organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Di­hydroxy-6,4′-dimeth­oxyflavone

aResearch and Development Center of Fine Chemicals of Guizhou University, Guiyang 550025, People's Republic of China, bKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and cScience College of Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: qianjunzhang@126.com

(Received 31 October 2007; accepted 21 November 2007; online 6 December 2007)

In the title compound, C17H14O6, the benzopyran ring system is essentially planar and forms a dihedral angle of 6.84 (4)° with the other benzene ring. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by O—H⋯O hydrogen bonds. The crystal packing is controlled by C—H⋯π and ππ stacking inter­actions involving the benzopyran and benzene rings, with centroid–centroid distances between 3.645 (2) and 3.986 (2) Å.

Related literature

For related literature, see: Guo et al. (2006[Guo, Q. Q., Zhou, L. & Lin, S. Y. (2006). J. Chin. Med. Mater. 29, 1117-1119.]); Wang & Cheng (2007[Wang, W. D. & Cheng, F. S. (2007). China. Food Addit. 2, 59-62.]); Wu et al. (2007[Wu, X., Liu, J., Yu, Z. B., Ye, Y. H. & Zhou, Y. W. (2007). Chin. J. Chin. Mater. Med. 9, 821-823.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14O6

  • Mr = 314.28

  • Triclinic, [P \overline 1]

  • a = 6.9115 (11) Å

  • b = 7.2583 (12) Å

  • c = 14.649 (2) Å

  • α = 82.739 (6)°

  • β = 88.424 (6)°

  • γ = 76.907 (6)°

  • V = 710.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.18 × 0.12 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.990

  • 7597 measured reflections

  • 2469 independent reflections

  • 2095 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.08

  • 2469 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.85 2.5774 (15) 148
O5—H5⋯O4 0.82 2.28 2.7431 (15) 116
O5—H5⋯O4i 0.82 2.29 2.8562 (15) 127
C1—H1BCg3ii 0.96 2.93 3.799 (2) 150
Symmetry code: (i) -x, -y+1, -z; (ii) -x, -y+2, -z+3.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Flavone compounds exhibit different physiological functions and activities (Wu et al., 2007), such as antibacterial and antioxidative activities, and are useful in diminshing inflammation, relieving cough and dispelling phlegm. In these compounds, different structures having different conformations exhibit a wide range macroscopic physiological activities (Guo et al., 2006; Wang et al., 2007). The title compound, 6,4'-dimethoxy-5,7-dihydroxyflavone, which is a natural product extracted from Teucrium pilosum found in the Guizhou Province of China, effects on phenol red excretion volume of mouse trachea and on the ammonia-induced cough in mice.

In the title compound (Fig. 1), the benzopyran ring is essentially planar (maximum displacement 0.0258 (14) Å for atom C10) and forms a dihedral angle of 6.84 (4)° with the benzene ring C2—C7. The molecular conformation is stabilized by two O—H···O intramolecular hydrogen bonds (Table 1). Moreover, centrosymmetrically related molecules are linked into dimers by O—H···O hydrogen bonds (Table 1). In the crystal structure, π···π stacking interactions occur between adjacent rings, with centroid-centroid separations of 3.645 (2), 3.656 (2) and 3.986 (2) Å for Cg1···Cg2i, Cg1···Cg2ii and Cg2···Cg3i respectively (Cg1, Cg2 and Cg3 are the centroids of the O6/C8—C12, C2—C7 and C11—C16 rings; symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -x, 2 - y, 1 - z). The structure is further stabilized by a C—H···π interaction (C1—H1B···Cg(3)ii = 150.3°; H1B···Cg(3)ii = 2.93 Å; C1···Cg(3)ii = 3.799 (2) Å).

Related literature top

For related literature, see: Guo et al. (2006); Wang & Cheng (2007); Wu et al. (2007).

Experimental top

30 kg of dried whole plant Teucrium pilosum was powdered and extracted with ethanol (120 L) three times at room temperature and the residue was separated after removing the solvent under vacuum. The residue was suspended in water and extracted with ethyl acetate and n-butanol respectively. The ethyl acetate fraction (4.5 kg) was subjected repeatedly to column chromatography on silica gel using petroleum with a gradient of ethyl acetate (0–100% EtOAc) to yield the title compound (916.3 mg). Single crystals suitable for X-ray diffraction analysis were obtained from an ether-CHCl3 mixture (1:10 v/v) by slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and refined using the riding model approximation, with Uiso(H) = 1.2 Ueq(C, O) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

Flavone compounds exhibit different physiological functions and activities (Wu et al., 2007), such as antibacterial and antioxidative activities, and are useful in diminshing inflammation, relieving cough and dispelling phlegm. In these compounds, different structures having different conformations exhibit a wide range macroscopic physiological activities (Guo et al., 2006; Wang et al., 2007). The title compound, 6,4'-dimethoxy-5,7-dihydroxyflavone, which is a natural product extracted from Teucrium pilosum found in the Guizhou Province of China, effects on phenol red excretion volume of mouse trachea and on the ammonia-induced cough in mice.

In the title compound (Fig. 1), the benzopyran ring is essentially planar (maximum displacement 0.0258 (14) Å for atom C10) and forms a dihedral angle of 6.84 (4)° with the benzene ring C2—C7. The molecular conformation is stabilized by two O—H···O intramolecular hydrogen bonds (Table 1). Moreover, centrosymmetrically related molecules are linked into dimers by O—H···O hydrogen bonds (Table 1). In the crystal structure, π···π stacking interactions occur between adjacent rings, with centroid-centroid separations of 3.645 (2), 3.656 (2) and 3.986 (2) Å for Cg1···Cg2i, Cg1···Cg2ii and Cg2···Cg3i respectively (Cg1, Cg2 and Cg3 are the centroids of the O6/C8—C12, C2—C7 and C11—C16 rings; symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -x, 2 - y, 1 - z). The structure is further stabilized by a C—H···π interaction (C1—H1B···Cg(3)ii = 150.3°; H1B···Cg(3)ii = 2.93 Å; C1···Cg(3)ii = 3.799 (2) Å).

For related literature, see: Guo et al. (2006); Wang & Cheng (2007); Wu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
5,7-Dihydroxy-6,4'-dimethoxyflavone top
Crystal data top
C17H14O6Z = 2
Mr = 314.28F(000) = 328
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Melting point: 224-226° C K
a = 6.9115 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2583 (12) ÅCell parameters from 7597 reflections
c = 14.649 (2) Åθ = 1.4–25.0°
α = 82.739 (6)°µ = 0.11 mm1
β = 88.424 (6)°T = 293 K
γ = 76.907 (6)°Prism, colourless
V = 710.0 (2) Å30.18 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2469 independent reflections
Radiation source: fine-focus sealed tube2095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scanθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
SADABS (Bruker, 2005)
h = 88
Tmin = 0.980, Tmax = 0.990k = 88
7597 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.1294P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2469 reflectionsΔρmax = 0.20 e Å3
209 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (5)
Crystal data top
C17H14O6γ = 76.907 (6)°
Mr = 314.28V = 710.0 (2) Å3
Triclinic, P1Z = 2
a = 6.9115 (11) ÅMo Kα radiation
b = 7.2583 (12) ŵ = 0.11 mm1
c = 14.649 (2) ÅT = 293 K
α = 82.739 (6)°0.18 × 0.12 × 0.09 mm
β = 88.424 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2469 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2005)
2095 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.020
7597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
2469 reflectionsΔρmin = 0.19 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3004 (3)0.9240 (3)0.86019 (11)0.0675 (5)
H1A0.39830.97150.90430.101*
H1B0.19840.99510.85630.101*
H1C0.24280.79180.87910.101*
C20.2756 (2)0.8843 (2)0.70068 (10)0.0444 (4)
C30.0702 (2)0.8314 (2)0.70196 (10)0.0476 (4)
H30.00050.83080.75550.057*
C40.0309 (2)0.7793 (2)0.62275 (10)0.0441 (4)
H40.16890.74430.62370.053*
C50.0691 (2)0.77829 (18)0.54212 (9)0.0361 (3)
C60.2764 (2)0.8273 (2)0.54371 (10)0.0443 (4)
H60.34730.82440.49110.053*
C70.3773 (2)0.8797 (2)0.62189 (11)0.0494 (4)
H70.51540.91230.62150.059*
C80.0387 (2)0.72640 (18)0.45786 (9)0.0353 (3)
C90.2359 (2)0.6569 (2)0.44969 (10)0.0416 (4)
H90.31630.63920.50140.050*
C100.3248 (2)0.6095 (2)0.36394 (10)0.0398 (3)
C110.18831 (19)0.63688 (18)0.28746 (9)0.0351 (3)
C120.0140 (2)0.71097 (19)0.30008 (9)0.0349 (3)
C130.1511 (2)0.7425 (2)0.22975 (10)0.0412 (4)
H130.28490.79410.23950.049*
C140.0826 (2)0.6948 (2)0.14458 (10)0.0400 (4)
C150.1185 (2)0.6180 (2)0.12867 (9)0.0392 (4)
C160.2539 (2)0.5884 (2)0.19985 (10)0.0381 (3)
C170.2732 (3)0.7014 (3)0.01218 (11)0.0595 (5)
H17A0.30960.65820.07090.089*
H17B0.39040.70900.01950.089*
H17C0.18490.82500.02110.089*
O10.39076 (18)0.94398 (18)0.77344 (8)0.0630 (4)
O20.50778 (15)0.54639 (17)0.35414 (7)0.0547 (3)
O30.44741 (15)0.51494 (17)0.18454 (7)0.0531 (3)
H3A0.51050.50510.23220.080*
O40.17552 (15)0.56933 (15)0.04163 (7)0.0475 (3)
O50.21639 (15)0.72526 (17)0.07437 (7)0.0550 (3)
H50.15870.69190.02750.083*
O60.08666 (13)0.75600 (14)0.38456 (6)0.0384 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1075 (16)0.0602 (11)0.0344 (9)0.0146 (10)0.0078 (9)0.0132 (8)
C20.0545 (9)0.0402 (8)0.0368 (8)0.0072 (7)0.0084 (7)0.0060 (6)
C30.0604 (10)0.0488 (9)0.0346 (8)0.0115 (7)0.0065 (7)0.0093 (6)
C40.0451 (8)0.0491 (9)0.0393 (8)0.0105 (7)0.0012 (6)0.0104 (6)
C50.0439 (8)0.0322 (7)0.0325 (7)0.0094 (6)0.0009 (6)0.0040 (5)
C60.0447 (8)0.0520 (9)0.0354 (8)0.0092 (7)0.0015 (6)0.0057 (6)
C70.0448 (8)0.0585 (10)0.0414 (9)0.0043 (7)0.0053 (7)0.0068 (7)
C80.0414 (8)0.0336 (7)0.0322 (7)0.0109 (6)0.0015 (6)0.0039 (5)
C90.0410 (8)0.0495 (9)0.0332 (8)0.0080 (6)0.0044 (6)0.0045 (6)
C100.0360 (8)0.0430 (8)0.0396 (8)0.0085 (6)0.0014 (6)0.0036 (6)
C110.0374 (8)0.0352 (7)0.0335 (8)0.0099 (6)0.0025 (6)0.0054 (6)
C120.0388 (7)0.0364 (7)0.0309 (7)0.0098 (6)0.0041 (6)0.0082 (5)
C130.0349 (7)0.0514 (9)0.0379 (8)0.0072 (6)0.0000 (6)0.0122 (6)
C140.0437 (8)0.0465 (8)0.0324 (8)0.0127 (6)0.0017 (6)0.0097 (6)
C150.0457 (8)0.0430 (8)0.0321 (8)0.0131 (6)0.0064 (6)0.0119 (6)
C160.0374 (7)0.0394 (8)0.0385 (8)0.0095 (6)0.0064 (6)0.0086 (6)
C170.0735 (11)0.0701 (11)0.0389 (9)0.0230 (9)0.0171 (8)0.0130 (8)
O10.0702 (8)0.0756 (8)0.0383 (6)0.0025 (6)0.0113 (5)0.0158 (5)
O20.0339 (6)0.0805 (8)0.0451 (7)0.0032 (5)0.0010 (5)0.0082 (5)
O30.0380 (6)0.0738 (8)0.0454 (7)0.0040 (5)0.0078 (5)0.0170 (5)
O40.0556 (7)0.0591 (7)0.0341 (6)0.0197 (5)0.0098 (5)0.0196 (5)
O50.0479 (6)0.0816 (8)0.0360 (6)0.0076 (5)0.0052 (5)0.0203 (5)
O60.0362 (5)0.0496 (6)0.0294 (5)0.0064 (4)0.0009 (4)0.0107 (4)
Geometric parameters (Å, º) top
C1—O11.408 (2)C10—O21.2545 (17)
C1—H1A0.9600C10—C111.4498 (19)
C1—H1B0.9600C11—C121.3959 (19)
C1—H1C0.9600C11—C161.409 (2)
C2—O11.3678 (18)C12—O61.3727 (16)
C2—C71.376 (2)C12—C131.3812 (19)
C2—C31.384 (2)C13—C141.379 (2)
C3—C41.387 (2)C13—H130.9300
C3—H30.9300C14—O51.3651 (17)
C4—C51.387 (2)C14—C151.400 (2)
C4—H40.9300C15—C161.384 (2)
C5—C61.396 (2)C15—O41.3890 (16)
C5—C81.470 (2)C16—O31.3471 (17)
C6—C71.374 (2)C17—O41.4383 (19)
C6—H60.9300C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.349 (2)C17—H17C0.9600
C8—O61.3632 (16)O3—H3A0.8200
C9—C101.430 (2)O5—H50.8200
C9—H90.9300
O1—C1—H1A109.5O2—C10—C11121.21 (13)
O1—C1—H1B109.5C9—C10—C11115.46 (12)
H1A—C1—H1B109.5C12—C11—C16118.45 (12)
O1—C1—H1C109.5C12—C11—C10119.87 (12)
H1A—C1—H1C109.5C16—C11—C10121.68 (13)
H1B—C1—H1C109.5O6—C12—C13116.48 (12)
O1—C2—C7115.54 (14)O6—C12—C11120.89 (12)
O1—C2—C3124.67 (14)C13—C12—C11122.63 (13)
C7—C2—C3119.78 (14)C14—C13—C12117.67 (13)
C2—C3—C4119.42 (14)C14—C13—H13121.2
C2—C3—H3120.3C12—C13—H13121.2
C4—C3—H3120.3O5—C14—C13118.33 (13)
C5—C4—C3121.51 (14)O5—C14—C15119.79 (13)
C5—C4—H4119.2C13—C14—C15121.87 (13)
C3—C4—H4119.2C16—C15—O4121.77 (13)
C4—C5—C6117.71 (13)C16—C15—C14119.65 (13)
C4—C5—C8121.32 (13)O4—C15—C14118.56 (12)
C6—C5—C8120.97 (12)O3—C16—C15119.67 (13)
C7—C6—C5121.01 (14)O3—C16—C11120.61 (13)
C7—C6—H6119.5C15—C16—C11119.71 (13)
C5—C6—H6119.5O4—C17—H17A109.5
C6—C7—C2120.53 (15)O4—C17—H17B109.5
C6—C7—H7119.7H17A—C17—H17B109.5
C2—C7—H7119.7O4—C17—H17C109.5
C9—C8—O6121.73 (13)H17A—C17—H17C109.5
C9—C8—C5126.79 (13)H17B—C17—H17C109.5
O6—C8—C5111.48 (11)C2—O1—C1118.62 (14)
C8—C9—C10121.96 (13)C16—O3—H3A109.5
C8—C9—H9119.0C15—O4—C17114.00 (11)
C10—C9—H9119.0C14—O5—H5109.5
O2—C10—C9123.33 (13)C8—O6—C12120.07 (11)
O1—C2—C3—C4177.85 (14)C10—C11—C12—C13179.21 (13)
C7—C2—C3—C41.7 (2)O6—C12—C13—C14178.69 (12)
C2—C3—C4—C50.2 (2)C11—C12—C13—C141.1 (2)
C3—C4—C5—C61.5 (2)C12—C13—C14—O5179.95 (12)
C3—C4—C5—C8178.85 (13)C12—C13—C14—C150.4 (2)
C4—C5—C6—C71.7 (2)O5—C14—C15—C16179.62 (13)
C8—C5—C6—C7178.62 (13)C13—C14—C15—C160.1 (2)
C5—C6—C7—C20.2 (2)O5—C14—C15—O41.9 (2)
O1—C2—C7—C6178.11 (14)C13—C14—C15—O4178.50 (13)
C3—C2—C7—C61.5 (2)O4—C15—C16—O31.8 (2)
C4—C5—C8—C97.4 (2)C14—C15—C16—O3179.86 (13)
C6—C5—C8—C9172.29 (14)O4—C15—C16—C11178.83 (12)
C4—C5—C8—O6172.95 (12)C14—C15—C16—C110.4 (2)
C6—C5—C8—O67.41 (19)C12—C11—C16—O3179.45 (12)
O6—C8—C9—C100.2 (2)C10—C11—C16—O30.2 (2)
C5—C8—C9—C10179.42 (13)C12—C11—C16—C151.1 (2)
C8—C9—C10—O2179.30 (14)C10—C11—C16—C15179.60 (12)
C8—C9—C10—C111.5 (2)C7—C2—O1—C1170.14 (15)
O2—C10—C11—C12178.72 (13)C3—C2—O1—C110.3 (2)
C9—C10—C11—C122.0 (2)C16—C15—O4—C1777.04 (18)
O2—C10—C11—C162.0 (2)C14—C15—O4—C17104.56 (16)
C9—C10—C11—C16177.22 (12)C9—C8—O6—C121.4 (2)
C16—C11—C12—O6178.30 (12)C5—C8—O6—C12178.27 (11)
C10—C11—C12—O61.0 (2)C13—C12—O6—C8179.03 (12)
C16—C11—C12—C131.5 (2)C11—C12—O6—C80.80 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.852.5774 (15)148
O5—H5···O40.822.282.7431 (15)116
O5—H5···O4i0.822.292.8562 (15)127
C1—H1B···Cg3ii0.962.933.799 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+3.

Experimental details

Crystal data
Chemical formulaC17H14O6
Mr314.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9115 (11), 7.2583 (12), 14.649 (2)
α, β, γ (°)82.739 (6), 88.424 (6), 76.907 (6)
V3)710.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.12 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
SADABS (Bruker, 2005)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7597, 2469, 2095
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.08
No. of reflections2469
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.852.5774 (15)147.6
O5—H5···O40.822.282.7431 (15)115.9
O5—H5···O4i0.822.292.8562 (15)127.0
C1—H1B···Cg3ii0.962.933.799 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+3.
 

Acknowledgements

We acknowledge the support of the Natural Science Foundation of Guizhou, China [J(2006)2008].

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, Q. Q., Zhou, L. & Lin, S. Y. (2006). J. Chin. Med. Mater. 29, 1117–1119.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, W. D. & Cheng, F. S. (2007). China. Food Addit. 2, 59–62.  Google Scholar
First citationWu, X., Liu, J., Yu, Z. B., Ye, Y. H. & Zhou, Y. W. (2007). Chin. J. Chin. Mater. Med. 9, 821–823.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds