organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N,N,N′,N′-tetra­methyl­ethylenedi­ammonium dibromide dihydrate

aDepartment of Chemistry, Jinggangshan University, Ji'an, Jiangxi, 343009, People's Republic of China
*Correspondence e-mail: w.t.chen@hotmail.com

(Received 22 November 2007; accepted 24 November 2007; online 6 December 2007)

In the title compound, C20H30N22+·2Br·2H2O, the asymmetric unit consists of half of the N,N′-dibenzyl-N,N,N′,N′-tetra­methyl­ethylenediammonium cation lying across an inversion center, a bromide ion and a water mol­ecule of solvation. There is an eight-membered dibromide dihydrate ring, which is formed via hydrogen bonds of the type O—H⋯Br.

Related literature

For related literature, see: Chen et al. (2006[Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m2287-m2289.]); Jayaraman et al. (2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]); Kabak et al. (2000[Kabak, M., Elerman, Y., Ünaleroglu, C., Mert, Y. & Durlu, T. N. (2000). Acta Cryst. C56, e66-e67.]); Li et al. (2006[Li, X.-F., Liu, D.-S., Luo, Q.-Y. & Huang, C.-C. (2006). Acta Cryst. E62, o460-o462.]); Mathew et al. (2002[Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263-279.]); Misra et al. (2007[Misra, T. K., Cheng, J., Liao, F. L., Lu, T. H. & Chung, C. S. (2007). J. Coord. Chem. 60, 1855-1866.]); Nastase et al. (2007[Nastase, S., Tuna, F., Maxim, C., Muryn, C. A., Avarvari, N., Winpenny, R. E. P. & Andruh, M. (2007). Cryst. Growth Des. 7, 1825-1831.]); Pan et al. (2007[Pan, C. Y., Wang, G. M., Zheng, S. T. & Yang, G. Y. (2007). J. Solid State Chem. 180, 1553-1558.]); Srinivasan et al. (2003[Srinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2003). Acta Cryst. C59, m124-m127.], 2005[Srinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2005). Inorg. Chim. Acta, 358, 279-287.], 2007[Srinivasan, B. R., Mhalsikar, R. G., Rane, K. S., Nather, C. & Bensch, W. (2007). J. Chem. Sci. 119, 21-27.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30N22+·2Br·2H2O

  • Mr = 494.31

  • Monoclinic, P 21 /n

  • a = 6.7897 (14) Å

  • b = 22.774 (5) Å

  • c = 7.7069 (15) Å

  • β = 110.15 (3)°

  • V = 1118.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.64 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. PC version. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.421, Tmax = 0.582

  • 10562 measured reflections

  • 2547 independent reflections

  • 1792 reflections with I > 2.0 σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.06

  • 2547 reflections

  • 184 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HWA⋯Br1i 0.86 (3) 2.434 (11) 3.295 (4) 177 (4)
OW1—HWB⋯Br1ii 0.86 (3) 2.456 (14) 3.304 (4) 170 (5)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z+1.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). RAPID-AUTO. PC version. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1993[Sheldrick, G. M. (1993). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is well known that organic amines, such as ethylenediamine (en), 1,3-propanediamine (1,3-pnen), N,N,N',N'-tetramethylethylenediamine (tmen), piperazine (pip), etc, have been widely used as structure-directing agents for the construction of novel supramolecular assemblies (Misra et al., 2007, Nastase et al., 2007, Pan et al., 2007, Srinivasan et al., 2007, Li et al., 2006, Chen et al., 2006, Mathew et al., 2002, Jayaraman et al., 2002, Kabak et al., 2000). In a search for more organic surpramolecur amines, we have synthesized the title compound, (I), the structure of which is presented in this paper.

In the structure of (I), the asymmetric unit consists of a half molecule of N,N'-dibenzyl-N,N,N',N'-tetramethylethylenediammonium cation lying about an inversion center, a bromide ion and a water of solvation (Fig. 1). The C—C and C—N bond lengths are in good agreement with those found in other compounds containing the tmen moiety (Srinivasan et al., 2003; 2005; 2007). The water molecules in (I) are hydrogen-bonded with two bromide ions forming a novel eight membered cyclic dibromide. The two phenyl rings in each cation lie parallel to each other. The phenyl rings are arranged in layers. The dihedral angle between the two pheny rings is 16.3 (5)°. The shortest distance between adjacent phenyl rings is about 3.6441 Å, which indicates the existence of stacking interactions (Fig. 2).

Related literature top

For related literature, see: Chen et al. (2006); Jayaraman et al. (2002); Kabak et al. (2000); Li et al. (2006); Mathew et al. (2002); Misra et al. (2007); Nastase et al. (2007); Pan et al. (2007); Srinivasan et al. (2003, 2005, 2007).

Experimental top

Tetramethylethylenediamine (tmen) (2.6 ml, 17.23 mmol) was dissolved in 15 ml of CH3CN, and benzyl bromide (4.8 ml, 40.36 mmol) was added dropwise with continuous stirring over 20–30 min. White crystaline solid was filtrated from the mixture after cooling to room temperature which was dissolved in glacial acetic acid. Colourless crystal of the title compound grew from the cetic acid solution on standing for several days at room temperature.

Refinement top

All hydrogen atoms were found from difference Fourier maps and were refined with isotropic displacement parameters. H atoms of the water molecule were restrained at O—H bond lengths (O—H = 0.84 (1) Å) during the refinements.

Structure description top

It is well known that organic amines, such as ethylenediamine (en), 1,3-propanediamine (1,3-pnen), N,N,N',N'-tetramethylethylenediamine (tmen), piperazine (pip), etc, have been widely used as structure-directing agents for the construction of novel supramolecular assemblies (Misra et al., 2007, Nastase et al., 2007, Pan et al., 2007, Srinivasan et al., 2007, Li et al., 2006, Chen et al., 2006, Mathew et al., 2002, Jayaraman et al., 2002, Kabak et al., 2000). In a search for more organic surpramolecur amines, we have synthesized the title compound, (I), the structure of which is presented in this paper.

In the structure of (I), the asymmetric unit consists of a half molecule of N,N'-dibenzyl-N,N,N',N'-tetramethylethylenediammonium cation lying about an inversion center, a bromide ion and a water of solvation (Fig. 1). The C—C and C—N bond lengths are in good agreement with those found in other compounds containing the tmen moiety (Srinivasan et al., 2003; 2005; 2007). The water molecules in (I) are hydrogen-bonded with two bromide ions forming a novel eight membered cyclic dibromide. The two phenyl rings in each cation lie parallel to each other. The phenyl rings are arranged in layers. The dihedral angle between the two pheny rings is 16.3 (5)°. The shortest distance between adjacent phenyl rings is about 3.6441 Å, which indicates the existence of stacking interactions (Fig. 2).

For related literature, see: Chen et al. (2006); Jayaraman et al. (2002); Kabak et al. (2000); Li et al. (2006); Mathew et al. (2002); Misra et al. (2007); Nastase et al. (2007); Pan et al. (2007); Srinivasan et al. (2003, 2005, 2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: RAPID-AUTO (Rigaku Corporation, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1993); software used to prepare material for publication: SHELXL97/2 (Sheldrick,1997).

Figures top
[Figure 1] Fig. 1. A view of (I) with atom labels and 50% probability displacement ellipsoids. [symmetry codes: (i) -x + 1, -y, -z + 1]
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the a axis; H-bonding interactions are shown as dashed lines.
N,N'-Dibenzyl-N,N,N',N'-tetramethylethylenediammonium dibromide dihydrate top
Crystal data top
C20H30N22+·2Br·2H2OF(000) = 508
Mr = 494.31Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.7897 (14) Åθ = 12–18°
b = 22.774 (5) ŵ = 3.64 mm1
c = 7.7069 (15) ÅT = 298 K
β = 110.15 (3)°Parallelepiped, colourless
V = 1118.8 (5) Å30.30 × 0.20 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2.0 σ(I)
Graphite monochromatorRint = 0.074
Oscillation scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku Corporation, 1998)
h = 88
Tmin = 0.421, Tmax = 0.582k = 2929
10562 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.2784P]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max = 0.002
184 parametersΔρmax = 0.51 e Å3
3 restraintsΔρmin = 0.72 e Å3
Crystal data top
C20H30N22+·2Br·2H2OV = 1118.8 (5) Å3
Mr = 494.31Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.7897 (14) ŵ = 3.64 mm1
b = 22.774 (5) ÅT = 298 K
c = 7.7069 (15) Å0.30 × 0.20 × 0.15 mm
β = 110.15 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku Corporation, 1998)
1792 reflections with I > 2.0 σ(I)
Tmin = 0.421, Tmax = 0.582Rint = 0.074
10562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.51 e Å3
2547 reflectionsΔρmin = 0.72 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89391 (7)0.065641 (16)0.24054 (6)0.05367 (19)
OW10.2419 (7)0.04996 (18)1.0319 (6)0.0917 (12)
N10.5346 (5)0.07807 (11)0.6087 (4)0.0371 (7)
C10.7021 (7)0.19997 (16)0.4469 (6)0.0531 (10)
C20.7549 (9)0.25943 (18)0.4717 (7)0.0681 (13)
C30.6231 (10)0.29803 (17)0.5114 (6)0.0705 (15)
C40.4387 (10)0.27891 (18)0.5281 (6)0.0654 (14)
C50.3847 (8)0.21992 (18)0.5030 (6)0.0547 (10)
C60.5200 (6)0.17978 (14)0.4658 (5)0.0408 (8)
C70.4612 (6)0.11582 (14)0.4341 (5)0.0404 (8)
C80.4532 (7)0.01555 (14)0.5633 (6)0.0411 (9)
C90.7673 (7)0.07937 (18)0.6952 (7)0.0472 (9)
C100.4404 (9)0.10009 (19)0.7456 (7)0.0547 (12)
H10.801 (6)0.1761 (16)0.433 (5)0.049 (11)*
H20.885 (9)0.272 (2)0.457 (7)0.082 (17)*
H30.652 (7)0.338 (2)0.530 (6)0.068 (13)*
H40.336 (7)0.3058 (19)0.532 (6)0.057 (12)*
H50.254 (8)0.207 (2)0.515 (7)0.069 (14)*
H60.540 (6)0.0962 (18)0.361 (6)0.056 (11)*
H70.300 (7)0.1093 (16)0.378 (5)0.051 (11)*
H80.306 (6)0.0181 (16)0.511 (5)0.044 (11)*
H90.488 (6)0.0026 (15)0.678 (5)0.036 (9)*
H100.806 (7)0.0550 (17)0.791 (6)0.051 (12)*
H110.823 (8)0.0694 (18)0.609 (7)0.067 (15)*
H120.804 (7)0.1197 (18)0.736 (6)0.054 (11)*
H130.485 (7)0.0805 (19)0.840 (7)0.049 (12)*
H140.284 (8)0.0988 (19)0.684 (6)0.058 (13)*
H150.487 (7)0.137 (2)0.777 (6)0.057 (12)*
HWA0.211 (6)0.0193 (13)0.962 (5)0.068*
HWB0.143 (5)0.0568 (17)1.074 (6)0.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0612 (3)0.0525 (3)0.0569 (3)0.00285 (18)0.0325 (2)0.00037 (16)
OW10.109 (3)0.088 (3)0.092 (3)0.014 (2)0.053 (3)0.014 (2)
N10.0483 (18)0.0294 (13)0.0354 (16)0.0048 (12)0.0166 (14)0.0002 (10)
C10.066 (3)0.0360 (18)0.062 (3)0.0025 (19)0.028 (2)0.0058 (17)
C20.083 (4)0.042 (2)0.074 (3)0.013 (2)0.021 (3)0.008 (2)
C30.108 (4)0.0284 (19)0.061 (3)0.006 (2)0.010 (3)0.0005 (17)
C40.095 (4)0.039 (2)0.057 (3)0.021 (3)0.020 (3)0.0005 (17)
C50.061 (3)0.046 (2)0.055 (3)0.012 (2)0.019 (2)0.0028 (17)
C60.052 (2)0.0329 (16)0.0333 (19)0.0021 (15)0.0099 (17)0.0025 (13)
C70.048 (2)0.0320 (16)0.041 (2)0.0019 (15)0.0143 (19)0.0020 (14)
C80.054 (3)0.0313 (17)0.045 (2)0.0043 (16)0.025 (2)0.0008 (14)
C90.049 (3)0.042 (2)0.045 (2)0.0009 (17)0.009 (2)0.0017 (17)
C100.086 (4)0.039 (2)0.051 (3)0.001 (2)0.040 (3)0.0040 (19)
Geometric parameters (Å, º) top
OW1—HWA0.86 (3)C5—C61.394 (6)
OW1—HWB0.86 (3)C5—H50.97 (5)
N1—C91.488 (5)C6—C71.508 (5)
N1—C101.496 (5)C7—H61.00 (4)
N1—C81.524 (4)C7—H71.04 (4)
N1—C71.528 (4)C8—C8i1.511 (7)
C1—C61.374 (6)C8—H80.94 (4)
C1—C21.397 (6)C8—H90.93 (4)
C1—H10.90 (4)C9—H100.89 (4)
C2—C31.362 (8)C9—H110.90 (5)
C2—H20.97 (6)C9—H120.97 (4)
C3—C41.373 (8)C10—H130.82 (5)
C3—H30.94 (5)C10—H141.00 (5)
C4—C51.388 (6)C10—H150.90 (4)
C4—H40.94 (5)
HWA—OW1—HWB109.2 (17)C6—C7—N1114.4 (3)
C9—N1—C10108.9 (3)C6—C7—H6111 (2)
C9—N1—C8111.5 (3)N1—C7—H6100 (2)
C10—N1—C8105.4 (3)C6—C7—H7113 (2)
C9—N1—C7110.9 (3)N1—C7—H7105 (2)
C10—N1—C7110.1 (3)H6—C7—H7113 (3)
C8—N1—C7109.9 (3)C8i—C8—N1112.7 (4)
C6—C1—C2120.5 (4)C8i—C8—H8112 (2)
C6—C1—H1123 (2)N1—C8—H8107 (2)
C2—C1—H1116 (2)C8i—C8—H9112 (2)
C3—C2—C1119.9 (5)N1—C8—H9104 (2)
C3—C2—H2122 (3)H8—C8—H9109 (3)
C1—C2—H2118 (3)N1—C9—H10109 (3)
C2—C3—C4120.5 (4)N1—C9—H11109 (3)
C2—C3—H3123 (3)H10—C9—H11112 (4)
C4—C3—H3117 (3)N1—C9—H12106 (3)
C3—C4—C5120.0 (4)H10—C9—H12111 (4)
C3—C4—H4121 (3)H11—C9—H12110 (4)
C5—C4—H4118 (3)N1—C10—H13109 (3)
C4—C5—C6120.2 (5)N1—C10—H14107 (3)
C4—C5—H5119 (3)H13—C10—H14115 (4)
C6—C5—H5120 (3)N1—C10—H15108 (3)
C1—C6—C5118.9 (3)H13—C10—H15106 (4)
C1—C6—C7120.3 (3)H14—C10—H15112 (4)
C5—C6—C7120.7 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HWA···Br1i0.86 (3)2.43 (1)3.295 (4)177 (4)
OW1—HWB···Br1ii0.86 (3)2.46 (1)3.304 (4)170 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H30N22+·2Br·2H2O
Mr494.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.7897 (14), 22.774 (5), 7.7069 (15)
β (°) 110.15 (3)
V3)1118.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku Corporation, 1998)
Tmin, Tmax0.421, 0.582
No. of measured, independent and
observed [I > 2.0 σ(I)] reflections
10562, 2547, 1792
Rint0.074
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.06
No. of reflections2547
No. of parameters184
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.72

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1993), SHELXL97/2 (Sheldrick,1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HWA···Br1i0.86 (3)2.434 (11)3.295 (4)177 (4)
OW1—HWB···Br1ii0.86 (3)2.456 (14)3.304 (4)170 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Project of Jinggangshan University (JZ0731).

References

First citationChen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006). Acta Cryst. E62, m2287–m2289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabak, M., Elerman, Y., Ünaleroglu, C., Mert, Y. & Durlu, T. N. (2000). Acta Cryst. C56, e66–e67.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, X.-F., Liu, D.-S., Luo, Q.-Y. & Huang, C.-C. (2006). Acta Cryst. E62, o460–o462.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationMisra, T. K., Cheng, J., Liao, F. L., Lu, T. H. & Chung, C. S. (2007). J. Coord. Chem. 60, 1855–1866.  Web of Science CSD CrossRef CAS Google Scholar
First citationNastase, S., Tuna, F., Maxim, C., Muryn, C. A., Avarvari, N., Winpenny, R. E. P. & Andruh, M. (2007). Cryst. Growth Des. 7, 1825–1831.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, C. Y., Wang, G. M., Zheng, S. T. & Yang, G. Y. (2007). J. Solid State Chem. 180, 1553–1558.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku Corporation (1998). RAPID-AUTO. PC version. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1993). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSrinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2003). Acta Cryst. C59, m124–m127.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2005). Inorg. Chim. Acta, 358, 279–287.  Web of Science CSD CrossRef CAS Google Scholar
First citationSrinivasan, B. R., Mhalsikar, R. G., Rane, K. S., Nather, C. & Bensch, W. (2007). J. Chem. Sci. 119, 21–27.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds