organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­cyano­phenyl 2,3,4,6-tetra-O-acetyl-α-D-gluco­pyran­oside

aKey Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: zhangfs@mail.tsinghua.edu.cn

(Received 10 September 2007; accepted 10 October 2007; online 6 December 2007)

The title compound, C22H22N2O10, was prepared by the glycosidation method through nitrite displacement on substituted nitro­phthalonitrile. The mol­ecule contains a benzene ring, two nitrile groups and an acetyl-protected D-glucose fragment which adopts a chair conformation. The absolute configuration was determined by the use of D-glucose as starting material. All substituents of the protected sugar are in equatorial positions, with the exclusive presence of the α-anomer. The crystal packing is stabilized by C—H⋯O and C—H⋯N hydrogen-bonding inter­actions.

Related literature

For related literature, see: Alvarez-Mico et al. (2006[Alvarez-Mico, X., Calvete, M. J. F., Hanack, M. & Ziegler, T. (2006). Tetrahedron Lett. 47, 3283-3286.], 2007[Alvarez-Mico, X., Calvete, M. J. F., Hanack, M. & Ziegler, T. (2007). Carbohydr. Res. 342, 440-447.]); Burkhardt et al. (2007[Burkhardt, A., Buchholz, A., Görls, H. & Plass, W. (2007). Acta Cryst. E63, o387-o388.]); Ribeiro et al. (2006[Ribeiro, A. O., Tomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Iamamoto, Y. & Torres, T. (2006). Tetrahedron Lett. 47, 9177-9180.]); Huang et al. (2005[Huang, X., Zhao, F., Wang, R.-J., Zhang, F. & Tung, C.-H. (2005). Acta Cryst. E61, o4384-o4386.]); Dinçer et al. (2004[Dinçer, M., Ağar, A., Akdemir, N., Ağar, E. & Özdemir, N. (2004). Acta Cryst. E60, o79-o80.]); Berven et al. (1990[Berven, L. A., Dolphin, D. & Withers, S. G. (1990). Can. J. Chem. 68, 1859-1866.]); Ocak et al. (2004[Ocak, N., Işık, Ş., Akdemir, N., Kantar, C. & Ağar, E. (2004). Acta Cryst. E60, o361-o362.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N2O10

  • Mr = 474.42

  • Orthorhombic, P 21 21 21

  • a = 8.175 (2) Å

  • b = 10.2076 (10) Å

  • c = 29.562 (6) Å

  • V = 2466.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.6 × 0.5 × 0.1 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 5277 measured reflections

  • 2639 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.112

  • S = 1.06

  • 2639 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2 0.93 2.57 3.016 (7) 110
C11—H11A⋯O6 0.98 2.27 2.675 (6) 103
C12—H12A⋯O8 0.98 2.30 2.713 (8) 104
C13—H13A⋯O1 0.98 2.40 2.800 (6) 104
C20—H20A⋯O10 0.97 2.23 2.617 (7) 102
C5—H5A⋯O6i 0.93 2.41 3.224 (8) 146
C9—H9A⋯O6i 0.98 2.46 3.346 (7) 151
C10—H10A⋯O10ii 0.98 2.40 3.283 (7) 149
C15—H15C⋯N1iii 0.96 2.58 3.465 (9) 153
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phthalocyanine has been used in applications based upon their close structural relationship of the phthalocyanines with porphyrin complexes. However, a serious limitation of phthalocyanine is their insolubility. Phthalocyanine compounds are made soluble in a variety of solvents by appropriate peripheral substitution. The synthesis routes of amphiprotic glucose-appended phthalocyanines include the preparation of dicyanophenyl glucopyranoside as precursor and further macrocyclization forming phthalocyanine-glucoconjugates. These glucose-appended phthalocyanines are highly soluble and self-assemble in water (Ribeiro et al., 2006). Aggregation of these phthalocyanine compounds in solution and in the solid state significantly affects the optical properties of such solutions and films. The crystal structure of phthalocyanine is difficult to attain. The structure of the precursors could provide some clues to elucidate the self-assembly of phthalocyanine-glucocongates. The precursor of the phthalocyanine-glucoconjugates is the title compound, 3,4-dicyanophenyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside, which was prepared by the glycosidation method through nitrite displacement on substituted nitrophthalonitrile. The main products were exclusively the thermodynamically favored α-anomers obtained by reversible SNAr reactions in polar aprotic solvents like Me2SO or DMF in the presence of a base (Berven et al., 1990). We report here the crystal structure of the title compound.

In the title compound (Fig. 1) the 2,3,4,6-tetra-O-acetyl-D-glucopyranoside ring mean plane is oriented exactly perpendicular to that of the phthalocyanine ring. The four acetyl groups with atoms are in equatorial positions (Burkhardt et al., 2007). The crystal structure reveals a 4C1 chair conformation for the sugar ring, with the 3,4-dicyanophenyl substituent at C9 in the vertical position, corresponding to the exclusive presence of the α-anomer of the saccharide, in agreement with the 1H NMR results (Alvarez-Mico et al., 2006, 2007). The C1N1 (1.132 (8) Å) and C2N2 (1.130 (8) Å) bond distances are consistent with a triple bond character, and are in good agreement with the literature values (Dinçer et al., 2004; Ocak et al., 2004; Huang et al., 2005).

The crystal structure (Fig. 2) is stabilized by intra- and intermolecular C—H···O and C—H···N hydrogen bonding interactions (Table 1).

Related literature top

For related literature, see: Alvarez-Mico et al. (2006, 2007); Burkhardt et al. (2007); Ribeiro et al. (2006); Huang et al. (2005); Dinçer et al. (2004); Berven et al. (1990); Ocak et al. (2004).

Experimental top

A suspension of anhydrous D-glucose (25 g, 0.15 mol) and anhydrous sodium acetate (12.5 g, 0.15 mol) in 100 mL (1.1 mol) of acetic anhydride was slowly heated to reflux temperature in a round-bottomed flask. Then the heater was removed and the reaction left to reflux. Once the colour of the solution changed from colourless to yellow, the solution was poured onto l liter of crushed ice and stirred for 2 h. The solid product was filtered off, washed with water and recrystallized from ethanol to yield colourless crystals of 1,2,3,4,6-penta-O-acetyl-D-glucopyran (27 g; yield 50%; m. p. 135° C). To a solution of ethylenediamine (1.2 g, 20 mmol) in DMF (10 ml), glacial acetic acid (1.2 g, 20 mmol) was added dropwise, then 1,2,3,4,6-penta-O-acetyl-D-glucopyran (7.8 g, 20 mmol) was added and the mixture stirred at RT for 5 h. Water (100 ml) was added and the mixture extracted with acetic ester. The organic phase was subsequently washed with 2 N HCl, saturated NaHCO3 solution and concentrated in vacuo. The compound obtained (5.0 g, 14.4 mmol) and 4-nitrophthalodinitrile (1.8 g, 10.4 mmol) were dissolved in DMF (15 ml), the new roasted anhydrous potassium carbonate (4 g) was added to the solution as three batches in 1 h, and stirred at R. T. for 48 h. The mixture was poured into ice water, and the precipitated product was filtered off, washed with water and recrystallized from toluene to give the title compound (2.4 g; yield 50%; m. p. 159–160° C; m/z 497.23 [M+Na]+).

Refinement top

All hydrogen atoms were generated geometrically with C—H = 0.93–0.97 Å and included in the refinement with Uiso(H) = 1.2Ueq(aromatic and methylene C) or 1.5Ueq(C) (methyl C). In the absence of significant anomalous dispersion effects Friedel pairs were merged prior to the final refinement. The absolute configuration was determined by the use of D-glucose as starting material.

Structure description top

Phthalocyanine has been used in applications based upon their close structural relationship of the phthalocyanines with porphyrin complexes. However, a serious limitation of phthalocyanine is their insolubility. Phthalocyanine compounds are made soluble in a variety of solvents by appropriate peripheral substitution. The synthesis routes of amphiprotic glucose-appended phthalocyanines include the preparation of dicyanophenyl glucopyranoside as precursor and further macrocyclization forming phthalocyanine-glucoconjugates. These glucose-appended phthalocyanines are highly soluble and self-assemble in water (Ribeiro et al., 2006). Aggregation of these phthalocyanine compounds in solution and in the solid state significantly affects the optical properties of such solutions and films. The crystal structure of phthalocyanine is difficult to attain. The structure of the precursors could provide some clues to elucidate the self-assembly of phthalocyanine-glucocongates. The precursor of the phthalocyanine-glucoconjugates is the title compound, 3,4-dicyanophenyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside, which was prepared by the glycosidation method through nitrite displacement on substituted nitrophthalonitrile. The main products were exclusively the thermodynamically favored α-anomers obtained by reversible SNAr reactions in polar aprotic solvents like Me2SO or DMF in the presence of a base (Berven et al., 1990). We report here the crystal structure of the title compound.

In the title compound (Fig. 1) the 2,3,4,6-tetra-O-acetyl-D-glucopyranoside ring mean plane is oriented exactly perpendicular to that of the phthalocyanine ring. The four acetyl groups with atoms are in equatorial positions (Burkhardt et al., 2007). The crystal structure reveals a 4C1 chair conformation for the sugar ring, with the 3,4-dicyanophenyl substituent at C9 in the vertical position, corresponding to the exclusive presence of the α-anomer of the saccharide, in agreement with the 1H NMR results (Alvarez-Mico et al., 2006, 2007). The C1N1 (1.132 (8) Å) and C2N2 (1.130 (8) Å) bond distances are consistent with a triple bond character, and are in good agreement with the literature values (Dinçer et al., 2004; Ocak et al., 2004; Huang et al., 2005).

The crystal structure (Fig. 2) is stabilized by intra- and intermolecular C—H···O and C—H···N hydrogen bonding interactions (Table 1).

For related literature, see: Alvarez-Mico et al. (2006, 2007); Burkhardt et al. (2007); Ribeiro et al. (2006); Huang et al. (2005); Dinçer et al. (2004); Berven et al. (1990); Ocak et al. (2004).

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: XSCANS (Bruker, 1996); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 35% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the α axis. H atoms are omitted for clarity.
3,4-Dicyanophenyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside top
Crystal data top
C22H22N2O10Dx = 1.277 Mg m3
Mr = 474.42Melting point = 159–160 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 46 reflections
a = 8.175 (2) Åθ = 2.8–12.4°
b = 10.2076 (10) ŵ = 0.10 mm1
c = 29.562 (6) ÅT = 295 K
V = 2466.9 (8) Å3Plate, colorless
Z = 40.6 × 0.5 × 0.1 mm
F(000) = 992
Data collection top
Bruker P4
diffractometer
Rint = 0.056
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.1°
Graphite monochromatorh = 99
ω scansk = 1212
5277 measured reflectionsl = 3535
2639 independent reflections3 standard reflections every 97 reflections
1348 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.001P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
2639 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H22N2O10V = 2466.9 (8) Å3
Mr = 474.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.175 (2) ŵ = 0.10 mm1
b = 10.2076 (10) ÅT = 295 K
c = 29.562 (6) Å0.6 × 0.5 × 0.1 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.056
5277 measured reflections3 standard reflections every 97 reflections
2639 independent reflections intensity decay: none
1348 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
2639 reflectionsΔρmin = 0.18 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4684 (4)0.4661 (4)0.41414 (12)0.0701 (11)
O20.3965 (4)0.5287 (4)0.34103 (13)0.0670 (10)
O30.5901 (5)0.7056 (4)0.43421 (13)0.0681 (10)
O40.4002 (7)0.8623 (5)0.43616 (17)0.1139 (18)
O50.8048 (4)0.7509 (4)0.35957 (13)0.0712 (11)
O61.0210 (5)0.6471 (5)0.38745 (18)0.1015 (16)
O70.8182 (5)0.5260 (4)0.30029 (14)0.0796 (12)
O80.8314 (7)0.6754 (6)0.2448 (2)0.144 (2)
O90.4682 (5)0.5005 (4)0.24344 (15)0.0786 (12)
O100.5851 (7)0.3686 (5)0.19353 (16)0.1202 (19)
N10.0545 (8)0.0194 (6)0.4681 (2)0.126 (2)
N20.2037 (8)0.2687 (7)0.3913 (3)0.152 (3)
C10.0363 (10)0.0603 (7)0.4593 (2)0.093 (2)
C20.0744 (9)0.2681 (7)0.4048 (3)0.102 (3)
C30.1489 (8)0.1642 (6)0.4468 (2)0.0793 (19)
C40.0938 (7)0.2671 (6)0.4191 (2)0.0792 (18)
C50.1966 (7)0.3700 (6)0.4070 (2)0.0753 (17)
H5A0.15930.43820.38890.090*
C60.3586 (7)0.3678 (6)0.4229 (2)0.0657 (16)
C70.4143 (8)0.2645 (6)0.4483 (2)0.0771 (18)
H7A0.52270.26310.45780.093*
C80.3113 (8)0.1623 (6)0.4598 (2)0.086 (2)
H8A0.35150.09190.47630.103*
C90.4184 (7)0.5689 (5)0.38547 (19)0.0619 (15)
H9A0.31450.60380.39680.074*
C100.5487 (6)0.6784 (5)0.38800 (19)0.0591 (15)
H10A0.50690.75800.37350.071*
C110.7051 (6)0.6337 (5)0.36433 (18)0.0585 (14)
H11A0.76210.56760.38250.070*
C120.6682 (7)0.5818 (5)0.31787 (19)0.0654 (16)
H12A0.62830.65190.29810.078*
C130.5412 (7)0.4711 (5)0.32161 (18)0.0634 (15)
H13A0.58310.40440.34250.076*
C140.5095 (9)0.8067 (6)0.4539 (2)0.0795 (19)
C150.5743 (8)0.8297 (6)0.50044 (19)0.096 (2)
H15A0.51510.90030.51430.145*
H15B0.68820.85190.49880.145*
H15C0.56110.75160.51820.145*
C160.9631 (8)0.7418 (7)0.3712 (2)0.0781 (18)
C171.0494 (8)0.8681 (6)0.3598 (2)0.112 (3)
H17A1.16290.86120.36780.168*
H17B1.00040.93890.37630.168*
H17C1.03980.88480.32790.168*
C180.8902 (9)0.5880 (9)0.2644 (3)0.102 (3)
C191.0554 (7)0.5319 (8)0.2574 (3)0.130 (3)
H19A1.10760.57550.23250.194*
H19B1.04620.44010.25090.194*
H19C1.11960.54380.28430.194*
C200.5023 (8)0.4075 (6)0.27799 (19)0.0785 (18)
H20A0.59390.35340.26880.094*
H20B0.40810.35080.28190.094*
C210.5168 (8)0.4719 (7)0.2017 (2)0.0803 (18)
C220.4807 (12)0.5694 (7)0.1681 (2)0.126 (3)
H22A0.52170.54110.13930.189*
H22B0.53180.65070.17630.189*
H22C0.36450.58170.16620.189*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.061 (2)0.062 (2)0.088 (3)0.007 (2)0.002 (2)0.012 (2)
O20.058 (2)0.065 (2)0.078 (3)0.006 (2)0.002 (2)0.002 (2)
O30.072 (3)0.069 (2)0.064 (2)0.007 (2)0.003 (2)0.005 (2)
O40.117 (4)0.113 (4)0.111 (4)0.050 (4)0.010 (3)0.029 (3)
O50.057 (2)0.065 (3)0.091 (3)0.009 (2)0.005 (2)0.008 (2)
O60.062 (3)0.089 (3)0.153 (4)0.006 (3)0.017 (3)0.007 (3)
O70.069 (3)0.080 (3)0.089 (3)0.021 (3)0.002 (2)0.007 (3)
O80.106 (4)0.159 (5)0.167 (6)0.018 (4)0.039 (4)0.058 (5)
O90.092 (3)0.071 (3)0.072 (3)0.011 (3)0.000 (3)0.008 (2)
O100.153 (5)0.099 (4)0.108 (4)0.027 (4)0.019 (4)0.021 (3)
N10.121 (6)0.075 (4)0.181 (7)0.021 (4)0.017 (5)0.017 (4)
N20.077 (4)0.114 (5)0.266 (9)0.018 (5)0.039 (6)0.042 (6)
C10.104 (6)0.066 (4)0.109 (5)0.010 (5)0.005 (5)0.004 (4)
C20.071 (5)0.074 (5)0.162 (7)0.012 (4)0.010 (5)0.016 (5)
C30.082 (5)0.056 (4)0.101 (5)0.009 (4)0.015 (4)0.005 (4)
C40.071 (4)0.058 (4)0.109 (5)0.004 (4)0.004 (4)0.006 (4)
C50.076 (4)0.063 (4)0.086 (4)0.002 (4)0.003 (4)0.010 (4)
C60.067 (4)0.060 (4)0.070 (4)0.005 (3)0.006 (3)0.003 (3)
C70.079 (4)0.066 (4)0.086 (4)0.003 (4)0.005 (4)0.003 (4)
C80.087 (5)0.063 (4)0.107 (5)0.004 (4)0.006 (4)0.013 (4)
C90.057 (4)0.061 (3)0.068 (4)0.005 (3)0.001 (3)0.004 (3)
C100.058 (4)0.052 (3)0.067 (4)0.003 (3)0.006 (3)0.005 (3)
C110.051 (3)0.054 (4)0.070 (4)0.000 (3)0.005 (3)0.005 (3)
C120.060 (4)0.060 (4)0.076 (4)0.010 (3)0.001 (3)0.004 (3)
C130.065 (4)0.056 (3)0.069 (4)0.007 (3)0.005 (3)0.001 (3)
C140.076 (5)0.071 (4)0.092 (5)0.004 (4)0.007 (4)0.001 (4)
C150.114 (6)0.100 (5)0.075 (4)0.009 (5)0.009 (4)0.007 (4)
C160.062 (4)0.089 (5)0.084 (5)0.006 (4)0.005 (4)0.003 (4)
C170.097 (5)0.109 (6)0.130 (6)0.048 (5)0.012 (5)0.001 (5)
C180.066 (5)0.126 (8)0.114 (7)0.000 (5)0.022 (5)0.002 (6)
C190.065 (5)0.180 (8)0.144 (7)0.011 (6)0.018 (5)0.035 (7)
C200.090 (5)0.063 (4)0.083 (4)0.002 (4)0.013 (4)0.002 (4)
C210.092 (5)0.072 (4)0.077 (5)0.016 (4)0.005 (4)0.007 (4)
C220.204 (9)0.103 (5)0.072 (4)0.014 (7)0.009 (5)0.010 (5)
Geometric parameters (Å, º) top
O1—C61.371 (6)C9—C101.546 (6)
O1—C91.409 (6)C9—H9A0.9800
O2—C91.388 (6)C10—C111.528 (7)
O2—C131.441 (6)C10—H10A0.9800
O3—C141.355 (7)C11—C121.503 (7)
O3—C101.434 (6)C11—H11A0.9800
O4—C141.182 (7)C12—C131.539 (7)
O5—C161.343 (7)C12—H12A0.9800
O5—C111.454 (6)C13—C201.478 (7)
O6—C161.178 (7)C13—H13A0.9800
O7—C181.369 (8)C14—C151.493 (8)
O7—C121.449 (6)C15—H15A0.9600
O8—C181.168 (9)C15—H15B0.9600
O9—C211.327 (7)C15—H15C0.9600
O9—C201.422 (6)C16—C171.509 (8)
O10—C211.218 (7)C17—H17A0.9600
N1—C11.132 (8)C17—H17B0.9600
N2—C21.130 (8)C17—H17C0.9600
C1—C31.452 (9)C18—C191.481 (9)
C2—C41.439 (9)C19—H19A0.9600
C3—C81.382 (8)C19—H19B0.9600
C3—C41.407 (8)C19—H19C0.9600
C4—C51.392 (7)C20—H20A0.9700
C5—C61.406 (8)C20—H20B0.9700
C5—H5A0.9300C21—C221.438 (8)
C6—C71.371 (7)C22—H22A0.9600
C7—C81.383 (8)C22—H22B0.9600
C7—H7A0.9300C22—H22C0.9600
C8—H8A0.9300
C6—O1—C9118.0 (4)C13—C12—H12A110.8
C9—O2—C13113.1 (4)O2—C13—C20110.5 (5)
C14—O3—C10116.2 (5)O2—C13—C12106.4 (4)
C16—O5—C11117.3 (5)C20—C13—C12113.9 (5)
C18—O7—C12117.4 (5)O2—C13—H13A108.6
C21—O9—C20117.5 (5)C20—C13—H13A108.6
N1—C1—C3178.0 (9)C12—C13—H13A108.6
N2—C2—C4176.4 (10)O4—C14—O3122.9 (7)
C8—C3—C4118.7 (6)O4—C14—C15127.0 (7)
C8—C3—C1121.9 (7)O3—C14—C15110.1 (6)
C4—C3—C1119.4 (6)C14—C15—H15A109.5
C5—C4—C3121.3 (6)C14—C15—H15B109.5
C5—C4—C2119.7 (6)H15A—C15—H15B109.5
C3—C4—C2118.9 (6)C14—C15—H15C109.5
C4—C5—C6118.1 (6)H15A—C15—H15C109.5
C4—C5—H5A121.0H15B—C15—H15C109.5
C6—C5—H5A121.0O6—C16—O5123.3 (7)
O1—C6—C7116.7 (6)O6—C16—C17127.2 (6)
O1—C6—C5122.8 (6)O5—C16—C17109.5 (6)
C7—C6—C5120.6 (6)C16—C17—H17A109.5
C6—C7—C8120.8 (6)C16—C17—H17B109.5
C6—C7—H7A119.6H17A—C17—H17B109.5
C8—C7—H7A119.6C16—C17—H17C109.5
C3—C8—C7120.4 (6)H17A—C17—H17C109.5
C3—C8—H8A119.8H17B—C17—H17C109.5
C7—C8—H8A119.8O8—C18—O7124.1 (7)
O2—C9—O1112.7 (4)O8—C18—C19127.0 (9)
O2—C9—C10110.4 (4)O7—C18—C19108.8 (8)
O1—C9—C10108.1 (4)C18—C19—H19A109.5
O2—C9—H9A108.5C18—C19—H19B109.5
O1—C9—H9A108.5H19A—C19—H19B109.5
C10—C9—H9A108.5C18—C19—H19C109.5
O3—C10—C11107.2 (4)H19A—C19—H19C109.5
O3—C10—C9110.4 (4)H19B—C19—H19C109.5
C11—C10—C9109.8 (4)O9—C20—C13112.1 (5)
O3—C10—H10A109.8O9—C20—H20A109.2
C11—C10—H10A109.8C13—C20—H20A109.2
C9—C10—H10A109.8O9—C20—H20B109.2
O5—C11—C12108.3 (4)C13—C20—H20B109.2
O5—C11—C10105.5 (4)H20A—C20—H20B107.9
C12—C11—C10110.8 (4)O10—C21—O9120.9 (7)
O5—C11—H11A110.7O10—C21—C22123.8 (7)
C12—C11—H11A110.7O9—C21—C22115.4 (7)
C10—C11—H11A110.7C21—C22—H22A109.5
O7—C12—C11107.3 (4)C21—C22—H22B109.5
O7—C12—C13107.9 (4)H22A—C22—H22B109.5
C11—C12—C13109.2 (4)C21—C22—H22C109.5
O7—C12—H12A110.8H22A—C22—H22C109.5
C11—C12—H12A110.8H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O20.932.573.016 (7)110
C11—H11A···O60.982.272.675 (6)103
C12—H12A···O80.982.302.713 (8)104
C13—H13A···O10.982.402.800 (6)104
C20—H20A···O100.972.232.617 (7)102
C5—H5A···O6i0.932.413.224 (8)146
C9—H9A···O6i0.982.463.346 (7)151
C10—H10A···O10ii0.982.403.283 (7)149
C15—H15C···N1iii0.962.583.465 (9)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H22N2O10
Mr474.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)8.175 (2), 10.2076 (10), 29.562 (6)
V3)2466.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.6 × 0.5 × 0.1
Data collection
DiffractometerBruker P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5277, 2639, 1348
Rint0.056
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.112, 1.06
No. of reflections2639
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O20.932.573.016 (7)109.8
C11—H11A···O60.982.272.675 (6)103.4
C12—H12A···O80.982.302.713 (8)104.1
C13—H13A···O10.982.402.800 (6)103.7
C20—H20A···O100.972.232.617 (7)102.4
C5—H5A···O6i0.932.413.224 (8)145.6
C9—H9A···O6i0.982.463.346 (7)150.9
C10—H10A···O10ii0.982.403.283 (7)149.3
C15—H15C···N1iii0.962.583.465 (9)152.6
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported financially by the National Science Fund of China (grant Nos. 20333080 and 20572059) and the National Basic Research Program of China (grant No. 2007CB808000).

References

First citationAlvarez-Mico, X., Calvete, M. J. F., Hanack, M. & Ziegler, T. (2006). Tetrahedron Lett. 47, 3283–3286.  Web of Science CrossRef CAS Google Scholar
First citationAlvarez-Mico, X., Calvete, M. J. F., Hanack, M. & Ziegler, T. (2007). Carbohydr. Res. 342, 440–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerven, L. A., Dolphin, D. & Withers, S. G. (1990). Can. J. Chem. 68, 1859–1866.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1996). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurkhardt, A., Buchholz, A., Görls, H. & Plass, W. (2007). Acta Cryst. E63, o387–o388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDinçer, M., Ağar, A., Akdemir, N., Ağar, E. & Özdemir, N. (2004). Acta Cryst. E60, o79–o80.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, X., Zhao, F., Wang, R.-J., Zhang, F. & Tung, C.-H. (2005). Acta Cryst. E61, o4384–o4386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOcak, N., Işık, Ş., Akdemir, N., Kantar, C. & Ağar, E. (2004). Acta Cryst. E60, o361–o362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRibeiro, A. O., Tomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Iamamoto, Y. & Torres, T. (2006). Tetrahedron Lett. 47, 9177–9180.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds