metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Rhodamine 6G hexa­chlorido­stannate(IV) aceto­nitrile disolvate

aDepartment of Chemistry, Jackson State University, Jackson, MS 39217, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ramaiyer.venkatraman@jsums.edu

(Received 29 November 2007; accepted 10 December 2007; online 18 December 2007)

In the title compound, bis({6-ethylamino-10-[2-(methoxycarbonyl)phenyl]-2,7-dimethylxanthen-3-ylidene}ethanaminium) hexachloridotin(IV) acetonitrile disolvate, (C27H29N2O3)2[SnCl6]·2C2H3N, the octa­hedral SnCl62− anion lies on an inversion center. The xanthene ring system is essentially planar, with an average deviation of 0.020 Å, and the substituent benzene ring forms a dihedral angle of 85.89 (2)° with it. The Sn—Cl distances are in the range 2.4237 (3)–2.4454 (3) Å. There are N—H⋯Cl hydrogen bonds between SnCl62− ions and rhodamine 6G cations as well as ππ stacking inter­actions between rhodamine 6G cations (inter­planar distance of 3.827 Å).

Related literature

For related literature, see: Bhagavthy et al. (1993[Bhagavthy, V., Reddy, M. L. P., Rao, T. R. & Damodaran, A. D. (1993). Indian J. Chem. Sect. A, 32, 463-464.]); Fun et al. (1997[Fun, H.-K., Chinnakali, K., Sivakumar, K., Lu, C.-M., Xiong, R.-G. & You, X.-Z. (1997). Acta Cryst. C53, 1619-1620.]); Herz (1974[Herz, A. H. (1974). Photogr. Sci. Eng. 18, 323-335.]); Johnson & McGrane (1993[Johnson, G. E. & McGrane, K. M. (1993). Proc. SPIE-Int. Soc. Opt. Eng. 1910, 6-14.]); Liu et al. (1998[Liu, C.-M., Xiong, R.-G., You, X.-Z. & Chen, W. (1998). Acta Chem. Scand. 52, 883-890.]); Nguyen & Meyer (1992[Nguyen, D. H. & Meyer, Y. H. (1992). Appl. Phys. B, 55, 409-412.]); Wang et al. (1997[Wang, H., Xiong, R.-G., Liu, C.-M., Chen, H.-Y., You, X.-Z. & Chen, W. (1997). Inorg. Chim. Acta, 254, 183-187.]). For the structure of the analogous ethyl ester as the chloride salt hydrate, see: Adhikesavalu et al. (2001[Adhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657-659.]).

[Scheme 1]

Experimental

Crystal data
  • (C27H29N2O3)2[SnCl6]·2C2H3N

  • Mr = 1272.54

  • Triclinic, [P \overline 1]

  • a = 9.7871 (10) Å

  • b = 11.7827 (11) Å

  • c = 13.2893 (12) Å

  • α = 80.583 (4)°

  • β = 77.309 (4)°

  • γ = 82.467 (4)°

  • V = 1467.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 90.0 (5) K

  • 0.28 × 0.27 × 0.25 mm

Data collection
  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.815, Tmax = 0.832

  • 54250 measured reflections

  • 14412 independent reflections

  • 12969 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.03

  • 14412 reflections

  • 362 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl2 0.81 (2) 2.61 (2) 3.3644 (10) 156 (2)
N2—H2N⋯Cl1i 0.86 (2) 2.75 (2) 3.5603 (10) 159 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The excellent photo-physical properties of rhodamines are well known (Herz, 1974; Johnson & McGrane, 1993; Nguyen & Meyer, 1992), and recently metal complexes of rhodamine 6 G have been reported by several authors (Bhagavthy et al., 1993; Fun et al., 1997; Wang et al., 1997; Liu et al., 1998). The aggregative properties of cationic species of the dye were observed to be dependent on the anionic environment created by the metal ions. We have synthesized a rhodamine 6 G derivative, 9-[2-methoxycarbonyl)phenyl]-3,6-bis(ethylamino)-2,7-dimethylxanthylium hexachlorotin(IV) diacetonitrile solvate, (I), the structure of which is presented in this paper.

The structure of (I) consists of discrete SnCl62- anions lying on inversion centers, rhodamine 6 G cations and acetonitrile solvent molecules (Fig. 1). The xanthene ring of the cation is planar within an average deviation of 0.020 Å (maximum deviation is 0.045 (1) Å for C4), and the phenyl ring forms a dihedral angle of 85.89 (2)° with it. The C—N distances N1—C24 and N2—C26 are normal for this type of single bond, whereas C3—N1 and C11—N2 are much shorter, showing partial double-bond character; details are in the Table. A similar trend is observed in the other rhodamine 6 G cations (Wang et al., 1997; Liu et al., 1998).

Both hydrogen bonding between cations and anions and π-π stacking interactions between rhodamine 6 G cations exist. Parallel rhodamine ions related by the inversion center have an interplanar distance of 3.827 Å (Fig. 2), and are slipped such that their O1—C13 bonds exactly overlap.

Related literature top

For related literature, see: Bhagavthy et al. (1993); Fun et al. (1997); Herz (1974); Johnson & McGrane (1993); Liu et al. (1998); Nguyen & Meyer (1992); Wang et al. (1997). For the structure of the analogous ethyl ester as the chloride salt hydrate, see: Adhikesavalu et al. (2001).

Experimental top

Diphenyl tin dichloride (0.344 g, 1 mmol) was dissolved in 20 ml me thanol, and then 20 ml of methanol solution of rhodamine 6 G (0.479 g, 1 mmol) was added. The bright red solution was refluxed for 1 hr, whereafter red brown solid were obtained on cooling. Suitable size crystals were obtained by the recrystallization at room temperature from acetonitrile (yield ca 85%).

Refinement top

H atoms were placed in idealized positions with C—H distances at 0.99, 0.98 and 0.95 Å for CH2, CH3 and aromatic CH groups, respectively using a riding model. Uiso for H was assigned as 1.2 times Ueq of the attached C atoms (1.5 for methyl); a torsional parameter was refined for each methyl group. The largest positive and negative residual density peaks were located within 1 Å of the Sn1 position.

Structure description top

The excellent photo-physical properties of rhodamines are well known (Herz, 1974; Johnson & McGrane, 1993; Nguyen & Meyer, 1992), and recently metal complexes of rhodamine 6 G have been reported by several authors (Bhagavthy et al., 1993; Fun et al., 1997; Wang et al., 1997; Liu et al., 1998). The aggregative properties of cationic species of the dye were observed to be dependent on the anionic environment created by the metal ions. We have synthesized a rhodamine 6 G derivative, 9-[2-methoxycarbonyl)phenyl]-3,6-bis(ethylamino)-2,7-dimethylxanthylium hexachlorotin(IV) diacetonitrile solvate, (I), the structure of which is presented in this paper.

The structure of (I) consists of discrete SnCl62- anions lying on inversion centers, rhodamine 6 G cations and acetonitrile solvent molecules (Fig. 1). The xanthene ring of the cation is planar within an average deviation of 0.020 Å (maximum deviation is 0.045 (1) Å for C4), and the phenyl ring forms a dihedral angle of 85.89 (2)° with it. The C—N distances N1—C24 and N2—C26 are normal for this type of single bond, whereas C3—N1 and C11—N2 are much shorter, showing partial double-bond character; details are in the Table. A similar trend is observed in the other rhodamine 6 G cations (Wang et al., 1997; Liu et al., 1998).

Both hydrogen bonding between cations and anions and π-π stacking interactions between rhodamine 6 G cations exist. Parallel rhodamine ions related by the inversion center have an interplanar distance of 3.827 Å (Fig. 2), and are slipped such that their O1—C13 bonds exactly overlap.

For related literature, see: Bhagavthy et al. (1993); Fun et al. (1997); Herz (1974); Johnson & McGrane (1993); Liu et al. (1998); Nguyen & Meyer (1992); Wang et al. (1997). For the structure of the analogous ethyl ester as the chloride salt hydrate, see: Adhikesavalu et al. (2001).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Numbering scheme and ellipsoids at the 50% level. (i = 1 - x, -y, -z).
[Figure 2] Fig. 2. The unit cell, showing stacking of rhodamine cations and hydrogen bonding.
bis({6-ethylamino-10-[2-(methoxycarbonyl)phenyl]-2,7-dimethylxanthen-3- ylidene}ethanaminium) hexachloridotin(IV) acetonitrile disolvate top
Crystal data top
(C27H29N2O3)2[SnCl6]·2C2H3NZ = 1
Mr = 1272.54F(000) = 654
Triclinic, P1Dx = 1.440 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7871 (10) ÅCell parameters from 13141 reflections
b = 11.7827 (11) Åθ = 2.5–36.8°
c = 13.2893 (12) ŵ = 0.76 mm1
α = 80.583 (4)°T = 90 K
β = 77.309 (4)°Fragment, red-orange
γ = 82.467 (4)°0.28 × 0.27 × 0.25 mm
V = 1467.7 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
14412 independent reflections
Radiation source: fine-focus sealed tube12969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scans with κ offsetsθmax = 36.8°, θmin = 2.7°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 1616
Tmin = 0.815, Tmax = 0.832k = 1919
54250 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.821P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
14412 reflectionsΔρmax = 0.74 e Å3
362 parametersΔρmin = 1.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (5)
Crystal data top
(C27H29N2O3)2[SnCl6]·2C2H3Nγ = 82.467 (4)°
Mr = 1272.54V = 1467.7 (2) Å3
Triclinic, P1Z = 1
a = 9.7871 (10) ÅMo Kα radiation
b = 11.7827 (11) ŵ = 0.76 mm1
c = 13.2893 (12) ÅT = 90 K
α = 80.583 (4)°0.28 × 0.27 × 0.25 mm
β = 77.309 (4)°
Data collection top
Nonius KappaCCD
diffractometer with Oxford Cryostream
14412 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
12969 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.832Rint = 0.024
54250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.74 e Å3
14412 reflectionsΔρmin = 1.24 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.00000.00000.00926 (3)
Cl10.53900 (3)0.04133 (2)0.164917 (19)0.01502 (5)
Cl20.51522 (3)0.20275 (2)0.07554 (2)0.01362 (4)
Cl30.24802 (3)0.04038 (2)0.05732 (2)0.01381 (4)
O10.40633 (8)0.58975 (7)0.38427 (6)0.01354 (13)
O21.06811 (9)0.46854 (8)0.36352 (7)0.01853 (15)
O30.83375 (10)0.47563 (9)0.39044 (9)0.0272 (2)
N10.42673 (10)0.33594 (9)0.13842 (8)0.01642 (17)
H1N0.4731 (19)0.3059 (16)0.0897 (14)0.020*
N20.35159 (10)0.83221 (9)0.64389 (7)0.01542 (16)
H2N0.3892 (19)0.8743 (16)0.6750 (14)0.019*
C10.48174 (10)0.54161 (9)0.30004 (8)0.01118 (15)
C20.41464 (10)0.46614 (9)0.26289 (8)0.01275 (16)
H20.32060.45160.29480.015*
C30.48671 (11)0.41085 (9)0.17721 (8)0.01291 (16)
C40.63032 (11)0.43418 (9)0.12992 (8)0.01360 (16)
C50.69115 (11)0.51151 (9)0.16815 (8)0.01310 (16)
H50.78460.52750.13590.016*
C60.62049 (10)0.56913 (9)0.25423 (8)0.01122 (15)
C70.68061 (10)0.64746 (8)0.29612 (8)0.01058 (15)
C80.60111 (10)0.69685 (9)0.38325 (8)0.01108 (15)
C90.65144 (10)0.77664 (9)0.43315 (8)0.01170 (15)
H90.74290.80050.40540.014*
C100.57244 (11)0.82019 (9)0.51976 (8)0.01222 (15)
C110.43234 (11)0.78594 (9)0.56098 (8)0.01258 (16)
C120.38037 (11)0.70714 (9)0.51364 (8)0.01331 (16)
H120.28890.68320.54080.016*
C130.46414 (10)0.66475 (9)0.42693 (8)0.01159 (15)
C140.70941 (13)0.37222 (11)0.04109 (10)0.0197 (2)
H14A0.80740.39070.02320.030*
H14B0.66550.39690.01950.030*
H14C0.70690.28860.06160.030*
C150.62856 (12)0.90417 (10)0.57043 (9)0.01553 (17)
H15A0.72390.91860.53260.023*
H15B0.63100.87160.64280.023*
H15C0.56740.97700.56890.023*
C160.82316 (10)0.68456 (8)0.24669 (8)0.01064 (15)
C170.94862 (10)0.62467 (9)0.27097 (8)0.01147 (15)
C181.07793 (11)0.66730 (9)0.22341 (8)0.01360 (16)
H181.16250.62730.24020.016*
C191.08333 (11)0.76787 (9)0.15174 (8)0.01417 (17)
H191.17130.79630.11960.017*
C200.95942 (12)0.82636 (10)0.12744 (9)0.01498 (17)
H200.96290.89480.07840.018*
C210.82987 (11)0.78526 (9)0.17463 (8)0.01412 (17)
H210.74570.82600.15760.017*
C220.94161 (11)0.51676 (9)0.34679 (9)0.01400 (17)
C231.06484 (13)0.36159 (11)0.43498 (10)0.0211 (2)
H23A0.99250.37170.49760.032*
H23B1.15690.34060.45430.032*
H23C1.04290.30000.40140.032*
C240.28833 (12)0.29543 (10)0.18084 (9)0.01633 (18)
H24A0.26280.30190.25620.020*
H24B0.29310.21270.17330.020*
C250.17375 (14)0.36257 (13)0.12788 (12)0.0258 (2)
H25A0.16650.44430.13670.039*
H25B0.08360.33140.15930.039*
H25C0.19730.35540.05350.039*
C260.20472 (12)0.81093 (11)0.68565 (9)0.0185 (2)
H26A0.20000.72960.71900.022*
H26B0.15270.82340.62810.022*
C270.13662 (13)0.89136 (12)0.76511 (10)0.0232 (2)
H27A0.18710.87790.82270.035*
H27B0.03820.87630.79200.035*
H27C0.14060.97180.73190.035*
N30.01218 (17)0.87440 (15)0.42927 (13)0.0429 (4)
C280.09893 (16)0.88240 (12)0.37996 (11)0.0259 (2)
C290.23901 (15)0.89178 (14)0.31671 (11)0.0267 (3)
H29A0.27230.82030.28620.040*
H29B0.30310.90420.36030.040*
H29C0.23640.95710.26090.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01002 (4)0.00916 (4)0.00947 (4)0.00130 (3)0.00229 (3)0.00309 (3)
Cl10.01755 (10)0.01736 (11)0.01246 (10)0.00091 (8)0.00530 (8)0.00629 (8)
Cl20.01605 (10)0.01023 (9)0.01489 (10)0.00222 (7)0.00319 (8)0.00189 (7)
Cl30.01070 (9)0.01542 (10)0.01489 (10)0.00084 (7)0.00195 (7)0.00214 (8)
O10.0112 (3)0.0151 (3)0.0155 (3)0.0041 (2)0.0009 (2)0.0078 (3)
O20.0122 (3)0.0194 (4)0.0205 (4)0.0012 (3)0.0034 (3)0.0050 (3)
O30.0140 (4)0.0235 (4)0.0401 (6)0.0072 (3)0.0080 (4)0.0150 (4)
N10.0148 (4)0.0163 (4)0.0198 (4)0.0041 (3)0.0003 (3)0.0103 (3)
N20.0155 (4)0.0181 (4)0.0135 (4)0.0043 (3)0.0004 (3)0.0073 (3)
C10.0097 (3)0.0108 (4)0.0131 (4)0.0009 (3)0.0008 (3)0.0041 (3)
C20.0104 (4)0.0126 (4)0.0162 (4)0.0023 (3)0.0012 (3)0.0058 (3)
C30.0126 (4)0.0116 (4)0.0155 (4)0.0019 (3)0.0024 (3)0.0047 (3)
C40.0120 (4)0.0142 (4)0.0150 (4)0.0018 (3)0.0005 (3)0.0058 (3)
C50.0109 (4)0.0143 (4)0.0143 (4)0.0017 (3)0.0002 (3)0.0054 (3)
C60.0094 (3)0.0113 (4)0.0132 (4)0.0014 (3)0.0015 (3)0.0034 (3)
C70.0092 (3)0.0106 (4)0.0119 (4)0.0011 (3)0.0016 (3)0.0022 (3)
C80.0106 (4)0.0112 (4)0.0118 (4)0.0019 (3)0.0017 (3)0.0026 (3)
C90.0116 (4)0.0114 (4)0.0128 (4)0.0022 (3)0.0026 (3)0.0026 (3)
C100.0133 (4)0.0121 (4)0.0123 (4)0.0023 (3)0.0031 (3)0.0030 (3)
C110.0136 (4)0.0126 (4)0.0115 (4)0.0019 (3)0.0010 (3)0.0032 (3)
C120.0129 (4)0.0138 (4)0.0135 (4)0.0039 (3)0.0007 (3)0.0052 (3)
C130.0112 (4)0.0115 (4)0.0127 (4)0.0025 (3)0.0015 (3)0.0038 (3)
C140.0171 (5)0.0222 (5)0.0207 (5)0.0045 (4)0.0030 (4)0.0129 (4)
C150.0174 (4)0.0168 (4)0.0149 (4)0.0039 (3)0.0038 (3)0.0067 (3)
C160.0095 (3)0.0114 (4)0.0114 (4)0.0020 (3)0.0014 (3)0.0028 (3)
C170.0099 (4)0.0109 (4)0.0135 (4)0.0015 (3)0.0016 (3)0.0020 (3)
C180.0097 (4)0.0142 (4)0.0168 (4)0.0018 (3)0.0015 (3)0.0029 (3)
C190.0122 (4)0.0149 (4)0.0153 (4)0.0037 (3)0.0001 (3)0.0034 (3)
C200.0152 (4)0.0147 (4)0.0144 (4)0.0045 (3)0.0019 (3)0.0005 (3)
C210.0121 (4)0.0140 (4)0.0158 (4)0.0018 (3)0.0031 (3)0.0002 (3)
C220.0124 (4)0.0128 (4)0.0167 (4)0.0012 (3)0.0042 (3)0.0002 (3)
C230.0200 (5)0.0197 (5)0.0199 (5)0.0023 (4)0.0043 (4)0.0049 (4)
C240.0158 (4)0.0139 (4)0.0206 (5)0.0046 (3)0.0018 (4)0.0065 (4)
C250.0188 (5)0.0259 (6)0.0337 (7)0.0029 (4)0.0078 (5)0.0030 (5)
C260.0152 (4)0.0217 (5)0.0186 (5)0.0044 (4)0.0023 (4)0.0088 (4)
C270.0178 (5)0.0290 (6)0.0230 (5)0.0010 (4)0.0017 (4)0.0134 (5)
N30.0356 (7)0.0410 (8)0.0433 (8)0.0075 (6)0.0048 (6)0.0053 (7)
C280.0311 (6)0.0223 (6)0.0233 (6)0.0063 (5)0.0045 (5)0.0009 (4)
C290.0252 (6)0.0370 (7)0.0190 (5)0.0098 (5)0.0050 (4)0.0010 (5)
Geometric parameters (Å, º) top
Sn1—Cl32.4237 (3)C14—H14A0.9800
Sn1—Cl3i2.4237 (3)C14—H14B0.9800
Sn1—Cl1i2.4396 (3)C14—H14C0.9800
Sn1—Cl12.4396 (3)C15—H15A0.9800
Sn1—Cl2i2.4454 (3)C15—H15B0.9800
Sn1—Cl22.4454 (3)C15—H15C0.9800
O1—C11.3618 (12)C16—C211.3966 (15)
O1—C131.3632 (12)C16—C171.4080 (14)
O2—C221.3417 (13)C17—C181.4017 (14)
O2—C231.4479 (15)C17—C221.4865 (15)
O3—C221.2078 (14)C18—C191.3925 (15)
N1—C31.3443 (13)C18—H180.9500
N1—C241.4583 (15)C19—C201.3893 (16)
N1—H1N0.81 (2)C19—H190.9500
N2—C111.3553 (13)C20—C211.3955 (15)
N2—C261.4613 (15)C20—H200.9500
N2—H2N0.86 (2)C21—H210.9500
C1—C21.3802 (14)C23—H23A0.9800
C1—C61.4169 (14)C23—H23B0.9800
C2—C31.4099 (14)C23—H23C0.9800
C2—H20.9500C24—C251.5201 (18)
C3—C41.4500 (15)C24—H24A0.9900
C4—C51.3673 (14)C24—H24B0.9900
C4—C141.5027 (15)C25—H25A0.9800
C5—C61.4252 (14)C25—H25B0.9800
C5—H50.9500C25—H25C0.9800
C6—C71.4008 (14)C26—C271.5198 (16)
C7—C81.4109 (14)C26—H26A0.9900
C7—C161.4941 (14)C26—H26B0.9900
C8—C131.4128 (14)C27—H27A0.9800
C8—C91.4266 (14)C27—H27B0.9800
C9—C101.3727 (14)C27—H27C0.9800
C9—H90.9500N3—C281.146 (2)
C10—C111.4442 (15)C28—C291.450 (2)
C10—C151.5024 (14)C29—H29A0.9800
C11—C121.4043 (14)C29—H29B0.9800
C12—C131.3839 (14)C29—H29C0.9800
C12—H120.9500
Cl3—Sn1—Cl3i180.0H14A—C14—H14C109.5
Cl3—Sn1—Cl1i89.363 (10)H14B—C14—H14C109.5
Cl3i—Sn1—Cl1i90.638 (10)C10—C15—H15A109.5
Cl3—Sn1—Cl190.638 (10)C10—C15—H15B109.5
Cl3i—Sn1—Cl189.362 (10)H15A—C15—H15B109.5
Cl1i—Sn1—Cl1180.0C10—C15—H15C109.5
Cl3—Sn1—Cl2i90.291 (10)H15A—C15—H15C109.5
Cl3i—Sn1—Cl2i89.709 (10)H15B—C15—H15C109.5
Cl1i—Sn1—Cl2i90.829 (10)C21—C16—C17119.27 (9)
Cl1—Sn1—Cl2i89.170 (10)C21—C16—C7117.43 (9)
Cl3—Sn1—Cl289.709 (10)C17—C16—C7123.29 (9)
Cl3i—Sn1—Cl290.290 (10)C18—C17—C16119.71 (9)
Cl1i—Sn1—Cl289.171 (11)C18—C17—C22121.02 (9)
Cl1—Sn1—Cl290.830 (10)C16—C17—C22119.27 (9)
Cl2i—Sn1—Cl2180.0C19—C18—C17120.52 (10)
C1—O1—C13120.30 (8)C19—C18—H18119.7
C22—O2—C23114.57 (9)C17—C18—H18119.7
C3—N1—C24126.24 (9)C20—C19—C18119.63 (10)
C3—N1—H1N118.0 (13)C20—C19—H19120.2
C24—N1—H1N115.6 (13)C18—C19—H19120.2
C11—N2—C26123.53 (9)C19—C20—C21120.47 (10)
C11—N2—H2N118.5 (12)C19—C20—H20119.8
C26—N2—H2N118.0 (12)C21—C20—H20119.8
O1—C1—C2116.05 (9)C20—C21—C16120.40 (10)
O1—C1—C6121.03 (9)C20—C21—H21119.8
C2—C1—C6122.93 (9)C16—C21—H21119.8
C1—C2—C3119.50 (9)O3—C22—O2122.39 (10)
C1—C2—H2120.3O3—C22—C17124.24 (10)
C3—C2—H2120.3O2—C22—C17113.37 (9)
N1—C3—C2121.95 (10)O2—C23—H23A109.5
N1—C3—C4118.77 (9)O2—C23—H23B109.5
C2—C3—C4119.29 (9)H23A—C23—H23B109.5
C5—C4—C3119.00 (9)O2—C23—H23C109.5
C5—C4—C14121.49 (10)H23A—C23—H23C109.5
C3—C4—C14119.51 (9)H23B—C23—H23C109.5
C4—C5—C6122.88 (9)N1—C24—C25113.19 (10)
C4—C5—H5118.6N1—C24—H24A108.9
C6—C5—H5118.6C25—C24—H24A108.9
C7—C6—C1119.38 (9)N1—C24—H24B108.9
C7—C6—C5124.23 (9)C25—C24—H24B108.9
C1—C6—C5116.38 (9)H24A—C24—H24B107.8
C6—C7—C8118.96 (9)C24—C25—H25A109.5
C6—C7—C16121.31 (9)C24—C25—H25B109.5
C8—C7—C16119.63 (9)H25A—C25—H25B109.5
C7—C8—C13119.28 (9)C24—C25—H25C109.5
C7—C8—C9124.03 (9)H25A—C25—H25C109.5
C13—C8—C9116.67 (9)H25B—C25—H25C109.5
C10—C9—C8122.33 (9)N2—C26—C27110.50 (10)
C10—C9—H9118.8N2—C26—H26A109.5
C8—C9—H9118.8C27—C26—H26A109.5
C9—C10—C11119.04 (9)N2—C26—H26B109.5
C9—C10—C15121.00 (9)C27—C26—H26B109.5
C11—C10—C15119.95 (9)H26A—C26—H26B108.1
N2—C11—C12120.82 (10)C26—C27—H27A109.5
N2—C11—C10119.37 (9)C26—C27—H27B109.5
C12—C11—C10119.80 (9)H27A—C27—H27B109.5
C13—C12—C11119.16 (9)C26—C27—H27C109.5
C13—C12—H12120.4H27A—C27—H27C109.5
C11—C12—H12120.4H27B—C27—H27C109.5
O1—C13—C12115.99 (9)N3—C28—C29179.32 (18)
O1—C13—C8121.03 (9)C28—C29—H29A109.5
C12—C13—C8122.98 (9)C28—C29—H29B109.5
C4—C14—H14A109.5H29A—C29—H29B109.5
C4—C14—H14B109.5C28—C29—H29C109.5
H14A—C14—H14B109.5H29A—C29—H29C109.5
C4—C14—H14C109.5H29B—C29—H29C109.5
C13—O1—C1—C2179.54 (9)C9—C10—C11—C121.40 (15)
C13—O1—C1—C60.75 (15)C15—C10—C11—C12179.79 (10)
O1—C1—C2—C3178.69 (9)N2—C11—C12—C13177.80 (10)
C6—C1—C2—C31.61 (16)C10—C11—C12—C130.92 (16)
C24—N1—C3—C24.43 (18)C1—O1—C13—C12178.66 (9)
C24—N1—C3—C4174.88 (11)C1—O1—C13—C81.91 (15)
C1—C2—C3—N1179.50 (10)C11—C12—C13—O1179.22 (9)
C1—C2—C3—C40.18 (16)C11—C12—C13—C80.19 (16)
N1—C3—C4—C5179.10 (11)C7—C8—C13—O12.03 (15)
C2—C3—C4—C51.56 (16)C9—C8—C13—O1179.45 (9)
N1—C3—C4—C141.55 (16)C7—C8—C13—C12178.58 (10)
C2—C3—C4—C14177.78 (11)C9—C8—C13—C120.06 (15)
C3—C4—C5—C61.23 (17)C6—C7—C16—C2193.07 (12)
C14—C4—C5—C6178.10 (11)C8—C7—C16—C2183.31 (12)
O1—C1—C6—C70.26 (15)C6—C7—C16—C1788.32 (13)
C2—C1—C6—C7179.42 (10)C8—C7—C16—C1795.30 (12)
O1—C1—C6—C5178.39 (9)C21—C16—C17—C180.58 (15)
C2—C1—C6—C51.93 (15)C7—C16—C17—C18178.01 (9)
C4—C5—C6—C7179.04 (10)C21—C16—C17—C22179.32 (9)
C4—C5—C6—C10.46 (16)C7—C16—C17—C222.09 (15)
C1—C6—C7—C80.11 (15)C16—C17—C18—C190.52 (15)
C5—C6—C7—C8178.42 (10)C22—C17—C18—C19179.38 (10)
C1—C6—C7—C16176.29 (9)C17—C18—C19—C200.11 (16)
C5—C6—C7—C165.18 (16)C18—C19—C20—C210.25 (16)
C6—C7—C8—C131.00 (15)C19—C20—C21—C160.19 (16)
C16—C7—C8—C13177.46 (9)C17—C16—C21—C200.23 (15)
C6—C7—C8—C9179.40 (10)C7—C16—C21—C20178.44 (10)
C16—C7—C8—C94.14 (15)C23—O2—C22—O32.09 (17)
C7—C8—C9—C10177.98 (10)C23—O2—C22—C17178.43 (10)
C13—C8—C9—C100.46 (15)C18—C17—C22—O3179.92 (12)
C8—C9—C10—C111.18 (15)C16—C17—C22—O30.18 (17)
C8—C9—C10—C15179.97 (10)C18—C17—C22—O20.46 (15)
C26—N2—C11—C124.18 (17)C16—C17—C22—O2179.64 (9)
C26—N2—C11—C10174.54 (10)C3—N1—C24—C2596.39 (14)
C9—C10—C11—N2177.33 (10)C11—N2—C26—C27169.80 (11)
C15—C10—C11—N21.48 (15)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.81 (2)2.61 (2)3.3644 (10)156 (2)
N2—H2N···Cl1ii0.86 (2)2.75 (2)3.5603 (10)159 (2)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C27H29N2O3)2[SnCl6]·2C2H3N
Mr1272.54
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.7871 (10), 11.7827 (11), 13.2893 (12)
α, β, γ (°)80.583 (4), 77.309 (4), 82.467 (4)
V3)1467.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.28 × 0.27 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer with Oxford Cryostream
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.815, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
54250, 14412, 12969
Rint0.024
(sin θ/λ)max1)0.843
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.03
No. of reflections14412
No. of parameters362
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 1.24

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl20.81 (2)2.61 (2)3.3644 (10)156 (2)
N2—H2N···Cl1i0.86 (2)2.75 (2)3.5603 (10)159 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

RV acknowledges support for supplies by the grant JSU RISE program (NIH grant No. 1RO25GM067122). The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAdhikesavalu, D. N., Mastropaolo, D., Camerman, A. & Camerman, N. (2001). Acta Cryst. C57, 657–659.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhagavthy, V., Reddy, M. L. P., Rao, T. R. & Damodaran, A. D. (1993). Indian J. Chem. Sect. A, 32, 463–464.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chinnakali, K., Sivakumar, K., Lu, C.-M., Xiong, R.-G. & You, X.-Z. (1997). Acta Cryst. C53, 1619–1620.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerz, A. H. (1974). Photogr. Sci. Eng. 18, 323–335.  CAS Google Scholar
First citationJohnson, G. E. & McGrane, K. M. (1993). Proc. SPIE-Int. Soc. Opt. Eng. 1910, 6–14.  CAS Google Scholar
First citationLiu, C.-M., Xiong, R.-G., You, X.-Z. & Chen, W. (1998). Acta Chem. Scand. 52, 883–890.  Web of Science CrossRef CAS Google Scholar
First citationNguyen, D. H. & Meyer, Y. H. (1992). Appl. Phys. B, 55, 409–412.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, H., Xiong, R.-G., Liu, C.-M., Chen, H.-Y., You, X.-Z. & Chen, W. (1997). Inorg. Chim. Acta, 254, 183–187.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds