metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-2-(benzyl­imino­meth­yl)-4-chloro­phenolato]bis­[chloridocopper(II)]

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: mingtian8001@163.com

(Received 28 October 2007; accepted 21 November 2007; online 18 December 2007)

The title complex, [Cu2(C14H11ClNO)2Cl2], has a centrosymmetric dinuclear structure where two symmetry-related copper(II) metal centres are bridged by the O atoms of two phen­oxy groups. Each copper(II) centre displays a distorted tetra­hedral coordination provided by one N atom and two O atoms from two Schiff base ligands and by one Cl atom. The Cu⋯Cu separation is 3.0702 (9) Å.

Related literature

For related literature, see: Bencini & Mani (1988[Bencini, A. & Mani, F. (1988). Inorg. Chim. Acta, 154, 215-219.]); Jiang et al. (2004[Jiang, Y.-M., Zeng, J.-L. & Yu, K.-B. (2004). Acta Cryst. C60, m543-m545.]); Liu & Su (1996[Liu, S.-J. & Su, C.-C. (1996). Polyhedron, 15, 1141-1149.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C14H11ClNO)2Cl2]

  • Mr = 687.36

  • Monoclinic, C 2/c

  • a = 22.572 (3) Å

  • b = 9.3964 (13) Å

  • c = 16.649 (2) Å

  • β = 130.724 (2)°

  • V = 2676.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 298 (2) K

  • 0.55 × 0.43 × 0.30 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.379, Tmax = 0.548

  • 6545 measured reflections

  • 2364 independent reflections

  • 1910 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.04

  • 2364 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9334 (16)
Cu1—N1 1.953 (2)
Cu1—Cl2 2.1934 (8)
O1—Cu1—N1 93.43 (8)
O1—Cu1—Cl2 149.90 (6)
N1—Cu1—Cl2 100.42 (6)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past two decades, considerable attention has been paid to the chemistry of heterocyclic compounds and complexes with metal ions due to their chelating ability and their potentially beneficial chemical and biological activities. Dinuclear copper(II) units exist on active sites of many metalloenzymes and metalloproteins such as, for example, hemocyanin, tyrosinase and cytochrome oxidase. Schiff base complexes containing salicylaldehyde and amine derivatives have been also often reported. The complexes of salicylaldehyde with polyamines and bis(phenoxy)-bridged dinuclear copper(II) complexes are sparse. As an extension of our work on the structural characterization of Schiff base complexes, the crystal structure of a new dinuclear copper(II) compound is reported here.

The molecular structure of the title complex consists of two centrosymmetrically related [CuL]2+ units [where L is 4-chloro-2-(benzylaminethyl)-phenolato], which are bridged by the oxygen atoms of two phenoxy groups in such a way as to define an NCuO2CuN core. A chloride anion completes the coordination around each Cu atom (Fig. 1), thus defining a distorted tetrahedral geometry for the metal centres, with angles subtended at the copper(II) atoms in the range 93.43 (8)–149.90 (6)° (Table 1). The Cu—N, Cu—O, Cu—Cl bond lengths of 1.953 (2), 1.9334 (16) and 2.1934 (8) Å respectively (Table 1) are comparable with those reported previously (Bencini & Mani, 1988; Jiang et al., 2004; Liu & Su, 1996). The Cu···Cu separation within the dimer is 3.0702 (9) Å. The crystal packing (Fig. 2) is governed only by van der Waals interactions.

Related literature top

For related literature, see: Bencini & Mani (1988); Jiang et al. (2004); Liu & Su (1996).

Experimental top

5-Chlorosalicylaldehyde (0.1 mmol, 15.7 mg), CuCl2.2H2O (0.1 mmol, 17.05 mg) and benzylamine (0.1 mmol, 10.7 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of the title compound were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 48.88%, H 3.20%, N 4.07%; calculated for (Cu2C28H22N2O2Cl4): C48.9%, H 3.20%, N 4.08%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

During the past two decades, considerable attention has been paid to the chemistry of heterocyclic compounds and complexes with metal ions due to their chelating ability and their potentially beneficial chemical and biological activities. Dinuclear copper(II) units exist on active sites of many metalloenzymes and metalloproteins such as, for example, hemocyanin, tyrosinase and cytochrome oxidase. Schiff base complexes containing salicylaldehyde and amine derivatives have been also often reported. The complexes of salicylaldehyde with polyamines and bis(phenoxy)-bridged dinuclear copper(II) complexes are sparse. As an extension of our work on the structural characterization of Schiff base complexes, the crystal structure of a new dinuclear copper(II) compound is reported here.

The molecular structure of the title complex consists of two centrosymmetrically related [CuL]2+ units [where L is 4-chloro-2-(benzylaminethyl)-phenolato], which are bridged by the oxygen atoms of two phenoxy groups in such a way as to define an NCuO2CuN core. A chloride anion completes the coordination around each Cu atom (Fig. 1), thus defining a distorted tetrahedral geometry for the metal centres, with angles subtended at the copper(II) atoms in the range 93.43 (8)–149.90 (6)° (Table 1). The Cu—N, Cu—O, Cu—Cl bond lengths of 1.953 (2), 1.9334 (16) and 2.1934 (8) Å respectively (Table 1) are comparable with those reported previously (Bencini & Mani, 1988; Jiang et al., 2004; Liu & Su, 1996). The Cu···Cu separation within the dimer is 3.0702 (9) Å. The crystal packing (Fig. 2) is governed only by van der Waals interactions.

For related literature, see: Bencini & Mani (1988); Jiang et al. (2004); Liu & Su (1996).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation (0.5 - x, 1.5 - y, -z).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. H atoms are omitted for clarity.
Bis[µ-2-(benzyliminomethyl)-4-chlorophenolato]bis[chloridocopper(II)] top
Crystal data top
[Cu2(C14H11ClNO)2Cl2]F(000) = 1384
Mr = 687.36Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3416 reflections
a = 22.572 (3) Åθ = 2.4–27.9°
b = 9.3964 (13) ŵ = 2.02 mm1
c = 16.649 (2) ÅT = 298 K
β = 130.724 (2)°Block, brown
V = 2676.2 (6) Å30.55 × 0.43 × 0.30 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2364 independent reflections
Radiation source: fine-focus sealed tube1910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2625
Tmin = 0.379, Tmax = 0.548k = 1111
6545 measured reflectionsl = 1219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0314P)2 + 2.8567P]
where P = (Fo2 + 2Fc2)/3
2364 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu2(C14H11ClNO)2Cl2]V = 2676.2 (6) Å3
Mr = 687.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.572 (3) ŵ = 2.02 mm1
b = 9.3964 (13) ÅT = 298 K
c = 16.649 (2) Å0.55 × 0.43 × 0.30 mm
β = 130.724 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1910 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.548Rint = 0.027
6545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
2364 reflectionsΔρmin = 0.35 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.219816 (18)0.74677 (3)0.06012 (3)0.03095 (12)
Cl10.39728 (5)0.05623 (8)0.19873 (7)0.0525 (2)
Cl20.21728 (4)0.90619 (8)0.15408 (6)0.0452 (2)
N10.17933 (12)0.5810 (2)0.08161 (17)0.0312 (5)
O10.27824 (11)0.63270 (18)0.03605 (15)0.0349 (4)
C10.20487 (14)0.4550 (3)0.09374 (19)0.0300 (6)
H10.17970.38310.09980.036*
C20.26936 (14)0.4117 (3)0.09912 (19)0.0277 (5)
C30.30487 (14)0.5008 (3)0.0735 (2)0.0287 (6)
C40.37020 (15)0.4504 (3)0.0898 (2)0.0350 (6)
H40.39500.50900.07470.042*
C50.39847 (15)0.3151 (3)0.1281 (2)0.0374 (6)
H50.44220.28290.13900.045*
C60.36163 (16)0.2276 (3)0.1502 (2)0.0345 (6)
C70.29761 (15)0.2734 (3)0.1358 (2)0.0303 (6)
H70.27310.21280.15030.036*
C80.11883 (16)0.6011 (3)0.0906 (2)0.0401 (7)
H8A0.14240.64770.15750.048*
H8B0.10050.50840.09180.048*
C90.04988 (15)0.6876 (3)0.0021 (2)0.0327 (6)
C100.02317 (17)0.6889 (3)0.0990 (2)0.0433 (7)
H100.04900.63540.11500.052*
C110.04162 (19)0.7684 (3)0.1780 (3)0.0541 (9)
H110.05830.76930.24590.065*
C120.08114 (18)0.8456 (3)0.1565 (3)0.0550 (8)
H120.12490.89880.20940.066*
C130.0555 (2)0.8436 (4)0.0561 (3)0.0708 (11)
H130.08240.89480.04090.085*
C140.0098 (2)0.7667 (4)0.0228 (3)0.0599 (10)
H140.02710.76810.09100.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0324 (2)0.0343 (2)0.0364 (2)0.00520 (14)0.02696 (18)0.00292 (15)
Cl10.0578 (5)0.0436 (4)0.0659 (5)0.0233 (4)0.0447 (5)0.0165 (4)
Cl20.0497 (4)0.0505 (4)0.0440 (4)0.0045 (4)0.0343 (4)0.0057 (4)
N10.0265 (11)0.0389 (13)0.0367 (13)0.0068 (10)0.0243 (11)0.0070 (10)
O10.0424 (11)0.0340 (10)0.0467 (11)0.0088 (9)0.0371 (10)0.0076 (9)
C10.0253 (13)0.0392 (15)0.0290 (14)0.0019 (12)0.0192 (13)0.0055 (12)
C20.0226 (13)0.0338 (14)0.0243 (13)0.0034 (11)0.0142 (12)0.0009 (11)
C30.0279 (14)0.0315 (14)0.0261 (14)0.0026 (11)0.0174 (12)0.0002 (11)
C40.0305 (14)0.0419 (16)0.0402 (16)0.0016 (12)0.0264 (14)0.0000 (13)
C50.0297 (14)0.0448 (16)0.0422 (17)0.0096 (13)0.0255 (14)0.0030 (14)
C60.0326 (15)0.0370 (15)0.0294 (14)0.0096 (12)0.0182 (13)0.0036 (12)
C70.0283 (14)0.0358 (15)0.0268 (14)0.0014 (11)0.0179 (13)0.0011 (11)
C80.0368 (16)0.0508 (17)0.0495 (18)0.0126 (13)0.0356 (16)0.0127 (15)
C90.0264 (14)0.0370 (15)0.0395 (16)0.0010 (12)0.0236 (13)0.0011 (13)
C100.0376 (17)0.0505 (18)0.0401 (17)0.0081 (14)0.0246 (16)0.0061 (14)
C110.0461 (19)0.069 (2)0.0340 (17)0.0097 (17)0.0205 (17)0.0007 (16)
C120.0373 (17)0.062 (2)0.049 (2)0.0210 (16)0.0207 (17)0.0115 (17)
C130.065 (2)0.094 (3)0.067 (2)0.047 (2)0.049 (2)0.020 (2)
C140.057 (2)0.090 (3)0.051 (2)0.0372 (19)0.0432 (19)0.0196 (18)
Geometric parameters (Å, º) top
Cu1—O11.9334 (16)C5—H50.9300
Cu1—N11.953 (2)C6—C71.371 (4)
Cu1—O1i1.9850 (17)C7—H70.9300
Cu1—Cl22.1934 (8)C8—C91.504 (4)
Cl1—C61.746 (3)C8—H8A0.9700
N1—C11.274 (3)C8—H8B0.9700
N1—C81.480 (3)C9—C101.369 (4)
O1—C31.341 (3)C9—C141.376 (4)
O1—Cu1i1.9850 (17)C10—C111.385 (4)
C1—C21.457 (3)C10—H100.9300
C1—H10.9300C11—C121.367 (4)
C2—C71.401 (3)C11—H110.9300
C2—C31.404 (3)C12—C131.367 (5)
C3—C41.396 (3)C12—H120.9300
C4—C51.378 (4)C13—C141.376 (5)
C4—H40.9300C13—H130.9300
C5—C61.379 (4)C14—H140.9300
O1—Cu1—N193.43 (8)C5—C6—Cl1119.8 (2)
O1—Cu1—O1i76.82 (8)C6—C7—C2119.7 (2)
N1—Cu1—O1i149.53 (9)C6—C7—H7120.2
O1—Cu1—Cl2149.90 (6)C2—C7—H7120.2
N1—Cu1—Cl2100.42 (6)N1—C8—C9113.7 (2)
O1i—Cu1—Cl2102.14 (6)N1—C8—H8A108.8
C1—N1—C8117.0 (2)C9—C8—H8A108.8
C1—N1—Cu1123.55 (16)N1—C8—H8B108.8
C8—N1—Cu1119.34 (17)C9—C8—H8B108.8
C3—O1—Cu1125.16 (14)H8A—C8—H8B107.7
C3—O1—Cu1i131.55 (14)C10—C9—C14118.0 (3)
Cu1—O1—Cu1i103.18 (8)C10—C9—C8123.6 (2)
N1—C1—C2126.9 (2)C14—C9—C8118.4 (2)
N1—C1—H1116.6C9—C10—C11121.1 (3)
C2—C1—H1116.6C9—C10—H10119.4
C7—C2—C3119.8 (2)C11—C10—H10119.4
C7—C2—C1116.0 (2)C12—C11—C10120.2 (3)
C3—C2—C1124.1 (2)C12—C11—H11119.9
O1—C3—C4120.0 (2)C10—C11—H11119.9
O1—C3—C2121.4 (2)C13—C12—C11119.0 (3)
C4—C3—C2118.6 (2)C13—C12—H12120.5
C5—C4—C3121.0 (2)C11—C12—H12120.5
C5—C4—H4119.5C12—C13—C14120.6 (3)
C3—C4—H4119.5C12—C13—H13119.7
C4—C5—C6119.7 (2)C14—C13—H13119.7
C4—C5—H5120.2C13—C14—C9121.0 (3)
C6—C5—H5120.2C13—C14—H14119.5
C7—C6—C5121.1 (2)C9—C14—H14119.5
C7—C6—Cl1119.0 (2)
O1—Cu1—N1—C111.7 (2)C1—C2—C3—C4175.0 (2)
O1i—Cu1—N1—C181.3 (3)O1—C3—C4—C5179.9 (2)
Cl2—Cu1—N1—C1141.5 (2)C2—C3—C4—C51.4 (4)
O1—Cu1—N1—C8171.9 (2)C3—C4—C5—C60.3 (4)
O1i—Cu1—N1—C8102.3 (2)C4—C5—C6—C70.7 (4)
Cl2—Cu1—N1—C834.9 (2)C4—C5—C6—Cl1180.0 (2)
N1—Cu1—O1—C325.7 (2)C5—C6—C7—C20.7 (4)
O1i—Cu1—O1—C3176.5 (2)Cl1—C6—C7—C2178.58 (19)
Cl2—Cu1—O1—C392.0 (2)C3—C2—C7—C62.4 (4)
N1—Cu1—O1—Cu1i150.78 (10)C1—C2—C7—C6175.6 (2)
O1i—Cu1—O1—Cu1i0.0C1—N1—C8—C9132.1 (3)
Cl2—Cu1—O1—Cu1i91.53 (12)Cu1—N1—C8—C951.3 (3)
C8—N1—C1—C2173.3 (2)N1—C8—C9—C1031.3 (4)
Cu1—N1—C1—C23.2 (4)N1—C8—C9—C14150.8 (3)
N1—C1—C2—C7166.4 (3)C14—C9—C10—C110.7 (5)
N1—C1—C2—C311.5 (4)C8—C9—C10—C11178.7 (3)
Cu1—O1—C3—C4154.0 (2)C9—C10—C11—C121.2 (5)
Cu1i—O1—C3—C430.6 (4)C10—C11—C12—C130.4 (5)
Cu1—O1—C3—C224.7 (3)C11—C12—C13—C140.9 (6)
Cu1i—O1—C3—C2150.76 (19)C12—C13—C14—C91.3 (6)
C7—C2—C3—O1178.6 (2)C10—C9—C14—C130.5 (5)
C1—C2—C3—O13.6 (4)C8—C9—C14—C13177.5 (3)
C7—C2—C3—C42.8 (4)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C14H11ClNO)2Cl2]
Mr687.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)22.572 (3), 9.3964 (13), 16.649 (2)
β (°) 130.724 (2)
V3)2676.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.55 × 0.43 × 0.30
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.379, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
6545, 2364, 1910
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.04
No. of reflections2364
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cu1—O11.9334 (16)Cu1—Cl22.1934 (8)
Cu1—N11.953 (2)
O1—Cu1—N193.43 (8)N1—Cu1—Cl2100.42 (6)
O1—Cu1—Cl2149.90 (6)
 

Acknowledgements

The authors are grateful for research grant No. 02js40 from the Phytochemistry Key Laboratory of Shaanxi Province.

References

First citationBencini, A. & Mani, F. (1988). Inorg. Chim. Acta, 154, 215–219.  CSD CrossRef CAS Web of Science Google Scholar
First citationJiang, Y.-M., Zeng, J.-L. & Yu, K.-B. (2004). Acta Cryst. C60, m543–m545.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, S.-J. & Su, C.-C. (1996). Polyhedron, 15, 1141–1149.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds