metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-Chloro-6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinato](pyridine-2,6-di­carboxyl­ato)nickel(II) dihydrate

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 8 November 2007; accepted 8 December 2007; online 18 December 2007)

In the title compound, [Ni(C11H9ClN3O2)(C7H3NO4)]·2H2O, the NiII atom is coordinated by two N atoms and one O atom of 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate and by one N atom and two O atoms of pyridine-2,6-dicarboxyl­ate in a distorted octa­hedral coordination. In the crystal structure, mol­ecules are linked together by inter­molecular O—H⋯O hydrogen bonds. One water mol­ecule is disordered over two positions; the site occupancies are ca 0.53 and 0.47.

Related literature

For related literature, see: Bhatia et al. (1981[Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.]); Costamagna et al. (1992[Costamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67-88.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H9ClN3O2)(C7H3NO4)]·2H2O

  • Mr = 510.51

  • Triclinic, [P \overline 1]

  • a = 7.6267 (12) Å

  • b = 11.3464 (15) Å

  • c = 13.249 (2) Å

  • α = 109.607 (3)°

  • β = 91.782 (2)°

  • γ = 101.095 (2)°

  • V = 1054.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 (2) K

  • 0.58 × 0.45 × 0.44 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.568, Tmax = 0.643

  • 5476 measured reflections

  • 3641 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.08

  • 3641 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7D⋯O2 0.85 1.81 2.655 (3) 174
O7—H7E⋯O4i 0.85 1.61 2.452 (3) 173
O8—H8A⋯O6 0.85 1.91 2.763 (6) 179
O8—H8B⋯O7ii 0.85 1.77 2.623 (7) 179
O8′—H8′A⋯O6 0.85 1.90 2.751 (7) 180
O8′—H8′B⋯O7ii 0.85 1.73 2.580 (7) 180
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been an increasing interest in the coordination chemistry due to the increased recognition of it's role in catalysis enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). We report here the crystal structure of a new nickel(II) complex with the ligand 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinic acid (CDPA) and pyridine-2,6-dicarboxylate (PDBL). (I) (Fig. 1).

The title compound, (I), consists of a central asymmetric Triclinic nickel(II) complex cation,two uncoordinated water molecules. In the cation (Fig. 1), the Ni atom is six-coordinated by three atoms and three O atoms from CDPA and PDBL ligands. The Ni(II) atom is a slightly distorted octahedral environment. The Ni—O bond length is 2.0699 (19), 2.0702 (18) and 2.2263 (18) Å, The Ni—N distances range from 1.973 (2) to 2.103 (2) Å, i.e. normal values. The C1—C2 bond length is 1.526 (3) Å, being in the normal C—C ranges in nickel carboxylate complexes. The angles around Ni(II) atom are from 76.78 (8) to 177.69 (8)°.

In the title compound, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving water O atom. (Table 1 and Fig. 2).

Related literature top

For related literature, see: Bhatia et al. (1981); Costamagna et al. (1992).

Experimental top

3-chloro-(6-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, pyridine-2,6-dicarboxylic acid and NiCl2.6H2O were available commercially and were used without further purification. Equimolar 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (0.5 mmol, 125 mg) and pyridine-2,6-dicarboxylic acid (0.5 mmol, 83 mg) were dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added NiCl2.6H2O (0.5 mmol, 113 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, dark red prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 42.25; H, 3.26; N, 10.88; O, 25.17; calc. for C18H16ClNiN4O8: C, 42.35; H, 3.16; N, 10.98; O, 25.07.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and 0.96 Å for aromatic and methyl C atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), respectively. One of two water molecules is disorder on two positions with ratio 0.531 (7)/0.469. The H atoms of water molecules were located from the difference Fourier map and constrained to ride on their parent atoms with O—H distances of 0.85 Å with and Uiso(H) = 1.2Ueq(O).

Structure description top

In recent years, there has been an increasing interest in the coordination chemistry due to the increased recognition of it's role in catalysis enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). We report here the crystal structure of a new nickel(II) complex with the ligand 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinic acid (CDPA) and pyridine-2,6-dicarboxylate (PDBL). (I) (Fig. 1).

The title compound, (I), consists of a central asymmetric Triclinic nickel(II) complex cation,two uncoordinated water molecules. In the cation (Fig. 1), the Ni atom is six-coordinated by three atoms and three O atoms from CDPA and PDBL ligands. The Ni(II) atom is a slightly distorted octahedral environment. The Ni—O bond length is 2.0699 (19), 2.0702 (18) and 2.2263 (18) Å, The Ni—N distances range from 1.973 (2) to 2.103 (2) Å, i.e. normal values. The C1—C2 bond length is 1.526 (3) Å, being in the normal C—C ranges in nickel carboxylate complexes. The angles around Ni(II) atom are from 76.78 (8) to 177.69 (8)°.

In the title compound, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving water O atom. (Table 1 and Fig. 2).

For related literature, see: Bhatia et al. (1981); Costamagna et al. (1992).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.
[3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)πicolinato](pyridine-2,6-dicarboxylato)nickel(II) dihydrate top
Crystal data top
[Ni(C11H9ClN3O2)(C7H3NO4)]·2H2OZ = 2
Mr = 510.51F(000) = 522
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6267 (12) ÅCell parameters from 3593 reflections
b = 11.3464 (15) Åθ = 2.7–28.1°
c = 13.249 (2) ŵ = 1.10 mm1
α = 109.607 (3)°T = 298 K
β = 91.782 (2)°Block, red
γ = 101.095 (2)°0.58 × 0.45 × 0.44 mm
V = 1054.2 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3641 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.568, Tmax = 0.643k = 1213
5476 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.6077P]
where P = (Fo2 + 2Fc2)/3
3641 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C11H9ClN3O2)(C7H3NO4)]·2H2Oγ = 101.095 (2)°
Mr = 510.51V = 1054.2 (3) Å3
Triclinic, P1Z = 2
a = 7.6267 (12) ÅMo Kα radiation
b = 11.3464 (15) ŵ = 1.10 mm1
c = 13.249 (2) ÅT = 298 K
α = 109.607 (3)°0.58 × 0.45 × 0.44 mm
β = 91.782 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3129 reflections with I > 2σ(I)
Tmin = 0.568, Tmax = 0.643Rint = 0.015
5476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 0.69 e Å3
3641 reflectionsΔρmin = 0.42 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.11832 (4)0.72626 (3)0.79837 (3)0.03200 (12)
Cl10.53279 (9)1.22449 (6)0.90615 (6)0.04192 (18)
N10.2169 (2)0.90224 (17)0.90552 (15)0.0256 (4)
N20.0633 (3)0.83056 (19)1.02607 (16)0.0305 (5)
N30.0044 (3)0.72177 (19)0.93738 (18)0.0340 (5)
N40.0195 (3)0.55626 (19)0.68857 (17)0.0324 (5)
O10.2745 (3)0.81200 (17)0.70655 (14)0.0430 (5)
O20.4539 (3)0.99224 (18)0.71001 (16)0.0490 (5)
O30.1242 (3)0.75292 (17)0.71801 (15)0.0429 (5)
O40.3359 (3)0.6456 (2)0.57937 (18)0.0534 (6)
O50.3096 (2)0.62668 (16)0.81841 (15)0.0421 (5)
O60.3768 (3)0.43402 (19)0.75516 (18)0.0538 (6)
O70.6231 (3)0.8470 (2)0.56152 (17)0.0604 (6)
H7D0.56800.88910.61130.073*
H7E0.63300.77860.57210.073*
O80.4876 (11)0.2126 (6)0.6424 (5)0.0688 (16)0.531 (7)
H8A0.45430.28080.67780.083*0.531 (7)
H8B0.45270.19290.57610.083*0.531 (7)
O8'0.3723 (12)0.1814 (7)0.6398 (6)0.0688 (16)0.469 (7)
H8'A0.37320.25940.67530.083*0.469 (7)
H8'B0.37340.17230.57350.083*0.469 (7)
C10.3524 (3)0.9265 (2)0.7521 (2)0.0330 (6)
C20.3239 (3)0.9862 (2)0.87041 (19)0.0266 (5)
C30.3961 (3)1.1083 (2)0.9421 (2)0.0279 (5)
C40.3575 (3)1.1402 (2)1.0492 (2)0.0312 (5)
H40.40621.22171.09820.037*
C50.2487 (3)1.0525 (2)1.0825 (2)0.0322 (5)
H50.22221.07301.15360.039*
C60.1791 (3)0.9317 (2)1.00644 (19)0.0263 (5)
C70.0512 (5)0.9129 (3)1.2297 (2)0.0551 (8)
H7A0.00740.87941.28040.083*
H7B0.01500.99071.23370.083*
H7C0.17900.93041.24640.083*
C80.0002 (3)0.8168 (3)1.1183 (2)0.0379 (6)
C90.1110 (4)0.6988 (3)1.0864 (2)0.0450 (7)
H90.17530.66201.13080.054*
C100.1108 (3)0.6430 (3)0.9752 (3)0.0410 (7)
C110.2136 (5)0.5145 (3)0.9029 (3)0.0621 (9)
H11A0.32470.52330.87320.093*
H11B0.23810.45830.94350.093*
H11C0.14390.47940.84560.093*
C120.2015 (4)0.6548 (3)0.6448 (2)0.0388 (6)
C130.1315 (4)0.5346 (2)0.6252 (2)0.0371 (6)
C140.2037 (4)0.4148 (3)0.5500 (2)0.0472 (7)
H140.30890.40010.50610.057*
C150.1136 (4)0.3176 (3)0.5424 (2)0.0507 (8)
H150.15980.23540.49380.061*
C160.0447 (4)0.3423 (3)0.6069 (2)0.0444 (7)
H160.10670.27770.60110.053*
C170.1093 (3)0.4646 (2)0.6802 (2)0.0338 (6)
C180.2816 (4)0.5107 (2)0.7570 (2)0.0367 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0352 (2)0.02198 (18)0.0315 (2)0.00137 (13)0.00454 (13)0.00317 (13)
Cl10.0429 (4)0.0296 (3)0.0491 (4)0.0041 (3)0.0020 (3)0.0152 (3)
N10.0259 (10)0.0221 (9)0.0269 (10)0.0044 (8)0.0007 (8)0.0067 (8)
N20.0267 (10)0.0299 (10)0.0330 (11)0.0014 (8)0.0001 (8)0.0114 (9)
N30.0297 (11)0.0275 (11)0.0424 (13)0.0007 (9)0.0021 (9)0.0127 (9)
N40.0356 (11)0.0258 (10)0.0309 (11)0.0027 (9)0.0042 (9)0.0064 (9)
O10.0560 (12)0.0331 (10)0.0287 (10)0.0004 (9)0.0038 (8)0.0020 (8)
O20.0706 (14)0.0365 (10)0.0397 (11)0.0088 (10)0.0212 (10)0.0133 (9)
O30.0491 (11)0.0340 (10)0.0396 (11)0.0115 (9)0.0080 (9)0.0045 (9)
O40.0479 (12)0.0526 (12)0.0547 (13)0.0107 (10)0.0183 (10)0.0143 (10)
O50.0400 (10)0.0319 (10)0.0439 (11)0.0059 (8)0.0115 (8)0.0020 (8)
O60.0575 (13)0.0448 (11)0.0565 (13)0.0222 (10)0.0095 (10)0.0095 (10)
O70.0828 (16)0.0639 (14)0.0482 (13)0.0434 (13)0.0183 (11)0.0208 (11)
O80.125 (5)0.054 (3)0.0393 (15)0.038 (4)0.026 (4)0.0198 (18)
O8'0.125 (5)0.054 (3)0.0393 (15)0.038 (4)0.026 (4)0.0198 (18)
C10.0389 (14)0.0304 (13)0.0285 (13)0.0087 (11)0.0026 (11)0.0079 (11)
C20.0254 (12)0.0248 (11)0.0292 (13)0.0060 (9)0.0005 (10)0.0087 (10)
C30.0242 (12)0.0236 (11)0.0349 (13)0.0034 (9)0.0018 (10)0.0102 (10)
C40.0319 (13)0.0223 (11)0.0313 (13)0.0050 (10)0.0049 (10)0.0001 (10)
C50.0322 (13)0.0338 (13)0.0264 (13)0.0071 (11)0.0011 (10)0.0052 (10)
C60.0240 (12)0.0269 (12)0.0285 (13)0.0070 (9)0.0009 (9)0.0096 (10)
C70.066 (2)0.066 (2)0.0377 (17)0.0116 (17)0.0136 (15)0.0236 (15)
C80.0324 (14)0.0488 (16)0.0423 (15)0.0122 (12)0.0077 (11)0.0261 (13)
C90.0386 (15)0.0526 (17)0.0578 (19)0.0116 (13)0.0130 (13)0.0357 (15)
C100.0301 (14)0.0351 (14)0.0636 (19)0.0043 (11)0.0000 (12)0.0267 (14)
C110.0520 (19)0.0402 (17)0.089 (3)0.0094 (14)0.0024 (18)0.0270 (17)
C120.0379 (14)0.0392 (15)0.0368 (15)0.0067 (12)0.0032 (12)0.0117 (12)
C130.0390 (14)0.0323 (13)0.0342 (14)0.0013 (11)0.0065 (11)0.0086 (11)
C140.0498 (17)0.0377 (15)0.0416 (16)0.0027 (13)0.0157 (13)0.0061 (12)
C150.065 (2)0.0276 (14)0.0418 (17)0.0026 (13)0.0135 (14)0.0016 (12)
C160.0595 (18)0.0278 (13)0.0404 (16)0.0092 (12)0.0028 (13)0.0058 (12)
C170.0416 (14)0.0275 (12)0.0292 (13)0.0064 (11)0.0000 (11)0.0067 (10)
C180.0417 (15)0.0324 (14)0.0345 (14)0.0080 (12)0.0020 (11)0.0103 (11)
Geometric parameters (Å, º) top
Ni1—N41.973 (2)O8'—H8'A0.8500
Ni1—N12.0052 (19)O8'—H8'B0.8500
Ni1—O12.0699 (19)C1—C21.526 (3)
Ni1—O52.0702 (18)C2—C31.384 (3)
Ni1—N32.103 (2)C3—C41.398 (4)
Ni1—O32.2263 (18)C4—C51.369 (4)
Cl1—C31.725 (2)C4—H40.9300
N1—C61.321 (3)C5—C61.392 (3)
N1—C21.346 (3)C5—H50.9300
N2—C81.373 (3)C7—C81.497 (4)
N2—N31.384 (3)C7—H7A0.9600
N2—C61.410 (3)C7—H7B0.9600
N3—C101.325 (3)C7—H7C0.9600
N4—C171.329 (3)C8—C91.359 (4)
N4—C131.336 (3)C9—C101.395 (4)
O1—C11.248 (3)C9—H90.9300
O2—C11.245 (3)C10—C111.494 (4)
O3—C121.231 (3)C11—H11A0.9600
O4—C121.286 (3)C11—H11B0.9600
O5—C181.266 (3)C11—H11C0.9600
O6—C181.231 (3)C12—C131.506 (4)
O7—H7D0.8500C13—C141.382 (4)
O7—H7E0.8500C14—C151.386 (4)
O8—H8A0.8500C14—H140.9300
O8—H8B0.8500C15—C161.382 (4)
O8—H8'A1.1315C15—H150.9300
O8—H8'B1.1478C16—C171.384 (4)
O8'—H8A1.1152C16—H160.9300
O8'—H8B1.0864C17—C181.527 (4)
N4—Ni1—N1177.69 (8)C5—C4—C3120.5 (2)
N4—Ni1—O199.98 (8)C5—C4—H4119.7
N1—Ni1—O178.32 (7)C3—C4—H4119.7
N4—Ni1—O579.21 (8)C4—C5—C6117.8 (2)
N1—Ni1—O5102.38 (7)C4—C5—H5121.1
O1—Ni1—O592.69 (8)C6—C5—H5121.1
N4—Ni1—N3104.83 (9)N1—C6—C5121.2 (2)
N1—Ni1—N376.78 (8)N1—C6—N2113.3 (2)
O1—Ni1—N3154.97 (8)C5—C6—N2125.4 (2)
O5—Ni1—N395.02 (8)C8—C7—H7A109.5
N4—Ni1—O375.95 (8)C8—C7—H7B109.5
N1—Ni1—O3102.36 (7)H7A—C7—H7B109.5
O1—Ni1—O388.72 (8)C8—C7—H7C109.5
O5—Ni1—O3154.99 (7)H7A—C7—H7C109.5
N3—Ni1—O394.14 (8)H7B—C7—H7C109.5
C6—N1—C2122.4 (2)C9—C8—N2105.7 (2)
C6—N1—Ni1120.33 (15)C9—C8—C7128.8 (3)
C2—N1—Ni1117.26 (16)N2—C8—C7125.5 (2)
C8—N2—N3110.9 (2)C8—C9—C10107.7 (2)
C8—N2—C6132.7 (2)C8—C9—H9126.2
N3—N2—C6116.48 (19)C10—C9—H9126.2
C10—N3—N2105.3 (2)N3—C10—C9110.4 (2)
C10—N3—Ni1141.53 (19)N3—C10—C11121.8 (3)
N2—N3—Ni1112.36 (14)C9—C10—C11127.8 (3)
C17—N4—C13121.4 (2)C10—C11—H11A109.5
C17—N4—Ni1117.36 (17)C10—C11—H11B109.5
C13—N4—Ni1121.21 (17)H11A—C11—H11B109.5
C1—O1—Ni1116.72 (16)C10—C11—H11C109.5
C12—O3—Ni1112.55 (17)H11A—C11—H11C109.5
C18—O5—Ni1115.55 (16)H11B—C11—H11C109.5
H7D—O7—H7E108.5O3—C12—O4125.8 (3)
H8A—O8—H8B108.4O3—C12—C13118.5 (2)
H8A—O8—H8'A32.4O4—C12—C13115.6 (2)
H8B—O8—H8'A96.6N4—C13—C14121.4 (2)
H8A—O8—H8'B98.1N4—C13—C12111.6 (2)
H8B—O8—H8'B30.6C14—C13—C12127.0 (2)
H8'A—O8—H8'B74.4C13—C14—C15117.6 (3)
H8A—O8'—H8B77.5C13—C14—H14121.2
H8A—O8'—H8'A33.1C15—C14—H14121.2
H8B—O8'—H8'A100.0C16—C15—C14120.2 (2)
H8A—O8'—H8'B100.6C16—C15—H15119.9
H8B—O8'—H8'B33.4C14—C15—H15119.9
H8'A—O8'—H8'B108.4C15—C16—C17119.0 (3)
O2—C1—O1125.5 (2)C15—C16—H16120.5
O2—C1—C2118.7 (2)C17—C16—H16120.5
O1—C1—C2115.8 (2)N4—C17—C16120.3 (2)
N1—C2—C3119.1 (2)N4—C17—C18113.0 (2)
N1—C2—C1111.90 (19)C16—C17—C18126.7 (2)
C3—C2—C1129.0 (2)O6—C18—O5126.6 (2)
C2—C3—C4119.0 (2)O6—C18—C17118.6 (2)
C2—C3—Cl1123.27 (19)O5—C18—C17114.8 (2)
C4—C3—Cl1117.74 (18)
O1—Ni1—N1—C6177.34 (18)N1—C2—C3—C40.9 (3)
O5—Ni1—N1—C687.12 (18)C1—C2—C3—C4176.9 (2)
N3—Ni1—N1—C65.20 (17)N1—C2—C3—Cl1179.25 (17)
O3—Ni1—N1—C696.60 (17)C1—C2—C3—Cl13.0 (3)
O1—Ni1—N1—C21.49 (16)C2—C3—C4—C50.6 (3)
O5—Ni1—N1—C291.70 (17)Cl1—C3—C4—C5179.48 (18)
N3—Ni1—N1—C2175.97 (18)C3—C4—C5—C60.1 (4)
O3—Ni1—N1—C284.57 (17)C2—N1—C6—C50.1 (3)
C8—N2—N3—C100.9 (3)Ni1—N1—C6—C5178.85 (17)
C6—N2—N3—C10178.7 (2)C2—N1—C6—N2179.42 (19)
C8—N2—N3—Ni1171.27 (16)Ni1—N1—C6—N21.8 (3)
C6—N2—N3—Ni19.1 (2)C4—C5—C6—N10.2 (3)
N4—Ni1—N3—C106.4 (3)C4—C5—C6—N2179.1 (2)
N1—Ni1—N3—C10175.3 (3)C8—N2—C6—N1175.4 (2)
O1—Ni1—N3—C10178.8 (2)N3—N2—C6—N15.2 (3)
O5—Ni1—N3—C1073.8 (3)C8—N2—C6—C55.3 (4)
O3—Ni1—N3—C1083.0 (3)N3—N2—C6—C5174.1 (2)
N4—Ni1—N3—N2174.29 (15)N3—N2—C8—C90.9 (3)
N1—Ni1—N3—N27.43 (15)C6—N2—C8—C9178.6 (2)
O1—Ni1—N3—N213.3 (3)N3—N2—C8—C7177.1 (3)
O5—Ni1—N3—N294.14 (15)C6—N2—C8—C73.4 (4)
O3—Ni1—N3—N2109.16 (15)N2—C8—C9—C100.6 (3)
O1—Ni1—N4—C1792.1 (2)C7—C8—C9—C10177.4 (3)
O5—Ni1—N4—C171.28 (19)N2—N3—C10—C90.6 (3)
N3—Ni1—N4—C1791.1 (2)Ni1—N3—C10—C9167.8 (2)
O3—Ni1—N4—C17178.3 (2)N2—N3—C10—C11178.6 (2)
O1—Ni1—N4—C1387.7 (2)Ni1—N3—C10—C1113.0 (4)
O5—Ni1—N4—C13178.6 (2)C8—C9—C10—N30.0 (3)
N3—Ni1—N4—C1389.0 (2)C8—C9—C10—C11179.1 (3)
O3—Ni1—N4—C131.6 (2)Ni1—O3—C12—O4174.0 (2)
N4—Ni1—O1—C1176.92 (19)Ni1—O3—C12—C133.5 (3)
N1—Ni1—O1—C11.47 (19)C17—N4—C13—C141.8 (4)
O5—Ni1—O1—C1103.56 (19)Ni1—N4—C13—C14178.3 (2)
N3—Ni1—O1—C14.4 (3)C17—N4—C13—C12176.2 (2)
O3—Ni1—O1—C1101.42 (19)Ni1—N4—C13—C123.7 (3)
N4—Ni1—O3—C121.21 (19)O3—C12—C13—N44.7 (4)
N1—Ni1—O3—C12177.16 (19)O4—C12—C13—N4173.0 (2)
O1—Ni1—O3—C1299.4 (2)O3—C12—C13—C14177.4 (3)
O5—Ni1—O3—C125.8 (3)O4—C12—C13—C144.9 (4)
N3—Ni1—O3—C12105.5 (2)N4—C13—C14—C150.1 (5)
N4—Ni1—O5—C180.09 (19)C12—C13—C14—C15177.6 (3)
N1—Ni1—O5—C18178.38 (19)C13—C14—C15—C161.4 (5)
O1—Ni1—O5—C1899.8 (2)C14—C15—C16—C171.3 (5)
N3—Ni1—O5—C18104.1 (2)C13—N4—C17—C161.9 (4)
O3—Ni1—O5—C187.0 (3)Ni1—N4—C17—C16178.2 (2)
Ni1—O1—C1—O2178.6 (2)C13—N4—C17—C18177.8 (2)
Ni1—O1—C1—C21.2 (3)Ni1—N4—C17—C182.1 (3)
C6—N1—C2—C30.6 (3)C15—C16—C17—N40.4 (4)
Ni1—N1—C2—C3179.41 (16)C15—C16—C17—C18179.3 (3)
C6—N1—C2—C1177.5 (2)Ni1—O5—C18—O6179.8 (2)
Ni1—N1—C2—C11.3 (2)Ni1—O5—C18—C170.9 (3)
O2—C1—C2—N1177.6 (2)N4—C17—C18—O6179.1 (2)
O1—C1—C2—N10.0 (3)C16—C17—C18—O60.6 (4)
O2—C1—C2—C30.3 (4)N4—C17—C18—O52.0 (3)
O1—C1—C2—C3177.9 (2)C16—C17—C18—O5178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7D···O20.851.812.655 (3)174
O7—H7E···O4i0.851.612.452 (3)173
O8—H8A···O60.851.912.763 (6)179
O8—H8B···O7ii0.851.772.623 (7)179
O8—H8A···O60.851.902.751 (7)180
O8—H8B···O7ii0.851.732.580 (7)180
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C11H9ClN3O2)(C7H3NO4)]·2H2O
Mr510.51
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6267 (12), 11.3464 (15), 13.249 (2)
α, β, γ (°)109.607 (3), 91.782 (2), 101.095 (2)
V3)1054.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.58 × 0.45 × 0.44
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.568, 0.643
No. of measured, independent and
observed [I > 2σ(I)] reflections
5476, 3641, 3129
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.08
No. of reflections3641
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.42

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7D···O20.851.812.655 (3)173.5
O7—H7E···O4i0.851.612.452 (3)173.2
O8—H8A···O60.851.912.763 (6)179.0
O8—H8B···O7ii0.851.772.623 (7)179.1
O8'—H8'A···O60.851.902.751 (7)179.6
O8'—H8'B···O7ii0.851.732.580 (7)179.5
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry, and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012 and 0509ZD047).

References

First citationBhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.  CSD CrossRef Web of Science Google Scholar
First citationCostamagna, J., Vargas, J., Latorre, R. & Alvarado, A. (1992). Coord. Chem. Rev. 119, 67–88.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds