···S distance 3.583 (3) Å and C26—H26···S2 angle 142°, along the b axis (Fig. 2, Table 2).

Related literature top

For related literature, see: Fahrni et al. (2003); Huang & Katzenellenbogen (2000); Huang et al. (1998); Liu et al. (2007); Rivett et al. (1979); Shi et al. (2004); Sun et al. (2004); Wiley et al. (1958); Wilkinson et al. (1990).

Experimental top

The title compound was synthesized by refluxing an absolute ethanol solution of 1-(4-methylphenyl)-3-ferrocenylprop-2-en-1-one (3.30 g, 10 mmol) and S-benzyldithiocarbazate (1.98 g, 10 mmol) for 24 h. After refrigeration (278 K) of the solution for 10 h, yellow pricipite separated out and recrystallized from a mixture of 1,2-dichloroethane and petroleum ether (5:1 volume ratio) (3.1 g, yield 61%). The yellow crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution at 278 K.

Refinement top

All H atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms with C—H distances 0.96, 0.97, 0.98 and 0.93 Å for CH3, CH2, CH and aromatic CH groups, respectively, and with Uiso(H) values of 1.2 and 1.5 times Ueq(C) for the nonmethyl and methyl groups, respectively.

Structure description top

Pyrazoline derivatives are an important class of conjugated fluorescent dyes emitting blue fluorescence and have been extensively applied in the industry due to the high fluorescence quantum yield (Wilkinson et al., 1990; Rivett et al., 1979). For example, pyrazolines have been widely used as optical brightening agents for textiles, paper and fabrics and as a hole-conveying medium in photoconductive materials (Sun et al., 2004; Huang & Katzenellenbogen, 2000; Wiley et al., 1958). We found that ferrocene derivatives have good properties of fluorescence and coordination chemistry with many metal ions (Huang et al., 1998; Shi et al., 2004). Continuing our research (Liu et al., 2007) we report the synthesis and structure of the title compound, (I).

In the structure of (I), the substituted ring (Cps) and unsubstituted ring (Cp) of the ferrocenyl moiety are slightly deprived from eclipsed form, with the five pseudo-torsion angles in the range 10.5 (2) — 10.9 (3)°. The distances from central Fe(II) ion to Cps center [Cg(1)] and to Cp center [Cg(2)] are 1.651 (3) Å and 1.656 (2) Å, respectively. The angle Cg(1)–Fe–Cg(2) is 177.9 (3)° and the central Fe(II) ion is located almost in the middle of the two cyclopentadiene rings which are not parallel because their dihedral angle is 2.3 (4)° (Fig. 1).

In the pyrazolinyl ring, the C=N and C–N bond lengths are in agreement with those found in similar structures (Fahrni et al., 2003). However, the N–N bond length is longer than those found in the above-cited structures. But the bond distance of C21–N1 is shorter than a C–N single bond and slight longer than a C=N double bond. It might contribute to unclassical sp2-hybrid N1 atom which is evident from the sum of the three angles around the N1 atom being 360° (Table 1) and that atoms C21, N1, N2 and C13 are co-planar. Furthemore, atoms S2, C21, N1, N2, C13 along with adjacent phenyl ring result in a large cojugated system.

In its packing diagram, the molecules of (I) are linked into two invers chains via C— H···S intermolecular hydrogen-bonds with C···S distance 3.583 (3) Å and C26—H26···S2 angle 142°, along the b axis (Fig. 2, Table 2).

For related literature, see: Fahrni et al. (2003); Huang & Katzenellenbogen (2000); Huang et al. (1998); Liu et al. (2007); Rivett et al. (1979); Shi et al. (2004); Sun et al. (2004); Wiley et al. (1958); Wilkinson et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I); displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I), C—H···S inter-molecular hydrogen bonds shown as dashed lines. The H atoms not involved in hyydrogen bonding have been omitted.
Benzyl 5-ferrocenyl-3-(4-methylphenyl)-2-pyrazoline-1-dithiocarboxylate top
Crystal data top
[Fe(C5H5)(C23H21N2S2)]Z = 2
Mr = 510.50F(000) = 532.0
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: - P 1Melting point: 345(2) K
a = 9.178 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.468 (2) ÅCell parameters from 7052 reflections
c = 13.216 (2) Åθ = 2.3–27.6°
α = 99.37 (1)°µ = 0.81 mm1
β = 101.55 (2)°T = 296 K
γ = 96.12 (1)°Block, yellow
V = 1214.6 (3) Å30.33 × 0.31 × 0.28 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5528 independent reflections
Radiation source: fine-focus sealed tube5035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.776, Tmax = 0.805k = 1212
10742 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.4985P]
where P = (Fo2 + 2Fc2)/3
5528 reflections(Δ/σ)max = 0.007
299 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Fe(C5H5)(C23H21N2S2)]γ = 96.12 (1)°
Mr = 510.50V = 1214.6 (3) Å3
Triclinic, P1Z = 2
a = 9.178 (1) ÅMo Kα radiation
b = 10.468 (2) ŵ = 0.81 mm1
c = 13.216 (2) ÅT = 296 K
α = 99.37 (1)°0.33 × 0.31 × 0.28 mm
β = 101.55 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5528 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5035 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.805Rint = 0.019
10742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.99Δρmax = 0.44 e Å3
5528 reflectionsΔρmin = 0.22 e Å3
299 parameters
Special details top

Experimental. Analysis calculated for C18H16N4OS2: C 65.87, H 5.13, N 5.49%; found: C 65.82, H 5.11, N 5.51%. IR (KBr, cm-1): ν(C=N), ν(S=C) and ν(N–N) 1559 (m), 1245 (s) and 1037 (w) cm-1. 1H NMR (600 MHz, CDCl3,δ, p.p.m.): 7.23–7.76 (m, 9H, ArH), 6.04 (broad, 1H, CH), 4.50–4.47 (d, 1H, CH2), 4.41–4.39 (d, 1H, CH2), 4.15 (s, 5H, C5H5), 4.03 (s, 1H, C5H4), 4.12 (s, 1H, C5H4), 4.19 (s, 1H, C5H4), 4.71 (s, 1H, C5H4), 3.72 (s, 2H, ArCH2), 2.41 (s, 3H, CH3) p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.56551 (3)0.22018 (2)0.364537 (18)0.02183 (10)
S10.64012 (5)0.30267 (4)0.12369 (4)0.02864 (13)
S20.72753 (5)0.03133 (4)0.06920 (3)0.02501 (12)
N10.52328 (15)0.09334 (13)0.17619 (11)0.0209 (3)
N20.43248 (16)0.18040 (13)0.21361 (11)0.0219 (3)
C50.3598 (2)0.28594 (18)0.38988 (16)0.0310 (4)
H50.28660.23470.40340.037*
C40.4760 (2)0.31695 (18)0.46642 (16)0.0322 (4)
H40.49200.28970.53880.039*
C30.5633 (2)0.39647 (18)0.41353 (16)0.0342 (4)
H30.64650.43050.44520.041*
C20.5017 (2)0.41532 (18)0.30377 (16)0.0351 (4)
H20.53760.46370.25090.042*
C10.3750 (2)0.34678 (18)0.28908 (16)0.0324 (4)
H10.31330.34270.22500.039*
C60.6003 (2)0.01980 (17)0.39096 (14)0.0262 (4)
H60.53850.03570.41750.031*
C70.7219 (2)0.06716 (19)0.45157 (15)0.0340 (4)
H70.75340.04830.52450.041*
C80.7865 (2)0.1481 (2)0.38121 (17)0.0365 (5)
H80.86800.19170.40010.044*
C90.7059 (2)0.15140 (18)0.27690 (15)0.0287 (4)
H90.72570.19720.21580.034*
C100.58923 (19)0.07210 (16)0.28218 (13)0.0218 (3)
C110.47914 (18)0.04276 (16)0.19133 (13)0.0212 (3)
H110.47420.10630.12710.025*
C120.32107 (19)0.03292 (16)0.21151 (14)0.0230 (4)
H12A0.24390.07460.15000.028*
H12B0.30630.07250.27080.028*
C130.31983 (18)0.11285 (16)0.23500 (12)0.0211 (3)
C140.20317 (18)0.17603 (17)0.27623 (13)0.0219 (3)
C150.0737 (2)0.10168 (18)0.28749 (14)0.0271 (4)
H150.06070.01110.26770.033*
C160.0357 (2)0.16144 (19)0.32793 (14)0.0309 (4)
H160.12120.11030.33490.037*
C170.0196 (2)0.2960 (2)0.35799 (14)0.0309 (4)
C180.1102 (2)0.37050 (18)0.34690 (14)0.0296 (4)
H180.12300.46110.36710.036*
C190.2197 (2)0.31208 (17)0.30645 (14)0.0260 (4)
H190.30480.36350.29930.031*
C200.1389 (2)0.3607 (3)0.40227 (19)0.0483 (6)
H20A0.23640.31530.36580.072*
H20B0.13130.45020.39340.072*
H20C0.12460.35760.47580.072*
C210.62648 (18)0.13289 (16)0.12474 (13)0.0210 (3)
C220.7966 (2)0.32849 (18)0.06058 (17)0.0356 (5)
H22A0.88410.29760.09780.043*
H22B0.77060.28100.01150.043*
C230.8295 (2)0.47341 (17)0.06311 (14)0.0263 (4)
C280.7407 (2)0.5341 (2)0.00745 (16)0.0370 (5)
H280.65660.48580.05490.044*
C270.7770 (3)0.6667 (2)0.00738 (18)0.0442 (5)
H270.71810.70620.05570.053*
C260.8997 (2)0.73954 (19)0.06398 (19)0.0405 (5)
H260.92460.82790.06360.049*
C250.9849 (2)0.6807 (2)0.13578 (19)0.0408 (5)
H251.06640.73000.18530.049*
C240.9504 (2)0.54858 (19)0.13486 (17)0.0344 (4)
H241.00970.50980.18340.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02452 (15)0.02086 (15)0.02275 (15)0.00548 (10)0.00666 (11)0.00855 (10)
S10.0313 (2)0.0201 (2)0.0413 (3)0.00543 (17)0.0205 (2)0.00872 (19)
S20.0281 (2)0.0247 (2)0.0256 (2)0.00900 (17)0.01053 (18)0.00548 (17)
N10.0250 (7)0.0185 (7)0.0220 (7)0.0066 (5)0.0085 (6)0.0057 (5)
N20.0242 (7)0.0224 (7)0.0221 (7)0.0077 (6)0.0085 (6)0.0064 (6)
C50.0291 (9)0.0274 (9)0.0412 (11)0.0029 (7)0.0142 (8)0.0125 (8)
C40.0403 (11)0.0297 (10)0.0319 (10)0.0035 (8)0.0138 (8)0.0148 (8)
C30.0408 (11)0.0239 (9)0.0443 (12)0.0099 (8)0.0121 (9)0.0180 (8)
C20.0442 (11)0.0213 (9)0.0415 (11)0.0056 (8)0.0147 (9)0.0040 (8)
C10.0332 (10)0.0254 (9)0.0361 (11)0.0019 (8)0.0038 (8)0.0075 (8)
C60.0326 (9)0.0209 (8)0.0240 (9)0.0000 (7)0.0053 (7)0.0049 (7)
C70.0351 (10)0.0348 (10)0.0268 (10)0.0067 (8)0.0032 (8)0.0108 (8)
C80.0236 (9)0.0423 (11)0.0481 (12)0.0062 (8)0.0046 (8)0.0248 (10)
C90.0270 (9)0.0308 (10)0.0356 (10)0.0082 (7)0.0144 (8)0.0153 (8)
C100.0239 (8)0.0201 (8)0.0239 (9)0.0021 (6)0.0076 (7)0.0092 (7)
C110.0268 (9)0.0172 (8)0.0205 (8)0.0040 (6)0.0059 (7)0.0049 (6)
C120.0229 (8)0.0213 (8)0.0254 (9)0.0027 (6)0.0045 (7)0.0071 (7)
C130.0228 (8)0.0230 (8)0.0175 (8)0.0027 (7)0.0024 (6)0.0070 (6)
C140.0220 (8)0.0265 (9)0.0182 (8)0.0054 (7)0.0035 (6)0.0069 (7)
C150.0267 (9)0.0270 (9)0.0270 (9)0.0011 (7)0.0051 (7)0.0059 (7)
C160.0214 (9)0.0424 (11)0.0280 (9)0.0021 (8)0.0073 (7)0.0060 (8)
C170.0268 (9)0.0444 (11)0.0221 (9)0.0080 (8)0.0075 (7)0.0032 (8)
C180.0331 (10)0.0283 (9)0.0277 (9)0.0078 (8)0.0082 (8)0.0020 (7)
C190.0250 (9)0.0260 (9)0.0287 (9)0.0034 (7)0.0084 (7)0.0074 (7)
C200.0334 (11)0.0616 (15)0.0477 (13)0.0092 (10)0.0175 (10)0.0079 (11)
C210.0222 (8)0.0217 (8)0.0190 (8)0.0035 (6)0.0030 (6)0.0054 (6)
C220.0384 (11)0.0265 (10)0.0497 (12)0.0037 (8)0.0282 (9)0.0076 (9)
C230.0271 (9)0.0252 (9)0.0320 (10)0.0048 (7)0.0171 (8)0.0077 (7)
C280.0345 (10)0.0428 (12)0.0327 (11)0.0070 (9)0.0050 (8)0.0066 (9)
C270.0503 (13)0.0474 (13)0.0487 (13)0.0257 (11)0.0184 (10)0.0276 (10)
C260.0370 (11)0.0266 (10)0.0701 (15)0.0109 (8)0.0301 (11)0.0178 (10)
C250.0266 (10)0.0321 (11)0.0620 (14)0.0017 (8)0.0098 (9)0.0055 (10)
C240.0290 (10)0.0342 (10)0.0439 (11)0.0074 (8)0.0086 (8)0.0159 (9)
Geometric parameters (Å, º) top
Fe1—C82.0428 (19)C10—C111.502 (2)
Fe1—C22.0452 (19)C11—C121.538 (2)
Fe1—C12.0460 (19)C11—H110.9800
Fe1—C92.0474 (18)C12—C131.509 (2)
Fe1—C62.0488 (17)C12—H12A0.9700
Fe1—C72.0487 (19)C12—H12B0.9700
Fe1—C52.0493 (18)C13—C141.466 (2)
Fe1—C102.0510 (16)C14—C151.397 (2)
Fe1—C32.0521 (18)C14—C191.398 (2)
Fe1—C42.0549 (18)C15—C161.388 (3)
S1—C211.7708 (17)C15—H150.9300
S1—C221.8167 (18)C16—C171.383 (3)
S2—C211.6608 (17)C16—H160.9300
N1—C211.340 (2)C17—C181.399 (3)
N1—N21.3964 (19)C17—C201.512 (3)
N1—C111.495 (2)C18—C191.382 (3)
N2—C131.294 (2)C18—H180.9300
C5—C11.420 (3)C19—H190.9300
C5—C41.419 (3)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C4—C31.414 (3)C20—H20C0.9600
C4—H40.9300C22—C231.508 (2)
C3—C21.420 (3)C22—H22A0.9700
C3—H30.9300C22—H22B0.9700
C2—C11.428 (3)C23—C241.378 (3)
C2—H20.9300C23—C281.392 (3)
C1—H10.9300C28—C271.392 (3)
C6—C71.422 (3)C28—H280.9300
C6—C101.432 (2)C27—C261.377 (3)
C6—H60.9300C27—H270.9300
C7—C81.416 (3)C26—C251.374 (3)
C7—H70.9300C26—H260.9300
C8—C91.421 (3)C25—C241.383 (3)
C8—H80.9300C25—H250.9300
C9—C101.429 (2)C24—H240.9300
C9—H90.9300
C8—Fe1—C2116.95 (9)C6—C7—Fe169.69 (10)
C8—Fe1—C1151.92 (9)C8—C7—H7126.1
C2—Fe1—C140.85 (8)C6—C7—H7126.1
C8—Fe1—C940.66 (8)Fe1—C7—H7126.3
C2—Fe1—C9106.49 (8)C7—C8—C9108.51 (17)
C1—Fe1—C9118.79 (8)C7—C8—Fe169.98 (11)
C8—Fe1—C668.20 (8)C9—C8—Fe169.85 (10)
C2—Fe1—C6166.18 (8)C7—C8—H8125.7
C1—Fe1—C6129.18 (7)C9—C8—H8125.7
C9—Fe1—C668.42 (7)Fe1—C8—H8126.0
C8—Fe1—C740.49 (9)C8—C9—C10108.07 (17)
C2—Fe1—C7151.03 (8)C8—C9—Fe169.49 (11)
C1—Fe1—C7166.78 (8)C10—C9—Fe169.73 (9)
C9—Fe1—C768.41 (8)C8—C9—H9126.0
C6—Fe1—C740.62 (8)C10—C9—H9126.0
C8—Fe1—C5164.95 (8)Fe1—C9—H9126.4
C2—Fe1—C568.37 (8)C9—C10—C6107.23 (15)
C1—Fe1—C540.57 (8)C9—C10—C11127.04 (15)
C9—Fe1—C5153.95 (8)C6—C10—C11125.67 (15)
C6—Fe1—C5110.18 (7)C9—C10—Fe169.46 (9)
C7—Fe1—C5128.59 (8)C6—C10—Fe169.47 (9)
C8—Fe1—C1068.59 (7)C11—C10—Fe1128.36 (11)
C2—Fe1—C10127.05 (8)N1—C11—C10109.61 (13)
C1—Fe1—C10108.77 (7)N1—C11—C12100.44 (12)
C9—Fe1—C1040.81 (7)C10—C11—C12114.22 (14)
C6—Fe1—C1040.88 (7)N1—C11—H11110.7
C7—Fe1—C1068.72 (7)C10—C11—H11110.7
C5—Fe1—C10120.71 (7)C12—C11—H11110.7
C8—Fe1—C3106.16 (8)C13—C12—C11102.75 (13)
C2—Fe1—C340.56 (8)C13—C12—H12A111.2
C1—Fe1—C368.31 (8)C11—C12—H12A111.2
C9—Fe1—C3125.60 (8)C13—C12—H12B111.2
C6—Fe1—C3152.81 (8)C11—C12—H12B111.2
C7—Fe1—C3117.78 (8)H12A—C12—H12B109.1
C5—Fe1—C368.04 (8)N2—C13—C14121.50 (15)
C10—Fe1—C3164.02 (8)N2—C13—C12113.60 (15)
C8—Fe1—C4126.35 (8)C14—C13—C12124.88 (14)
C2—Fe1—C468.10 (8)C15—C14—C19118.43 (16)
C1—Fe1—C468.15 (8)C15—C14—C13120.79 (15)
C9—Fe1—C4163.37 (8)C19—C14—C13120.77 (15)
C6—Fe1—C4120.38 (8)C16—C15—C14120.77 (17)
C7—Fe1—C4108.22 (8)C16—C15—H15119.6
C5—Fe1—C440.46 (8)C14—C15—H15119.6
C10—Fe1—C4154.75 (7)C17—C16—C15120.92 (17)
C3—Fe1—C440.27 (8)C17—C16—H16119.5
C21—S1—C22101.89 (8)C15—C16—H16119.5
C21—N1—N2120.26 (13)C16—C17—C18118.34 (17)
C21—N1—C11127.22 (14)C16—C17—C20120.75 (18)
N2—N1—C11112.25 (12)C18—C17—C20120.91 (19)
C13—N2—N1108.02 (13)C19—C18—C17121.25 (17)
C1—C5—C4108.06 (17)C19—C18—H18119.4
C1—C5—Fe169.59 (11)C17—C18—H18119.4
C4—C5—Fe169.98 (11)C18—C19—C14120.30 (16)
C1—C5—H5126.0C18—C19—H19119.9
C4—C5—H5126.0C14—C19—H19119.9
Fe1—C5—H5126.0C17—C20—H20A109.5
C3—C4—C5108.19 (17)C17—C20—H20B109.5
C3—C4—Fe169.76 (10)H20A—C20—H20B109.5
C5—C4—Fe169.56 (10)C17—C20—H20C109.5
C3—C4—H4125.9H20A—C20—H20C109.5
C5—C4—H4125.9H20B—C20—H20C109.5
Fe1—C4—H4126.4N1—C21—S2122.65 (13)
C4—C3—C2108.20 (17)N1—C21—S1112.19 (12)
C4—C3—Fe169.97 (10)S2—C21—S1125.16 (10)
C2—C3—Fe169.46 (10)C23—C22—S1107.43 (12)
C4—C3—H3125.9C23—C22—H22A110.2
C2—C3—H3125.9S1—C22—H22A110.2
Fe1—C3—H3126.2C23—C22—H22B110.2
C3—C2—C1107.78 (18)S1—C22—H22B110.2
C3—C2—Fe169.98 (11)H22A—C22—H22B108.5
C1—C2—Fe169.60 (10)C24—C23—C28118.41 (17)
C3—C2—H2126.1C24—C23—C22120.43 (17)
C1—C2—H2126.1C28—C23—C22121.16 (18)
Fe1—C2—H2125.9C23—C28—C27120.40 (19)
C5—C1—C2107.77 (18)C23—C28—H28119.8
C5—C1—Fe169.84 (11)C27—C28—H28119.8
C2—C1—Fe169.54 (11)C26—C27—C28120.19 (19)
C5—C1—H1126.1C26—C27—H27119.9
C2—C1—H1126.1C28—C27—H27119.9
Fe1—C1—H1126.1C25—C26—C27119.51 (18)
C7—C6—C10108.33 (16)C25—C26—H26120.2
C7—C6—Fe169.69 (10)C27—C26—H26120.2
C10—C6—Fe169.64 (9)C26—C25—C24120.4 (2)
C7—C6—H6125.8C26—C25—H25119.8
C10—C6—H6125.8C24—C25—H25119.8
Fe1—C6—H6126.4C23—C24—C25121.06 (19)
C8—C7—C6107.85 (17)C23—C24—H24119.5
C8—C7—Fe169.53 (11)C25—C24—H24119.5
C21—N1—N2—C13163.81 (15)C1—Fe1—C7—C643.9 (4)
C11—N1—N2—C1310.50 (18)C9—Fe1—C7—C681.61 (12)
C8—Fe1—C5—C1151.8 (3)C5—Fe1—C7—C675.37 (13)
C2—Fe1—C5—C138.01 (11)C10—Fe1—C7—C637.61 (10)
C9—Fe1—C5—C145.3 (2)C3—Fe1—C7—C6158.46 (11)
C6—Fe1—C5—C1127.27 (11)C4—Fe1—C7—C6115.72 (12)
C7—Fe1—C5—C1169.42 (11)C6—C7—C8—C90.0 (2)
C10—Fe1—C5—C183.21 (12)Fe1—C7—C8—C959.42 (13)
C3—Fe1—C5—C181.85 (12)C6—C7—C8—Fe159.37 (13)
C4—Fe1—C5—C1119.19 (16)C2—Fe1—C8—C7156.34 (11)
C8—Fe1—C5—C432.6 (3)C1—Fe1—C8—C7171.85 (15)
C2—Fe1—C5—C481.18 (12)C9—Fe1—C8—C7119.58 (16)
C1—Fe1—C5—C4119.19 (16)C6—Fe1—C8—C737.76 (11)
C9—Fe1—C5—C4164.52 (16)C5—Fe1—C8—C749.0 (3)
C6—Fe1—C5—C4113.54 (12)C10—Fe1—C8—C781.88 (12)
C7—Fe1—C5—C471.39 (14)C3—Fe1—C8—C7114.07 (12)
C10—Fe1—C5—C4157.60 (11)C4—Fe1—C8—C774.70 (14)
C3—Fe1—C5—C437.34 (12)C2—Fe1—C8—C984.08 (13)
C1—C5—C4—C30.1 (2)C1—Fe1—C8—C952.3 (2)
Fe1—C5—C4—C359.26 (13)C6—Fe1—C8—C981.83 (12)
C1—C5—C4—Fe159.39 (12)C7—Fe1—C8—C9119.58 (16)
C8—Fe1—C4—C370.49 (15)C5—Fe1—C8—C9168.6 (3)
C2—Fe1—C4—C337.61 (12)C10—Fe1—C8—C937.70 (11)
C1—Fe1—C4—C381.79 (13)C3—Fe1—C8—C9126.35 (12)
C9—Fe1—C4—C336.3 (3)C4—Fe1—C8—C9165.72 (11)
C6—Fe1—C4—C3154.57 (12)C7—C8—C9—C100.2 (2)
C7—Fe1—C4—C3111.74 (13)Fe1—C8—C9—C1059.26 (12)
C5—Fe1—C4—C3119.51 (17)C7—C8—C9—Fe159.50 (13)
C10—Fe1—C4—C3169.66 (15)C2—Fe1—C9—C8112.38 (13)
C8—Fe1—C4—C5170.00 (12)C1—Fe1—C9—C8154.87 (12)
C2—Fe1—C4—C581.90 (13)C6—Fe1—C9—C881.23 (13)
C1—Fe1—C4—C537.72 (11)C7—Fe1—C9—C837.40 (12)
C9—Fe1—C4—C5155.8 (2)C5—Fe1—C9—C8173.27 (16)
C6—Fe1—C4—C585.92 (13)C10—Fe1—C9—C8119.41 (16)
C7—Fe1—C4—C5128.75 (12)C3—Fe1—C9—C872.06 (15)
C10—Fe1—C4—C550.2 (2)C4—Fe1—C9—C844.0 (3)
C3—Fe1—C4—C5119.51 (17)C8—Fe1—C9—C10119.41 (16)
C5—C4—C3—C20.0 (2)C2—Fe1—C9—C10128.21 (11)
Fe1—C4—C3—C259.13 (13)C1—Fe1—C9—C1085.72 (12)
C5—C4—C3—Fe159.14 (13)C6—Fe1—C9—C1038.18 (10)
C8—Fe1—C3—C4127.78 (12)C7—Fe1—C9—C1082.01 (11)
C2—Fe1—C3—C4119.45 (17)C5—Fe1—C9—C1053.9 (2)
C1—Fe1—C3—C481.37 (13)C3—Fe1—C9—C10168.53 (10)
C9—Fe1—C3—C4167.97 (11)C4—Fe1—C9—C10163.4 (2)
C6—Fe1—C3—C454.2 (2)C8—C9—C10—C60.34 (19)
C7—Fe1—C3—C485.70 (13)Fe1—C9—C10—C659.45 (11)
C5—Fe1—C3—C437.51 (12)C8—C9—C10—C11177.69 (16)
C10—Fe1—C3—C4163.8 (2)Fe1—C9—C10—C11123.19 (16)
C8—Fe1—C3—C2112.77 (13)C8—C9—C10—Fe159.12 (12)
C1—Fe1—C3—C238.08 (12)C7—C6—C10—C90.31 (19)
C9—Fe1—C3—C272.58 (14)Fe1—C6—C10—C959.44 (11)
C6—Fe1—C3—C2173.60 (15)C7—C6—C10—C11177.71 (15)
C7—Fe1—C3—C2154.85 (12)Fe1—C6—C10—C11123.15 (16)
C5—Fe1—C3—C281.94 (13)C7—C6—C10—Fe159.14 (12)
C10—Fe1—C3—C244.4 (3)C8—Fe1—C10—C937.56 (12)
C4—Fe1—C3—C2119.45 (17)C2—Fe1—C10—C970.73 (14)
C4—C3—C2—C10.1 (2)C1—Fe1—C10—C9112.63 (12)
Fe1—C3—C2—C159.58 (13)C6—Fe1—C10—C9118.56 (15)
C4—C3—C2—Fe159.45 (13)C7—Fe1—C10—C981.19 (12)
C8—Fe1—C2—C383.47 (13)C5—Fe1—C10—C9155.64 (11)
C1—Fe1—C2—C3118.83 (17)C3—Fe1—C10—C936.0 (3)
C9—Fe1—C2—C3125.99 (12)C4—Fe1—C10—C9168.95 (16)
C6—Fe1—C2—C3167.7 (3)C8—Fe1—C10—C681.00 (12)
C7—Fe1—C2—C350.9 (2)C2—Fe1—C10—C6170.70 (11)
C5—Fe1—C2—C381.07 (12)C1—Fe1—C10—C6128.81 (11)
C10—Fe1—C2—C3166.04 (11)C9—Fe1—C10—C6118.56 (15)
C4—Fe1—C2—C337.35 (12)C7—Fe1—C10—C637.37 (11)
C8—Fe1—C2—C1157.71 (12)C5—Fe1—C10—C685.80 (12)
C9—Fe1—C2—C1115.19 (12)C3—Fe1—C10—C6154.5 (3)
C6—Fe1—C2—C148.9 (4)C4—Fe1—C10—C650.4 (2)
C7—Fe1—C2—C1169.74 (15)C8—Fe1—C10—C11159.15 (17)
C5—Fe1—C2—C137.75 (12)C2—Fe1—C10—C1150.85 (18)
C10—Fe1—C2—C175.14 (14)C1—Fe1—C10—C118.96 (17)
C3—Fe1—C2—C1118.83 (17)C9—Fe1—C10—C11121.59 (19)
C4—Fe1—C2—C181.48 (12)C6—Fe1—C10—C11119.85 (19)
C4—C5—C1—C20.2 (2)C7—Fe1—C10—C11157.23 (17)
Fe1—C5—C1—C259.43 (13)C5—Fe1—C10—C1134.05 (18)
C4—C5—C1—Fe159.63 (13)C3—Fe1—C10—C1185.6 (3)
C3—C2—C1—C50.2 (2)C4—Fe1—C10—C1169.5 (2)
Fe1—C2—C1—C559.62 (12)C21—N1—C11—C1082.3 (2)
C3—C2—C1—Fe159.82 (13)N2—N1—C11—C10103.92 (15)
C8—Fe1—C1—C5164.87 (15)C21—N1—C11—C12157.18 (16)
C2—Fe1—C1—C5118.94 (16)N2—N1—C11—C1216.65 (16)
C9—Fe1—C1—C5159.12 (11)C9—C10—C11—N1104.11 (18)
C6—Fe1—C1—C574.48 (14)C6—C10—C11—N172.8 (2)
C7—Fe1—C1—C538.9 (4)Fe1—C10—C11—N1163.79 (12)
C10—Fe1—C1—C5115.62 (11)C9—C10—C11—C12144.09 (17)
C3—Fe1—C1—C581.13 (12)C6—C10—C11—C1239.0 (2)
C4—Fe1—C1—C537.62 (11)Fe1—C10—C11—C1252.0 (2)
C8—Fe1—C1—C245.9 (2)N1—C11—C12—C1315.48 (15)
C9—Fe1—C1—C281.94 (13)C10—C11—C12—C13101.72 (15)
C6—Fe1—C1—C2166.58 (11)N1—N2—C13—C14179.95 (14)
C7—Fe1—C1—C2157.8 (3)N1—N2—C13—C121.10 (19)
C5—Fe1—C1—C2118.94 (16)C11—C12—C13—N211.39 (18)
C10—Fe1—C1—C2125.44 (12)C11—C12—C13—C14169.70 (15)
C3—Fe1—C1—C237.81 (12)N2—C13—C14—C15172.56 (16)
C4—Fe1—C1—C281.33 (12)C12—C13—C14—C156.3 (2)
C8—Fe1—C6—C737.65 (12)N2—C13—C14—C198.2 (2)
C2—Fe1—C6—C7152.3 (3)C12—C13—C14—C19172.93 (16)
C1—Fe1—C6—C7168.21 (12)C19—C14—C15—C160.1 (3)
C9—Fe1—C6—C781.56 (12)C13—C14—C15—C16179.08 (16)
C5—Fe1—C6—C7126.32 (12)C14—C15—C16—C170.1 (3)
C10—Fe1—C6—C7119.67 (16)C15—C16—C17—C180.2 (3)
C3—Fe1—C6—C745.3 (2)C15—C16—C17—C20179.84 (18)
C4—Fe1—C6—C782.72 (13)C16—C17—C18—C190.3 (3)
C8—Fe1—C6—C1082.03 (11)C20—C17—C18—C19179.98 (18)
C2—Fe1—C6—C1032.7 (4)C17—C18—C19—C140.4 (3)
C1—Fe1—C6—C1072.12 (13)C15—C14—C19—C180.3 (3)
C9—Fe1—C6—C1038.12 (10)C13—C14—C19—C18178.90 (16)
C7—Fe1—C6—C10119.67 (16)N2—N1—C21—S2174.50 (11)
C5—Fe1—C6—C10114.01 (11)C11—N1—C21—S21.1 (2)
C3—Fe1—C6—C10164.99 (15)N2—N1—C21—S15.40 (19)
C4—Fe1—C6—C10157.61 (10)C11—N1—C21—S1178.78 (12)
C10—C6—C7—C80.2 (2)C22—S1—C21—N1175.13 (13)
Fe1—C6—C7—C859.27 (13)C22—S1—C21—S24.97 (14)
C10—C6—C7—Fe159.11 (12)C21—S1—C22—C23175.12 (14)
C2—Fe1—C7—C847.6 (2)S1—C22—C23—C24102.92 (18)
C1—Fe1—C7—C8163.0 (3)S1—C22—C23—C2878.0 (2)
C9—Fe1—C7—C837.54 (11)C24—C23—C28—C272.2 (3)
C6—Fe1—C7—C8119.15 (16)C22—C23—C28—C27176.87 (18)
C5—Fe1—C7—C8165.48 (11)C23—C28—C27—C261.2 (3)
C10—Fe1—C7—C881.54 (12)C28—C27—C26—C250.7 (3)
C3—Fe1—C7—C882.39 (13)C27—C26—C25—C241.7 (3)
C4—Fe1—C7—C8125.13 (12)C28—C23—C24—C251.2 (3)
C8—Fe1—C7—C6119.15 (16)C22—C23—C24—C25177.82 (18)
C2—Fe1—C7—C6166.76 (15)C26—C25—C24—C230.7 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C23H21N2S2)]
Mr510.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.178 (1), 10.468 (2), 13.216 (2)
α, β, γ (°)99.37 (1), 101.55 (2), 96.12 (1)
V3)1214.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.33 × 0.31 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.776, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
10742, 5528, 5035
Rint0.019
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.088, 0.99
No. of reflections5528
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2002).

 

Acknowledgements

The authors thank the Natural Science Foundation of Yangzhou University (No. 2006XJJ03) for financial support of this work.

References

First citationBruker. (2002). SMART (Version 5.62), SAINT (Version 6.02). (2002), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFahrni, C. J., Yang, L. C. & VanDerveer, D. G. (2003). J. Am. Chem. Soc. 125, 3799–3812.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589–892.  Web of Science CrossRef CAS Google Scholar
First citationHuang, Y. R. & Katzenellenbogen, J. A. (2000). Org. Lett. 18, 2833–2836.  Web of Science CrossRef Google Scholar
First citationLiu, X.-L., Liu, Y.-H., Dai, X.-Q., Zhao, Y. & Tong, B.-W. (2007). Acta Cryst. E63, o4019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivett, D. E., Rosevear, J. & Wilshire, J. F. K. (1979). Aust. J. Chem. 32, 1601–1605.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShi, Y.-C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W. O., Dong, R. Z. & Young, S. K. (2004). Mater. Sci. Eng. C24, 131–134.  Google Scholar
First citationWiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. C. (1958). J. Org. Chem. 23, 732–738.  CrossRef CAS Web of Science Google Scholar
First citationWilkinson, F., Kelly, G. P., Michael, C. & Oelkrug, D. (1990). J. Photochem. Photobiol. A, 52, 309–320.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds