organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

t-3-Ethyl-r-2,c-6-bis­­(2-fur­yl)piperidin-4-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India
*Correspondence e-mail: athiru@vsnl.net

(Received 1 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title mol­ecule, C15H17NO3, the piperidine ring adopts a chair conformation. The dihedral angle between the two furyl rings is 72.4 (1)°. The ethyl group and the furyl rings have equatorial orientations. Mol­ecules are linked by N—H⋯O hydrogen bonds.

Related literature

For a related crystal structure, see Thiruvalluvar et al. (2007[Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO3

  • Mr = 259.30

  • Monoclinic, P 21 /c

  • a = 5.1620 (2) Å

  • b = 20.2855 (9) Å

  • c = 12.9825 (5) Å

  • β = 91.128 (3)°

  • V = 1359.18 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 (2) K

  • 0.41 × 0.36 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.965, Tmax = 1.000 (expected range = 0.950–0.984)

  • 11183 measured reflections

  • 4354 independent reflections

  • 2961 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.194

  • S = 1.07

  • 4354 reflections

  • 174 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.867 (17) 2.234 (17) 3.0991 (14) 176.2 (15)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Thiruvalluvar et al. (2007) have reported a crystal structure of t3-benzyl-r2,c-6-di-2-furylpiperidin-4-one wherein the piperidine ring is in chair form. In the title molecule, C15H17NO3, Fig.1., the piperidine ring adopts a chair conformation. The dihedral angle between the two furyl rings is 72.4 (1)°. The ethyl group in the 3-position and the furyl rings at positions 2 and 6 have equatorial orientations. Molecules are linked by N1—H1···O4 hydrogen bonds, Fig.2., forming an infinite one-dimensional chain with the base vector (0 0 1).

Related literature top

For related crystal structure, see Thiruvalluvar et al. (2007).

Experimental top

A mixture of ammonium acetate (100 mmol, 7.7 g), furfuraldehyde (200 mmol, 16.5 ml) and methyl propyl ketone (100 mmol, 10.6 ml) in distilled ethanol was heated first to boiling. After cooling, the viscous liquid obtained was dissolved in ether (200 ml) and shaken with 10 ml of conc. hydrochloric acid. The precipitated hydrochloride of the title compound was removed by filtration and washed first with 40 cc mixture of ethanol and ether (1:1 v/v) and then with ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluted with water. It was recrystallized from alcohol. The yield of the isolated product was 13.5 g (70%).

Refinement top

The N-bound H atom was found in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.95–1.00 Å and Uiso = 1.2–1.5Ueq(C).

Structure description top

Thiruvalluvar et al. (2007) have reported a crystal structure of t3-benzyl-r2,c-6-di-2-furylpiperidin-4-one wherein the piperidine ring is in chair form. In the title molecule, C15H17NO3, Fig.1., the piperidine ring adopts a chair conformation. The dihedral angle between the two furyl rings is 72.4 (1)°. The ethyl group in the 3-position and the furyl rings at positions 2 and 6 have equatorial orientations. Molecules are linked by N1—H1···O4 hydrogen bonds, Fig.2., forming an infinite one-dimensional chain with the base vector (0 0 1).

For related crystal structure, see Thiruvalluvar et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis showing the N—H···O (dashed lines) hydrogen bonds.
t-3-Ethyl-r-2,c-6-bis(2-furyl)piperidin-4-one top
Crystal data top
C15H17NO3F(000) = 552
Mr = 259.30Dx = 1.267 Mg m3
Monoclinic, P21/cMelting point: 320 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.1620 (2) ÅCell parameters from 5794 reflections
b = 20.2855 (9) Åθ = 4.7–32.4°
c = 12.9825 (5) ŵ = 0.09 mm1
β = 91.128 (3)°T = 200 K
V = 1359.18 (10) Å3Plate, colourless
Z = 40.41 × 0.36 × 0.18 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
4354 independent reflections
Radiation source: fine-focus sealed tube2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.5081 pixels mm-1θmax = 32.4°, θmin = 4.7°
phi and ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 2923
Tmin = 0.965, Tmax = 1.000l = 1818
11183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1195P)2]
where P = (Fo2 + 2Fc2)/3
4354 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H17NO3V = 1359.18 (10) Å3
Mr = 259.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1620 (2) ŵ = 0.09 mm1
b = 20.2855 (9) ÅT = 200 K
c = 12.9825 (5) Å0.41 × 0.36 × 0.18 mm
β = 91.128 (3)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4354 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2961 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 1.000Rint = 0.072
11183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.41 e Å3
4354 reflectionsΔρmin = 0.26 e Å3
174 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.7516 (2)0.19399 (5)0.70845 (7)0.0423 (3)
O220.65339 (19)0.10804 (6)0.32132 (8)0.0390 (3)
O620.43126 (18)0.40669 (5)0.50031 (7)0.0332 (3)
N10.6097 (2)0.24278 (5)0.41720 (8)0.0246 (3)
C20.7958 (2)0.19114 (6)0.44599 (9)0.0236 (3)
C30.6869 (3)0.15193 (6)0.53734 (9)0.0262 (3)
C40.6510 (2)0.20108 (6)0.62400 (9)0.0273 (3)
C50.4922 (3)0.26132 (6)0.59650 (9)0.0278 (3)
C60.5885 (2)0.29338 (6)0.49665 (9)0.0237 (3)
C130.8496 (4)0.09209 (8)0.57028 (12)0.0435 (5)
C140.6945 (5)0.04322 (9)0.63338 (16)0.0622 (7)
C210.8466 (2)0.14932 (6)0.35453 (9)0.0259 (3)
C230.7409 (3)0.07793 (9)0.23394 (12)0.0468 (5)
C240.9769 (4)0.09963 (9)0.21229 (12)0.0485 (5)
C251.0469 (3)0.14554 (8)0.29020 (12)0.0382 (4)
C610.4080 (2)0.34542 (6)0.45684 (9)0.0258 (3)
C630.2484 (2)0.44582 (5)0.45159 (9)0.0374 (4)
C640.1172 (2)0.41118 (5)0.38123 (9)0.0405 (5)
C650.2180 (3)0.34610 (7)0.38376 (11)0.0356 (4)
H10.657 (3)0.2606 (8)0.3599 (13)0.028 (4)*
H20.961890.212500.468730.0282*
H30.511270.135460.516020.0314*
H5A0.504370.293630.653530.0333*
H5B0.308080.248590.587270.0333*
H60.763020.313340.510110.0284*
H13A1.001350.107250.611640.0521*
H13B0.914490.069680.508160.0521*
H14A0.805080.005790.652820.0932*
H14B0.545860.027450.592230.0932*
H14C0.632850.064980.695680.0932*
H230.646570.046190.194610.0561*
H241.078790.086810.155540.0582*
H251.205380.169180.295910.0458*
H630.220220.491110.466250.0449*
H640.018590.427000.337410.0486*
H650.162600.310030.342160.0427*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0628 (7)0.0404 (6)0.0232 (5)0.0127 (5)0.0095 (4)0.0034 (4)
O220.0381 (5)0.0437 (6)0.0353 (5)0.0029 (4)0.0006 (4)0.0178 (5)
O620.0413 (6)0.0228 (4)0.0352 (5)0.0053 (4)0.0039 (4)0.0016 (4)
N10.0316 (5)0.0236 (5)0.0185 (4)0.0023 (4)0.0002 (3)0.0006 (4)
C20.0274 (6)0.0222 (6)0.0210 (5)0.0013 (4)0.0016 (4)0.0024 (4)
C30.0372 (7)0.0208 (6)0.0205 (5)0.0027 (5)0.0012 (4)0.0015 (4)
C40.0352 (6)0.0271 (6)0.0197 (5)0.0005 (5)0.0015 (4)0.0006 (4)
C50.0369 (7)0.0249 (6)0.0217 (5)0.0054 (5)0.0018 (4)0.0024 (4)
C60.0285 (6)0.0194 (5)0.0230 (5)0.0009 (4)0.0026 (4)0.0022 (4)
C130.0684 (10)0.0324 (7)0.0295 (6)0.0188 (7)0.0000 (6)0.0034 (6)
C140.1052 (16)0.0309 (8)0.0497 (10)0.0023 (9)0.0165 (10)0.0132 (8)
C210.0292 (6)0.0262 (6)0.0221 (5)0.0047 (5)0.0009 (4)0.0013 (4)
C230.0644 (11)0.0453 (9)0.0303 (7)0.0166 (8)0.0064 (7)0.0178 (7)
C240.0660 (11)0.0504 (10)0.0295 (7)0.0227 (8)0.0118 (7)0.0069 (6)
C250.0408 (8)0.0346 (7)0.0397 (8)0.0044 (6)0.0124 (6)0.0004 (6)
C610.0324 (6)0.0200 (5)0.0250 (5)0.0007 (5)0.0019 (4)0.0008 (4)
C630.0446 (8)0.0267 (7)0.0410 (8)0.0102 (6)0.0034 (6)0.0049 (5)
C640.0420 (8)0.0370 (8)0.0423 (8)0.0091 (6)0.0049 (6)0.0100 (6)
C650.0396 (7)0.0304 (7)0.0364 (7)0.0023 (6)0.0083 (5)0.0008 (5)
Geometric parameters (Å, º) top
O4—C41.2124 (15)C61—C651.3512 (19)
O22—C211.3656 (16)C63—C641.3276 (15)
O22—C231.3727 (19)C64—C651.4192 (18)
O62—C611.3693 (16)C2—H21.0000
O62—C631.3775 (14)C3—H31.0000
N1—C21.4648 (15)C5—H5A0.9900
N1—C61.4608 (16)C5—H5B0.9900
N1—H10.867 (17)C6—H61.0000
C2—C211.4868 (17)C13—H13A0.9900
C2—C31.5432 (17)C13—H13B0.9900
C3—C41.5174 (17)C14—H14A0.9800
C3—C131.532 (2)C14—H14B0.9800
C4—C51.5104 (18)C14—H14C0.9800
C5—C61.5414 (17)C23—H230.9500
C6—C611.4936 (16)C24—H240.9500
C13—C141.523 (3)C25—H250.9500
C21—C251.3440 (19)C63—H630.9500
C23—C241.331 (3)C64—H640.9500
C24—C251.417 (2)C65—H650.9500
O4···C143.222 (2)H1···C652.875 (16)
O4···C65i3.3796 (18)H1···O4vi2.234 (17)
O4···N1ii3.0991 (14)H2···H5Bvii2.4500
O22···C25iii3.2394 (19)H2···H62.3600
O22···C133.3835 (19)H3···O222.7000
O22···N13.0137 (16)H3···H14B2.4100
O62···C23ii3.4148 (18)H5A···C23ii3.0500
O4···H65i2.7200H5A···H25v2.5500
O4···H1ii2.234 (17)H5B···H2iii2.4500
O4···H14C2.6900H6···C65vii2.9700
O4···H13A2.5300H6···H22.3600
O22···H32.7000H13A···O42.5300
O22···H25iii2.6400H13B···O222.8600
O22···H13B2.8600H13B···C212.5900
O62···H63iv2.7700H14A···C24ix2.9700
O62···H23ii2.9000H14B···H32.4100
O62···H24v2.7400H14C···O42.6900
N1···O223.0137 (16)H14C···C42.9200
N1···O4vi3.0991 (14)H14C···H64i2.5500
N1···H652.8400H23···C63xii2.8400
C13···O223.3835 (19)H23···H63xii2.4800
C14···O43.222 (2)H23···O62vi2.9000
C23···O62vi3.4148 (18)H24···O62xiii2.7400
C25···O22vii3.2394 (19)H24···C63xiii2.8800
C65···O4viii3.3796 (18)H25···O22vii2.6400
C4···H14C2.9200H25···H5Axiii2.5500
C14···H64i3.0700H63···H23x2.4800
C21···H13B2.5900H63···O62iv2.7700
C23···H5Avi3.0500H63···C63xi2.9500
C24···H14Aix2.9700H63···H63xi2.4800
C63···H23x2.8400H64···C14viii3.0700
C63···H63xi2.9500H64···H14Cviii2.5500
C63···H24v2.8800H65···N12.8400
C65···H12.875 (16)H65···O4viii2.7200
C65···H6iii2.9700
C21—O22—C23106.48 (11)C2—C3—H3108.00
C61—O62—C63106.26 (9)C4—C3—H3108.00
C2—N1—C6112.35 (9)C13—C3—H3108.00
C2—N1—H1108.8 (10)C4—C5—H5A109.00
C6—N1—H1109.8 (11)C4—C5—H5B109.00
N1—C2—C3108.52 (9)C6—C5—H5A109.00
N1—C2—C21109.23 (9)C6—C5—H5B109.00
C3—C2—C21113.10 (10)H5A—C5—H5B108.00
C2—C3—C4106.43 (10)N1—C6—H6109.00
C4—C3—C13112.82 (11)C5—C6—H6109.00
C2—C3—C13114.64 (12)C61—C6—H6109.00
O4—C4—C5122.04 (11)C3—C13—H13A109.00
O4—C4—C3122.42 (11)C3—C13—H13B109.00
C3—C4—C5115.47 (10)C14—C13—H13A109.00
C4—C5—C6110.96 (11)C14—C13—H13B109.00
N1—C6—C5109.10 (10)H13A—C13—H13B108.00
C5—C6—C61112.33 (10)C13—C14—H14A109.00
N1—C6—C61107.89 (9)C13—C14—H14B109.00
C3—C13—C14112.00 (16)C13—C14—H14C109.00
O22—C21—C25109.56 (11)H14A—C14—H14B109.00
O22—C21—C2117.57 (9)H14A—C14—H14C109.00
C2—C21—C25132.75 (12)H14B—C14—H14C109.00
O22—C23—C24110.18 (14)O22—C23—H23125.00
C23—C24—C25106.76 (15)C24—C23—H23125.00
C21—C25—C24107.02 (14)C23—C24—H24127.00
O62—C61—C65109.68 (11)C25—C24—H24127.00
C6—C61—C65133.59 (12)C21—C25—H25126.00
O62—C61—C6116.74 (10)C24—C25—H25126.00
O62—C63—C64110.28 (9)O62—C63—H63125.00
C63—C64—C65107.13 (10)C64—C63—H63125.00
C61—C65—C64106.65 (12)C63—C64—H64126.00
N1—C2—H2109.00C65—C64—H64126.00
C3—C2—H2109.00C61—C65—H65127.00
C21—C2—H2109.00C64—C65—H65127.00
C21—O22—C23—C240.64 (18)C4—C3—C13—C1477.18 (17)
C23—O22—C21—C2176.79 (12)C2—C3—C13—C14160.78 (13)
C23—O22—C21—C250.33 (16)C2—C3—C4—O4123.63 (12)
C63—O62—C61—C650.00 (14)C13—C3—C4—C5179.97 (13)
C63—O62—C61—C6179.71 (9)C3—C4—C5—C649.62 (14)
C61—O62—C63—C640.05 (14)O4—C4—C5—C6127.45 (12)
C6—N1—C2—C21168.73 (9)C4—C5—C6—N150.06 (13)
C6—N1—C2—C367.56 (12)C4—C5—C6—C61169.65 (10)
C2—N1—C6—C561.28 (12)C5—C6—C61—C6597.83 (16)
C2—N1—C6—C61176.43 (9)C5—C6—C61—O6282.53 (12)
C21—C2—C3—C1353.53 (14)N1—C6—C61—O62157.19 (10)
C3—C2—C21—O2249.48 (14)N1—C6—C61—C6522.46 (18)
N1—C2—C21—C25103.97 (16)C2—C21—C25—C24175.66 (14)
N1—C2—C3—C459.65 (12)O22—C21—C25—C240.07 (16)
C3—C2—C21—C25135.07 (15)O22—C23—C24—C250.7 (2)
N1—C2—C3—C13174.89 (11)C23—C24—C25—C210.46 (19)
C21—C2—C3—C4178.99 (9)O62—C61—C65—C640.07 (16)
N1—C2—C21—O2271.49 (13)C6—C61—C65—C64179.60 (12)
C13—C3—C4—O42.92 (18)O62—C63—C64—C650.09 (13)
C2—C3—C4—C553.42 (14)C63—C64—C65—C610.10 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x1, y+1/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x+1, y, z; (viii) x1, y+1/2, z1/2; (ix) x+2, y, z+1; (x) x+1, y+1/2, z+1/2; (xi) x, y+1, z+1; (xii) x+1, y1/2, z+1/2; (xiii) x+1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4vi0.867 (17)2.234 (17)3.0991 (14)176.2 (15)
Symmetry code: (vi) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H17NO3
Mr259.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.1620 (2), 20.2855 (9), 12.9825 (5)
β (°) 91.128 (3)
V3)1359.18 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.36 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.965, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11183, 4354, 2961
Rint0.072
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.194, 1.07
No. of reflections4354
No. of parameters174
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.867 (17)2.234 (17)3.0991 (14)176.2 (15)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer. JJ is grateful to the UGC [F. No. 30–71/2004(SR)], New Delhi, India, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds