organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(2-Hy­droxy­anilino­methyl­ene)-4-nitro­cyclo­hexa-2,4-dien-1-one

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

(Received 23 November 2007; accepted 29 November 2007; online 6 December 2007)

The molecule of the title compound, C13H10N2O4, is nearly planar with a dihedral angle between the two aromatic rings of 2.24 (9)°. The NH group forms an intramolecular hydrogen bond with the carbonyl O atom. The mol­ecules form dimers about inversion centers in the crystal structure via inter­molecular O—H⋯O hydrogen bonds.

Related literature

Aromatic Schiff-bases with ortho-hydr­oxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956[Freeman, D. C. & White, C. E. (1956). J. Am. Chem. Soc. 78, 2678-2682.]; Calligaris & Randaccio, 1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 715-738. Oxford: Pergamon Press.]; Pettinari et al., 2001[Pettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103-114.]; Hernández-Molina & Mederos, 2004[Hernández-Molina, R. & Mederos, A. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by J. A. McCleverty & T. J. Meyer, pp. 411-446. Amsterdam: Elsevier.]). For related literature, see: Böhme & Günther (2006[Böhme, U. & Günther, B. (2006). Acta Cryst. E62, m1711-m1712.], 2007[Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482-484.]); Böhme, Wiesner & Günther (2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]); Dubs et al. (2000[Dubs, M., Krieg, R., Görls, H. & Schönecker, B. (2000). Steroids, 65, 305-318.]); Hopfl et al. (1998[Hopfl, H., Sanchez, M., Barba, V., Farfan, N., Rojas, S. & Santillan, R. (1998). Inorg. Chem. 37, 1679-1692.]); Nazir et al. (2000[Nazir, H., Yildiz, M., Yilmaz, H., Tahir, M. & Ülkü, D. (2000). J. Mol. Struct. 524, 241-250.]); Pradeep (2005[Pradeep, C. P. (2005). Acta Cryst. E61, o3825-o3827.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21 /n

  • a = 6.3445 (3) Å

  • b = 23.7378 (10) Å

  • c = 7.8450 (3) Å

  • β = 93.79 (1)°

  • V = 1178.90 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 303 (2) K

  • 0.3 × 0.25 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9006 measured reflections

  • 2273 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.05

  • 2273 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O1 0.86 1.92 2.613 (2) 137
O2—H9⋯O1i 0.82 1.80 2.573 (2) 157
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have been working on silicon and titanium complexes with tridentate O,N,O-ligands (Böhme & Günther, 2006; Böhme, Wiesner & Günther, 2006; Böhme & Günther, 2007). The title compound, (I), was prepared in order to extend the series of available ligands. The preparation of (I) was performed according to the methods described in the literature for the parent compound salicyclidene-o-aminophenol ("salopH2") (Freeman & White, 1956; Pettinari et al., 2001). The molecule of (I) is nearly planar with a dihedral angle between the two aromatic rings of 2.24 (9)°. The atom H2 forms an intramolecular hydrogen bond between the phenolic oxygen atom O1 and N1 of the azomethine unit. The hydrogen atom H2 is localized at N1. This hints to the presence of the keto-amine form. The presence of a quinoidal structure is further supported by the shortening of the bond O1—C3 to 1.276 (2) Å and the lengthening of the adjacent C—C bonds in the phenyl ring [C2—C3 1.443 (2), C3—C4 1.423 (2) Å] (Nazir et al., 2000). There are few structure reports of Schiff-bases with oxygen in ortho-position where the intramolecular bridging hydrogen atom is localized at the nitrogen atom (e.g. Pradeep, 2005; Dubs et al., 2000; Hopfl et al., 1998). The molecules form dimers about inversion centers in the crystal lattice via intermolecular O2—H9···O1 hydrogen bonds. Unconventional hydrogen bonds of the type C—H···O are also present in the structure.

Related literature top

Aromatic Schiff-bases with ortho-hydroxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956; Calligaris & Randaccio, 1987; Pettinari et al., 2001; Hernández-Molina & Mederos, 2004). For related literature, see: Böhme & Günther (2006, 2007); Böhme, Wiesner & Günther (2006); Dubs et al. (2000); Hopfl et al. (1998); Nazir et al. (2000); Pradeep (2005).

Experimental top

To 2-aminophenol (2.12 g, 19.4 mmol) dissolved in ethanol (100 ml) was added 2-hydroxy-5-nitrobenzaldehyde (3.24 g, 19.4 mmol) in ethanol (50 ml). The resulting yellow suspension was refluxed for 1 h. The precipitate was filtered off and washed with ethanol. After drying, the product was purified by recrystallization from ethanol afforded yellow crystals of (I) (3.81 g, 76.2%, m.p. 528 K).

Refinement top

Hydrogen atoms bonded to C, N, and O were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93, O—H = 0.82, and N—H = 0.86 Å and Uiso(H) values of 1.2Ueq(C/N) and 1.5Ueq(O).

Structure description top

We have been working on silicon and titanium complexes with tridentate O,N,O-ligands (Böhme & Günther, 2006; Böhme, Wiesner & Günther, 2006; Böhme & Günther, 2007). The title compound, (I), was prepared in order to extend the series of available ligands. The preparation of (I) was performed according to the methods described in the literature for the parent compound salicyclidene-o-aminophenol ("salopH2") (Freeman & White, 1956; Pettinari et al., 2001). The molecule of (I) is nearly planar with a dihedral angle between the two aromatic rings of 2.24 (9)°. The atom H2 forms an intramolecular hydrogen bond between the phenolic oxygen atom O1 and N1 of the azomethine unit. The hydrogen atom H2 is localized at N1. This hints to the presence of the keto-amine form. The presence of a quinoidal structure is further supported by the shortening of the bond O1—C3 to 1.276 (2) Å and the lengthening of the adjacent C—C bonds in the phenyl ring [C2—C3 1.443 (2), C3—C4 1.423 (2) Å] (Nazir et al., 2000). There are few structure reports of Schiff-bases with oxygen in ortho-position where the intramolecular bridging hydrogen atom is localized at the nitrogen atom (e.g. Pradeep, 2005; Dubs et al., 2000; Hopfl et al., 1998). The molecules form dimers about inversion centers in the crystal lattice via intermolecular O2—H9···O1 hydrogen bonds. Unconventional hydrogen bonds of the type C—H···O are also present in the structure.

Aromatic Schiff-bases with ortho-hydroxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956; Calligaris & Randaccio, 1987; Pettinari et al., 2001; Hernández-Molina & Mederos, 2004). For related literature, see: Böhme & Günther (2006, 2007); Böhme, Wiesner & Günther (2006); Dubs et al. (2000); Hopfl et al. (1998); Nazir et al. (2000); Pradeep (2005).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) drawn with 50% probability displacement ellipsoids.
6-(2-Hydroxyanilinomethylene)-4-nitrocyclohexa-2,4-dien-1-one top
Crystal data top
C13H10N2O4F(000) = 536
Mr = 258.23Dx = 1.455 Mg m3
Monoclinic, P21/nMelting point: 528 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.3445 (3) ÅCell parameters from 3470 reflections
b = 23.7378 (10) Åθ = 3.3–28.2°
c = 7.8450 (3) ŵ = 0.11 mm1
β = 93.79 (1)°T = 303 K
V = 1178.90 (9) Å3Prism, yellow
Z = 40.3 × 0.25 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1523 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
φ and ω scansh = 77
9006 measured reflectionsk = 2929
2273 independent reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0914P]
where P = (Fo2 + 2Fc2)/3
2273 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H10N2O4V = 1178.90 (9) Å3
Mr = 258.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3445 (3) ŵ = 0.11 mm1
b = 23.7378 (10) ÅT = 303 K
c = 7.8450 (3) Å0.3 × 0.25 × 0.12 mm
β = 93.79 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1523 reflections with I > 2σ(I)
9006 measured reflectionsRint = 0.025
2273 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
2273 reflectionsΔρmin = 0.17 e Å3
174 parameters
Special details top

Experimental. NMR (DMSO, 300 K, TMS): 1H: δ=15.73, 10.38 (s, OH, 2H), 9.31 (s, CH—N, 1H), 8.18–6.89 (m, CHaromatic, 7H); 13C: 172.3 (C3), 159.2 (C1), 150.4 (C9), 136.7 (C6), 130.3, 129.8, 129.2, 128.6, 120.4, 119.8, 118.7, 116.5, 116.4 (9 signals for aromatic C).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2616 (2)0.05887 (5)0.83707 (17)0.0600 (4)
O20.0255 (2)0.06605 (5)0.94717 (17)0.0584 (4)
H90.05970.07321.01840.088*
O31.0149 (2)0.17158 (6)0.5016 (2)0.0762 (5)
O41.0816 (2)0.08467 (6)0.45149 (17)0.0632 (4)
N10.3820 (2)0.04592 (6)0.81241 (17)0.0432 (4)
H20.28990.02160.84030.068 (6)*
N20.9733 (2)0.12137 (7)0.51253 (19)0.0513 (4)
C10.5465 (3)0.02556 (7)0.7441 (2)0.0449 (4)
H10.65020.05060.71310.054*
C20.5767 (3)0.03237 (7)0.7143 (2)0.0409 (4)
C30.4260 (3)0.07387 (7)0.7635 (2)0.0447 (4)
C40.4701 (3)0.13107 (8)0.7250 (2)0.0524 (5)
H40.37610.15890.75490.063*
C50.6451 (3)0.14622 (7)0.6460 (2)0.0501 (5)
H50.67010.18400.62280.060*
C60.7890 (3)0.10481 (7)0.5989 (2)0.0427 (4)
C70.7560 (3)0.04926 (7)0.6329 (2)0.0435 (4)
H70.85320.02250.60180.052*
C80.3340 (3)0.10296 (7)0.8472 (2)0.0425 (4)
C90.1443 (3)0.11220 (7)0.9216 (2)0.0452 (4)
C100.0879 (3)0.16669 (8)0.9629 (2)0.0572 (5)
H100.03860.17341.01300.069*
C110.2198 (3)0.21088 (8)0.9297 (3)0.0672 (6)
H110.18230.24740.95840.081*
C120.4076 (3)0.20149 (8)0.8538 (3)0.0676 (6)
H120.49500.23170.83120.081*
C130.4653 (3)0.14742 (8)0.8116 (3)0.0563 (5)
H130.59080.14100.76000.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (8)0.0584 (8)0.0747 (9)0.0075 (6)0.0276 (7)0.0052 (7)
O20.0563 (8)0.0520 (8)0.0701 (10)0.0084 (6)0.0275 (7)0.0030 (6)
O30.0705 (10)0.0513 (8)0.1096 (13)0.0168 (7)0.0280 (9)0.0042 (8)
O40.0589 (8)0.0617 (9)0.0722 (9)0.0009 (7)0.0275 (7)0.0066 (7)
N10.0419 (8)0.0442 (8)0.0447 (9)0.0064 (7)0.0113 (7)0.0019 (6)
N20.0481 (9)0.0522 (10)0.0544 (10)0.0065 (7)0.0089 (8)0.0050 (7)
C10.0409 (10)0.0492 (10)0.0452 (10)0.0066 (8)0.0090 (8)0.0009 (8)
C20.0395 (9)0.0459 (10)0.0376 (9)0.0025 (7)0.0056 (8)0.0008 (7)
C30.0409 (10)0.0514 (11)0.0423 (10)0.0053 (8)0.0062 (8)0.0015 (8)
C40.0474 (11)0.0470 (10)0.0634 (13)0.0100 (8)0.0090 (9)0.0008 (9)
C50.0507 (11)0.0416 (10)0.0583 (12)0.0012 (8)0.0056 (9)0.0007 (8)
C60.0406 (9)0.0481 (10)0.0400 (10)0.0018 (8)0.0072 (8)0.0035 (8)
C70.0401 (9)0.0465 (10)0.0447 (10)0.0045 (7)0.0077 (8)0.0043 (8)
C80.0454 (10)0.0401 (9)0.0426 (10)0.0027 (7)0.0058 (8)0.0017 (7)
C90.0435 (10)0.0468 (10)0.0460 (10)0.0032 (8)0.0076 (8)0.0031 (8)
C100.0534 (12)0.0527 (11)0.0665 (13)0.0060 (9)0.0124 (10)0.0029 (9)
C110.0737 (14)0.0431 (11)0.0862 (16)0.0043 (10)0.0163 (12)0.0049 (10)
C120.0694 (14)0.0470 (11)0.0883 (16)0.0121 (10)0.0195 (12)0.0014 (10)
C130.0525 (11)0.0510 (11)0.0675 (13)0.0068 (9)0.0183 (10)0.0023 (9)
Geometric parameters (Å, º) top
O1—C31.276 (2)C4—H40.9300
O2—C91.352 (2)C5—C61.408 (2)
O2—H90.8200C5—H50.9300
O3—N21.225 (2)C6—C71.364 (2)
O4—N21.226 (2)C7—H70.9300
N1—C11.298 (2)C8—C131.384 (2)
N1—C81.418 (2)C8—C91.389 (2)
N1—H20.8600C9—C101.386 (3)
N2—C61.444 (2)C10—C111.378 (3)
C1—C21.410 (2)C10—H100.9300
C1—H10.9300C11—C121.385 (3)
C2—C71.399 (2)C11—H110.9300
C2—C31.443 (2)C12—C131.381 (3)
C3—C41.423 (2)C12—H120.9300
C4—C51.356 (2)C13—H130.9300
C9—O2—H9109.5C7—C6—N2119.64 (15)
C1—N1—C8128.60 (15)C5—C6—N2119.49 (16)
C1—N1—H2115.7C6—C7—C2120.42 (16)
C8—N1—H2115.7C6—C7—H7119.8
O3—N2—O4122.35 (15)C2—C7—H7119.8
O3—N2—C6118.86 (15)C13—C8—C9120.92 (16)
O4—N2—C6118.79 (15)C13—C8—N1123.32 (16)
N1—C1—C2123.60 (16)C9—C8—N1115.76 (14)
N1—C1—H1118.2O2—C9—C10124.47 (16)
C2—C1—H1118.2O2—C9—C8116.19 (15)
C7—C2—C1118.58 (16)C10—C9—C8119.34 (16)
C7—C2—C3119.95 (15)C11—C10—C9119.77 (18)
C1—C2—C3121.46 (16)C11—C10—H10120.1
O1—C3—C4122.72 (16)C9—C10—H10120.1
O1—C3—C2120.43 (16)C10—C11—C12120.64 (18)
C4—C3—C2116.85 (15)C10—C11—H11119.7
C5—C4—C3121.92 (17)C12—C11—H11119.7
C5—C4—H4119.0C13—C12—C11120.12 (18)
C3—C4—H4119.0C13—C12—H12119.9
C4—C5—C6119.99 (17)C11—C12—H12119.9
C4—C5—H5120.0C12—C13—C8119.19 (18)
C6—C5—H5120.0C12—C13—H13120.4
C7—C6—C5120.86 (16)C8—C13—H13120.4
C8—N1—C1—C2179.49 (15)N2—C6—C7—C2179.08 (15)
N1—C1—C2—C7177.23 (16)C1—C2—C7—C6178.79 (16)
N1—C1—C2—C31.9 (3)C3—C2—C7—C60.3 (3)
C7—C2—C3—O1179.67 (16)C1—N1—C8—C130.5 (3)
C1—C2—C3—O10.6 (3)C1—N1—C8—C9179.91 (17)
C7—C2—C3—C40.1 (2)C13—C8—C9—O2178.46 (16)
C1—C2—C3—C4179.00 (15)N1—C8—C9—O21.9 (2)
O1—C3—C4—C5179.64 (17)C13—C8—C9—C101.0 (3)
C2—C3—C4—C50.1 (3)N1—C8—C9—C10178.64 (16)
C3—C4—C5—C60.3 (3)O2—C9—C10—C11179.28 (18)
C4—C5—C6—C70.5 (3)C8—C9—C10—C110.1 (3)
C4—C5—C6—N2179.10 (16)C9—C10—C11—C120.6 (3)
O3—N2—C6—C7171.10 (16)C10—C11—C12—C130.4 (3)
O4—N2—C6—C79.5 (2)C11—C12—C13—C80.4 (3)
O3—N2—C6—C59.3 (2)C9—C8—C13—C121.1 (3)
O4—N2—C6—C5170.09 (16)N1—C8—C13—C12178.47 (17)
C5—C6—C7—C20.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.861.922.613 (2)137
O2—H9···O1i0.821.802.573 (2)157
C1—H1···O4ii0.932.353.220 (2)156
Symmetry codes: (i) x, y, z+2; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)303
a, b, c (Å)6.3445 (3), 23.7378 (10), 7.8450 (3)
β (°) 93.79 (1)
V3)1178.90 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.25 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9006, 2273, 1523
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.05
No. of reflections2273
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O10.861.922.613 (2)137
O2—H9···O1i0.821.802.573 (2)157
Symmetry code: (i) x, y, z+2.
 

References

First citationBöhme, U. & Günther, B. (2006). Acta Cryst. E62, m1711–m1712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482–484.  Google Scholar
First citationBöhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809.  Google Scholar
First citationBruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 715–738. Oxford: Pergamon Press.  Google Scholar
First citationDubs, M., Krieg, R., Görls, H. & Schönecker, B. (2000). Steroids, 65, 305–318.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFreeman, D. C. & White, C. E. (1956). J. Am. Chem. Soc. 78, 2678–2682.  CrossRef CAS Web of Science Google Scholar
First citationHernández-Molina, R. & Mederos, A. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by J. A. McCleverty & T. J. Meyer, pp. 411–446. Amsterdam: Elsevier.  Google Scholar
First citationHopfl, H., Sanchez, M., Barba, V., Farfan, N., Rojas, S. & Santillan, R. (1998). Inorg. Chem. 37, 1679–1692.  Web of Science CSD CrossRef Google Scholar
First citationNazir, H., Yildiz, M., Yilmaz, H., Tahir, M. & Ülkü, D. (2000). J. Mol. Struct. 524, 241–250.  Web of Science CSD CrossRef CAS Google Scholar
First citationPettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationPradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds