metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(2-carb­oxy­benzoato-κO)nickel(II)

aDepartment of Chemistry, Zhou Kou Normal University, Zhou Kou 466001, People's Republic of China
*Correspondence e-mail: bookw@126.com

(Received 16 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, [Ni(C8H5O4)2(H2O)2], the NiII atom lies on an inversion centre and exhibits a square-planar geometry incorporating two phthalate and two water O atoms. The nickel complex is stabilized by intra­molecular inter­actions involving water O atoms and H atoms of the phthalate groups. It forms one-dimensional zigzag chains along the b axis which are held together via ππ stacking inter­actions (3.647 Å) between the benzene rings of the phthalate groups. The adjacent chains are also hydrogen bonded, resulting in a three-dimensional supra­molecular network.

Related literature

For related literature, see: Adiwidjaja & Küppers (1976[Adiwidjaja, G. & Küppers, H. (1976). Acta Cryst. B32, 1571-1574.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H5O4)2(H2O)2]

  • Mr = 424.98

  • Monoclinic, P 21 /c

  • a = 8.3601 (17) Å

  • b = 14.439 (3) Å

  • c = 7.1005 (14) Å

  • β = 111.99 (3)°

  • V = 794.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 291 (2) K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Rigaku R-AXIS IV diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.784, Tmax = 0.821

  • 2628 measured reflections

  • 1416 independent reflections

  • 1343 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.07

  • 1416 reflections

  • 137 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5F⋯O4i 0.86 (2) 1.82 (2) 2.667 (3) 170 (5)
O5—H5E⋯O3ii 0.86 (2) 1.95 (2) 2.789 (3) 164 (4)
O3—H3E⋯O2 0.87 (2) 1.54 (2) 2.403 (3) 171 (5)
C2—H2A⋯O1 0.93 2.33 2.689 (3) 102
C5—H5A⋯O4 0.93 2.36 2.707 (3) 102
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: R-AXIS (Rigaku, 1996[Rigaku (1996). R-AXIS. Rigaku Corporation, Akishima-shi, Tokyo 196-8666, Japan.]); cell refinement: R-AXIS; data reduction: R-AXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: TEXSAN (Molecular Structure Corporation, 1997[Molecular Structure Corporation (1997). TEXSAN. Version 1.7. MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: TEXSAN.

Supporting information


Comment top

The molecule of the title complex, (I) (Fig. 1), is centrosymmetric, which crystallizes in space group P21/c. Its structure may be described as one-dimensional zigzag chains (Fig. 2) lying parallel to the b-Axis. It exhibits π-π stacking interactions belonging to a face-to-face form with the distance 3.647 Å. A three dimensional network is thus formed by π-π stacking interaction of phthalates and hydrogen bonds; details of hydrogen-bonding parameters have been provided in the Table.

Related literature top

For related literature, see: Adiwidjaja & Küppers (1976).

Experimental top

Potassium hydrogen phthalate (0.2040 g, 1 mmol), and KOH (0.0560 g, 1 mmol) were dissolved in 50 ml EtOH/H2O (V:V = 1:1). To this solution was added a solution of Ni(NO3)2.6H2O (0.2901 g, 1 mmol) in 10 ml double-distilled water. The resulting solution was heated at 373 K for 96 h. After cooling to room temperature, blue crystals suitable for X-ray analysis were obtained in a yield up to 65.42%.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.85 (1) Å, and with Uiso(H) = 1.2Ueq of the parent atoms. Other H atoms were positioned geometrically (C—H = 0.93 Å) and refined in a riding mode with Uiso(H) = 1.2Ueq(carrier atoms).

Structure description top

The molecule of the title complex, (I) (Fig. 1), is centrosymmetric, which crystallizes in space group P21/c. Its structure may be described as one-dimensional zigzag chains (Fig. 2) lying parallel to the b-Axis. It exhibits π-π stacking interactions belonging to a face-to-face form with the distance 3.647 Å. A three dimensional network is thus formed by π-π stacking interaction of phthalates and hydrogen bonds; details of hydrogen-bonding parameters have been provided in the Table.

For related literature, see: Adiwidjaja & Küppers (1976).

Computing details top

Data collection: R-AXIS (Rigaku, 1996); cell refinement: R-AXIS (Rigaku, 1996); data reduction: R-AXIS (Rigaku, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1997).

Figures top
[Figure 1] Fig. 1. A view of (I) with 30% probability ellipsoid.
[Figure 2] Fig. 2. Unit cell packing of (I) showing hydrogen-bonding interactions.
Diaquabis(2-carboxybenzoato-κO)nickel(II) top
Crystal data top
[Ni(C8H5O4)2(H2O)2]F(000) = 436
Mr = 424.98Dx = 1.776 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 132 reflections
a = 8.3601 (17) Åθ = 2–25.1°
b = 14.439 (3) ŵ = 1.28 mm1
c = 7.1005 (14) ÅT = 291 K
β = 111.99 (3)°Block, green
V = 794.8 (3) Å30.20 × 0.18 × 0.16 mm
Z = 2
Data collection top
Rigaku R-AXIS-IV
diffractometer
1416 independent reflections
Radiation source: fine-focus sealed tube1343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.6°
Oscillation frames scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1717
Tmin = 0.784, Tmax = 0.821l = 08
2628 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.5337P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1416 reflectionsΔρmax = 0.30 e Å3
137 parametersΔρmin = 0.38 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.094 (6)
Crystal data top
[Ni(C8H5O4)2(H2O)2]V = 794.8 (3) Å3
Mr = 424.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3601 (17) ŵ = 1.28 mm1
b = 14.439 (3) ÅT = 291 K
c = 7.1005 (14) Å0.20 × 0.18 × 0.16 mm
β = 111.99 (3)°
Data collection top
Rigaku R-AXIS-IV
diffractometer
1416 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1343 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.821Rint = 0.030
2628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
1416 reflectionsΔρmin = 0.38 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.0284 (2)
C10.7040 (3)0.16274 (19)0.2060 (4)0.0391 (6)
H3A0.79800.12360.23000.047*
C20.5426 (3)0.12637 (17)0.1689 (4)0.0327 (6)
H2A0.52850.06240.16500.039*
C30.3998 (3)0.18327 (16)0.1369 (3)0.0266 (5)
C40.4213 (3)0.28095 (16)0.1374 (3)0.0268 (5)
C50.5852 (3)0.31545 (18)0.1721 (4)0.0362 (6)
H5A0.60110.37920.17150.043*
C60.7252 (3)0.25758 (19)0.2075 (4)0.0388 (6)
H4A0.83380.28260.23230.047*
C70.2857 (3)0.35548 (17)0.1007 (4)0.0328 (6)
C80.2350 (3)0.13200 (17)0.0993 (4)0.0303 (5)
H3E0.117 (6)0.2779 (15)0.110 (7)0.094 (15)*
H5E0.006 (4)0.063 (2)0.329 (5)0.065 (11)*
H5F0.132 (5)0.003 (2)0.378 (5)0.084 (15)*
O10.2296 (2)0.04720 (12)0.0575 (3)0.0388 (5)
O20.1034 (2)0.17147 (13)0.1107 (3)0.0417 (5)
O30.1404 (2)0.33670 (13)0.1202 (3)0.0416 (5)
O40.3147 (3)0.43396 (12)0.0568 (3)0.0461 (5)
O50.0588 (3)0.02971 (16)0.2854 (3)0.0514 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0268 (3)0.0215 (3)0.0385 (3)0.00561 (15)0.0141 (2)0.00150 (16)
C10.0271 (13)0.0423 (15)0.0479 (16)0.0051 (11)0.0139 (11)0.0009 (12)
C20.0332 (13)0.0285 (12)0.0370 (14)0.0017 (10)0.0136 (11)0.0003 (10)
C30.0244 (11)0.0286 (12)0.0264 (12)0.0023 (9)0.0091 (9)0.0009 (9)
C40.0285 (12)0.0278 (12)0.0244 (11)0.0010 (9)0.0101 (9)0.0014 (9)
C50.0338 (13)0.0308 (12)0.0417 (14)0.0072 (10)0.0117 (11)0.0015 (10)
C60.0244 (12)0.0467 (15)0.0450 (16)0.0068 (11)0.0127 (11)0.0037 (12)
C70.0322 (13)0.0288 (13)0.0327 (13)0.0002 (10)0.0068 (10)0.0029 (10)
C80.0273 (12)0.0330 (13)0.0311 (13)0.0003 (10)0.0114 (10)0.0026 (10)
O10.0313 (10)0.0299 (9)0.0567 (12)0.0055 (7)0.0187 (9)0.0027 (8)
O20.0301 (9)0.0381 (10)0.0631 (13)0.0014 (8)0.0244 (9)0.0017 (8)
O30.0369 (11)0.0327 (10)0.0602 (13)0.0062 (8)0.0240 (9)0.0020 (9)
O40.0421 (11)0.0269 (9)0.0613 (13)0.0010 (8)0.0102 (9)0.0052 (8)
O50.048 (13)0.0511 (13)0.0440 (12)0.0266 (11)0.0147 (10)0.0008 (10)
Geometric parameters (Å, º) top
Ni1—O1i1.9308 (18)C4—C71.513 (3)
Ni1—O11.9308 (18)C5—C61.382 (4)
Ni1—O5i1.946 (2)C5—H5A0.9300
Ni1—O51.946 (2)C6—H4A0.9300
C1—C21.378 (4)C7—O41.223 (3)
C1—C61.380 (4)C7—O31.302 (3)
C1—H3A0.9300C8—O11.257 (3)
C2—C31.396 (3)C8—O21.268 (3)
C2—H2A0.9300O3—H3E0.87 (2)
C3—C41.422 (3)O5—H5E0.86 (2)
C3—C81.497 (3)O5—H5F0.86 (2)
C4—C51.391 (3)
O1i—Ni1—O1180.00C6—C5—C4121.8 (2)
O1i—Ni1—O5i89.20 (9)C6—C5—H5A119.1
O1—Ni1—O5i90.80 (9)C4—C5—H5A119.1
O1i—Ni1—O590.80 (9)C1—C6—C5120.0 (2)
O1—Ni1—O589.20 (9)C1—C6—H4A120.0
O5i—Ni1—O5180.00C5—C6—H4A120.0
C2—C1—C6119.6 (2)O4—C7—O3120.1 (2)
C2—C1—H3A120.2O4—C7—C4119.7 (2)
C6—C1—H3A120.2O3—C7—C4120.1 (2)
C1—C2—C3121.6 (2)O1—C8—O2119.8 (2)
C1—C2—H2A119.2O1—C8—C3118.2 (2)
C3—C2—H2A119.2O2—C8—C3121.9 (2)
C2—C3—C4119.0 (2)C8—O1—Ni1109.8 (2)
C2—C3—C8114.3 (2)C7—O3—H3E113 (3)
C4—C3—C8126.7 (2)Ni1—O5—H5E123 (2)
C5—C4—C3118.1 (2)Ni1—O5—H5F120 (3)
C5—C4—C7113.6 (2)H5E—O5—H5F113 (4)
C3—C4—C7128.3 (2)
C6—C1—C2—C31.4 (4)C3—C4—C7—O4161.9 (2)
C1—C2—C3—C41.7 (4)C5—C4—C7—O3161.5 (2)
C1—C2—C3—C8179.9 (2)C3—C4—C7—O319.7 (4)
C2—C3—C4—C50.6 (3)C2—C3—C8—O114.6 (3)
C8—C3—C4—C5178.9 (2)C4—C3—C8—O1163.7 (2)
C2—C3—C4—C7178.1 (2)C2—C3—C8—O2164.6 (2)
C8—C3—C4—C70.1 (4)C4—C3—C8—O217.1 (4)
C3—C4—C5—C60.7 (4)O2—C8—O1—Ni14.3 (3)
C7—C4—C5—C6179.6 (2)C3—C8—O1—Ni1176.50 (16)
C2—C1—C6—C50.1 (4)O5i—Ni1—O1—C889.48 (18)
C4—C5—C6—C11.0 (4)O5—Ni1—O1—C890.52 (18)
C5—C4—C7—O416.9 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5F···O4ii0.86 (2)1.82 (2)2.667 (3)170 (5)
O5—H5E···O3iii0.86 (2)1.95 (2)2.789 (3)164 (4)
O3—H3E···O20.87 (2)1.54 (2)2.403 (3)171 (5)
C2—H2A···O10.932.332.689 (3)102
C5—H5A···O40.932.362.707 (3)102
Symmetry codes: (ii) x, y1/2, z1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H5O4)2(H2O)2]
Mr424.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)8.3601 (17), 14.439 (3), 7.1005 (14)
β (°) 111.99 (3)
V3)794.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerRigaku R-AXIS-IV
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.784, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
2628, 1416, 1343
Rint0.030
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.07
No. of reflections1416
No. of parameters137
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.38

Computer programs: R-AXIS (Rigaku, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), TEXSAN (Molecular Structure Corporation, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5F···O4i0.86 (2)1.82 (2)2.667 (3)170 (5)
O5—H5E···O3ii0.86 (2)1.95 (2)2.789 (3)164 (4)
O3—H3E···O20.87 (2)1.54 (2)2.403 (3)171 (5)
C2—H2A···O10.932.332.689 (3)102.2
C5—H5A···O40.932.362.707 (3)101.8
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Henan Province and the Key Discipline Foundation of Zhoukou Normal University for financial support of this research.

References

First citationAdiwidjaja, G. & Küppers, H. (1976). Acta Cryst. B32, 1571–1574.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMolecular Structure Corporation (1997). TEXSAN. Version 1.7. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1996). R-AXIS. Rigaku Corporation, Akishima-shi, Tokyo 196-8666, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds