organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-methyl-6-(morpholin-4-yl)-N-phenyl-1,3,5-triazin-2-amine

aChemistry and Biology College, Yantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: zengtaotj@126.com

(Received 8 November 2007; accepted 7 December 2007; online 18 December 2007)

In the title compound, C14H16ClN5O, the phenyl and triazine rings form a dihedral angle of 69.34 (8)°. The morpholine ring adopts a chair conformation. The structure is stabilized by C—H⋯N and intermolecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Dong et al. (2005[Dong, C.-M., Chen, L.-G., Duan, X.-M., Shu, X.-G., Zeng, T. & Yan, X.-L. (2005). Acta Cryst. E61, o1168-o1169.]); Manasek & Hrdlovik (1990[Manasek, Z. & Hrdlovik, P. (1990). European Patent EP 0377324.]); Mathias & Simanek (1994[Mathias, P. J. & Simanek, E. E. (1994). J. Am. Chem. Soc. 116, 4326-4340.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16ClN5O

  • Mr = 305.77

  • Orthorhombic, P n n a

  • a = 17.121 (3) Å

  • b = 17.308 (3) Å

  • c = 10.0243 (17) Å

  • V = 2970.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.974

  • 16109 measured reflections

  • 3053 independent reflections

  • 1607 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.00

  • 3053 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N2 0.97 2.30 2.740 (3) 107
C7—H7B⋯N3 0.97 2.35 2.782 (3) 106
C10—H10⋯O1i 0.93 2.44 3.327 (4) 158
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4,6-Trichloro-1,3,5-triazine and its derivatives have been widely investigated, as a result of their importance as starting materials for many products. Moreover, these compounds possess valuable properties, as they are widely used as drugs and light stabilizers (Mathias & Simanek, 1994; Manasek & Hrdlovik, 1990). In the present paper, the crystal structure of the title compound, which has been synthesized from 2,4-dichloro-6-morpholin-4-yl-1,3,5-triazine and N-methylaniline, is reported.

In the title compound bond lengths and angles are within normal ranges (Table 1). The morpholine ring adopts a chair conformation with puckering parameters (Cremer and Pople, 1975) Q = 0.549 (2) Å, θ = 178.6 (2)° and φ = 121 (12)°. The dihedral angle formed by the phenyl and triazine rings is 110.66 (8)°. The molecular conformation is stabilized by two intramolecular C—H···N hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by intermolecular C—H···O hydrogen interactions (Table 2).

Related literature top

For related literature, see: Cremer & Pople (1975); Dong et al. (2005); Manasek & Hrdlovik (1990); Mathias & Simanek (1994).

Experimental top

2,4-Dichloro-6-morpholino-1,3,5-triazine (11.75 g, 0.05 mol), which was prepared from morpholine and 2,4,6-trichloro-1,3,5-triazine according to the literature method (Dong et al., 2005), and N-methylaniline (6.15 g, 0.05 mol) were dissolved in THF (60 ml) at 323 K with stirring for 2 h. A solution of Na2CO3 (2.76 g, 0.026 mol) in water (20 ml) was then added and the mixture stirred for a further 3 h. The solution was evaporated under reduced pressure and the precipitate was filtered off to give the title compound (12.69 g; yield 81.3%). Single crystals (m.p.371–372 K) suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/ethanol (2:5 v/v) solution.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

2,4,6-Trichloro-1,3,5-triazine and its derivatives have been widely investigated, as a result of their importance as starting materials for many products. Moreover, these compounds possess valuable properties, as they are widely used as drugs and light stabilizers (Mathias & Simanek, 1994; Manasek & Hrdlovik, 1990). In the present paper, the crystal structure of the title compound, which has been synthesized from 2,4-dichloro-6-morpholin-4-yl-1,3,5-triazine and N-methylaniline, is reported.

In the title compound bond lengths and angles are within normal ranges (Table 1). The morpholine ring adopts a chair conformation with puckering parameters (Cremer and Pople, 1975) Q = 0.549 (2) Å, θ = 178.6 (2)° and φ = 121 (12)°. The dihedral angle formed by the phenyl and triazine rings is 110.66 (8)°. The molecular conformation is stabilized by two intramolecular C—H···N hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by intermolecular C—H···O hydrogen interactions (Table 2).

For related literature, see: Cremer & Pople (1975); Dong et al. (2005); Manasek & Hrdlovik (1990); Mathias & Simanek (1994).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis.
4-Chloro-N-methyl-6-(morpholin-4-yl)-N-phenyl-1,3,5-triazin-2-amine top
Crystal data top
C14H16ClN5OF(000) = 1280
Mr = 305.77Dx = 1.367 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 2473 reflections
a = 17.121 (3) Åθ = 2.4–22.2°
b = 17.308 (3) ŵ = 0.26 mm1
c = 10.0243 (17) ÅT = 294 K
V = 2970.4 (9) Å3Block, colourless
Z = 80.22 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3053 independent reflections
Radiation source: fine-focus sealed tube1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
φ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2114
Tmin = 0.944, Tmax = 0.974k = 2121
16109 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.062P)2 + 0.2969P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
3053 reflectionsΔρmax = 0.19 e Å3
192 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Crystal data top
C14H16ClN5OV = 2970.4 (9) Å3
Mr = 305.77Z = 8
Orthorhombic, PnnaMo Kα radiation
a = 17.121 (3) ŵ = 0.26 mm1
b = 17.308 (3) ÅT = 294 K
c = 10.0243 (17) Å0.22 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3053 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1607 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.974Rint = 0.065
16109 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
3053 reflectionsΔρmin = 0.27 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07523 (4)0.34130 (5)1.13890 (7)0.0763 (3)
O10.41747 (12)0.45017 (12)0.7735 (2)0.0843 (7)
N10.05798 (12)0.35026 (11)0.8833 (2)0.0534 (6)
N20.16659 (12)0.35391 (11)0.73300 (19)0.0518 (5)
N30.18823 (13)0.34704 (11)0.96853 (19)0.0523 (5)
N40.29091 (13)0.35119 (12)0.8197 (2)0.0582 (6)
N50.04129 (13)0.36020 (12)0.65470 (19)0.0570 (6)
C10.11173 (16)0.34659 (14)0.9766 (2)0.0510 (6)
C20.09049 (15)0.35471 (13)0.7589 (2)0.0491 (6)
C30.21311 (15)0.35082 (13)0.8403 (2)0.0481 (6)
C40.32424 (16)0.35968 (16)0.6869 (3)0.0645 (8)
H4A0.28370.35330.62020.077*
H4B0.36350.32020.67240.077*
C50.36033 (17)0.43769 (17)0.6733 (3)0.0701 (8)
H5A0.38440.44230.58610.084*
H5B0.32010.47690.68020.084*
C60.38457 (18)0.44244 (18)0.9033 (3)0.0780 (9)
H6A0.34550.48230.91610.094*
H6B0.42520.45010.96940.094*
C70.34768 (15)0.36491 (15)0.9247 (3)0.0602 (7)
H7A0.38740.32500.92300.072*
H7B0.32210.36351.01100.072*
C80.07219 (18)0.36424 (18)0.5184 (3)0.0752 (9)
H8A0.09360.41470.50270.113*
H8B0.03080.35460.45590.113*
H8C0.11240.32610.50730.113*
C90.04133 (16)0.36926 (16)0.6715 (2)0.0551 (7)
C100.07178 (18)0.43669 (17)0.7235 (3)0.0662 (8)
H100.03860.47620.75090.079*
C110.15150 (19)0.44530 (19)0.7346 (3)0.0780 (9)
H110.17210.49050.77030.094*
C120.20090 (18)0.3871 (2)0.6931 (3)0.0766 (9)
H120.25470.39290.70090.092*
C130.17014 (19)0.32093 (18)0.6404 (3)0.0698 (8)
H130.20340.28190.61160.084*
C140.09104 (17)0.31129 (16)0.6294 (3)0.0609 (7)
H140.07080.26590.59370.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0725 (5)0.1138 (7)0.0427 (4)0.0041 (4)0.0069 (3)0.0068 (4)
O10.0782 (14)0.0923 (16)0.0824 (15)0.0245 (12)0.0001 (13)0.0206 (12)
N10.0602 (14)0.0568 (14)0.0432 (12)0.0043 (11)0.0018 (11)0.0057 (10)
N20.0591 (14)0.0527 (14)0.0435 (12)0.0033 (11)0.0008 (11)0.0012 (9)
N30.0590 (15)0.0578 (14)0.0401 (12)0.0032 (11)0.0019 (10)0.0050 (10)
N40.0584 (15)0.0670 (15)0.0492 (13)0.0053 (12)0.0052 (11)0.0005 (10)
N50.0653 (15)0.0653 (15)0.0405 (12)0.0033 (11)0.0040 (11)0.0007 (10)
C10.0616 (19)0.0485 (15)0.0430 (14)0.0034 (13)0.0038 (13)0.0039 (12)
C20.0635 (18)0.0423 (15)0.0416 (14)0.0059 (12)0.0014 (13)0.0013 (11)
C30.0541 (17)0.0392 (15)0.0511 (16)0.0017 (12)0.0043 (13)0.0019 (11)
C40.0618 (18)0.072 (2)0.0596 (17)0.0030 (15)0.0131 (14)0.0008 (14)
C50.072 (2)0.073 (2)0.0651 (19)0.0081 (17)0.0117 (16)0.0175 (15)
C60.079 (2)0.079 (2)0.076 (2)0.0142 (17)0.0108 (18)0.0022 (17)
C70.0547 (16)0.0635 (18)0.0623 (18)0.0032 (14)0.0021 (14)0.0108 (13)
C80.085 (2)0.097 (2)0.0429 (15)0.0017 (17)0.0013 (15)0.0017 (15)
C90.0629 (18)0.0592 (18)0.0432 (15)0.0050 (15)0.0104 (13)0.0061 (12)
C100.076 (2)0.0608 (19)0.0621 (17)0.0039 (16)0.0125 (16)0.0028 (14)
C110.073 (2)0.080 (2)0.081 (2)0.0114 (18)0.0085 (18)0.0052 (17)
C120.060 (2)0.095 (3)0.074 (2)0.0002 (19)0.0110 (16)0.0061 (19)
C130.077 (2)0.070 (2)0.0625 (18)0.0112 (16)0.0200 (16)0.0075 (15)
C140.070 (2)0.0589 (18)0.0542 (16)0.0014 (15)0.0142 (14)0.0037 (13)
Geometric parameters (Å, º) top
Cl1—C11.745 (2)C6—C71.498 (4)
O1—C51.419 (3)C6—H6A0.9700
O1—C61.424 (3)C6—H6B0.9700
N1—C11.314 (3)C7—H7A0.9700
N1—C21.368 (3)C7—H7B0.9700
N2—C21.328 (3)C8—H8A0.9600
N2—C31.339 (3)C8—H8B0.9600
N3—C11.312 (3)C8—H8C0.9600
N3—C31.356 (3)C9—C101.380 (4)
N4—C31.348 (3)C9—C141.382 (4)
N4—C71.452 (3)C10—C111.377 (4)
N4—C41.456 (3)C10—H100.9300
N5—C21.345 (3)C11—C121.379 (4)
N5—C91.433 (3)C11—H110.9300
N5—C81.467 (3)C12—C131.367 (4)
C4—C51.491 (4)C12—H120.9300
C4—H4A0.9700C13—C141.369 (4)
C4—H4B0.9700C13—H130.9300
C5—H5A0.9700C14—H140.9300
C5—H5B0.9700
C5—O1—C6111.1 (2)O1—C6—H6B109.1
C1—N1—C2111.5 (2)C7—C6—H6B109.1
C2—N2—C3115.3 (2)H6A—C6—H6B107.8
C1—N3—C3111.9 (2)N4—C7—C6109.0 (2)
C3—N4—C7123.5 (2)N4—C7—H7A109.9
C3—N4—C4121.8 (2)C6—C7—H7A109.9
C7—N4—C4112.6 (2)N4—C7—H7B109.9
C2—N5—C9122.3 (2)C6—C7—H7B109.9
C2—N5—C8120.0 (2)H7A—C7—H7B108.3
C9—N5—C8117.4 (2)N5—C8—H8A109.5
N3—C1—N1130.9 (2)N5—C8—H8B109.5
N3—C1—Cl1114.54 (19)H8A—C8—H8B109.5
N1—C1—Cl1114.6 (2)N5—C8—H8C109.5
N2—C2—N5117.6 (2)H8A—C8—H8C109.5
N2—C2—N1125.2 (2)H8B—C8—H8C109.5
N5—C2—N1117.2 (2)C10—C9—C14119.8 (3)
N2—C3—N4117.7 (2)C10—C9—N5120.6 (3)
N2—C3—N3125.2 (2)C14—C9—N5119.5 (3)
N4—C3—N3117.1 (2)C11—C10—C9119.8 (3)
N4—C4—C5109.7 (2)C11—C10—H10120.1
N4—C4—H4A109.7C9—C10—H10120.1
C5—C4—H4A109.7C10—C11—C12120.3 (3)
N4—C4—H4B109.7C10—C11—H11119.9
C5—C4—H4B109.7C12—C11—H11119.9
H4A—C4—H4B108.2C13—C12—C11119.5 (3)
O1—C5—C4111.0 (2)C13—C12—H12120.3
O1—C5—H5A109.4C11—C12—H12120.3
C4—C5—H5A109.4C12—C13—C14121.0 (3)
O1—C5—H5B109.4C12—C13—H13119.5
C4—C5—H5B109.4C14—C13—H13119.5
H5A—C5—H5B108.0C13—C14—C9119.8 (3)
O1—C6—C7112.4 (2)C13—C14—H14120.1
O1—C6—H6A109.1C9—C14—H14120.1
C7—C6—H6A109.1
C3—N3—C1—N11.1 (4)C3—N4—C4—C5108.2 (3)
C3—N3—C1—Cl1179.70 (16)C7—N4—C4—C555.8 (3)
C2—N1—C1—N30.5 (4)C6—O1—C5—C458.0 (3)
C2—N1—C1—Cl1179.67 (16)N4—C4—C5—O156.6 (3)
C3—N2—C2—N5178.0 (2)C5—O1—C6—C757.5 (3)
C3—N2—C2—N12.1 (3)C3—N4—C7—C6109.5 (3)
C9—N5—C2—N2173.7 (2)C4—N4—C7—C654.2 (3)
C8—N5—C2—N20.6 (3)O1—C6—C7—N454.6 (3)
C9—N5—C2—N16.4 (3)C2—N5—C9—C1068.3 (3)
C8—N5—C2—N1179.3 (2)C8—N5—C9—C10106.2 (3)
C1—N1—C2—N21.3 (3)C2—N5—C9—C14114.8 (3)
C1—N1—C2—N5178.8 (2)C8—N5—C9—C1470.8 (3)
C2—N2—C3—N4178.9 (2)C14—C9—C10—C110.8 (4)
C2—N2—C3—N31.3 (3)N5—C9—C10—C11177.8 (2)
C7—N4—C3—N2166.1 (2)C9—C10—C11—C120.5 (4)
C4—N4—C3—N23.9 (3)C10—C11—C12—C130.2 (5)
C7—N4—C3—N314.1 (3)C11—C12—C13—C140.6 (4)
C4—N4—C3—N3176.3 (2)C12—C13—C14—C90.3 (4)
C1—N3—C3—N20.1 (3)C10—C9—C14—C130.5 (4)
C1—N3—C3—N4179.6 (2)N5—C9—C14—C13177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N20.972.302.740 (3)107
C7—H7B···N30.972.352.782 (3)106
C10—H10···O1i0.932.443.327 (4)158
Symmetry code: (i) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16ClN5O
Mr305.77
Crystal system, space groupOrthorhombic, Pnna
Temperature (K)294
a, b, c (Å)17.121 (3), 17.308 (3), 10.0243 (17)
V3)2970.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.944, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16109, 3053, 1607
Rint0.065
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.00
No. of reflections3053
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Cl1—C11.745 (2)N5—C21.345 (3)
O1—C61.424 (3)N5—C91.433 (3)
N3—C31.356 (3)N5—C81.467 (3)
N4—C31.348 (3)
C3—N4—C4121.8 (2)N3—C1—Cl1114.54 (19)
C2—N5—C9122.3 (2)N2—C3—N4117.7 (2)
C2—N5—C8120.0 (2)N2—C3—N3125.2 (2)
C3—N3—C1—Cl1179.70 (16)C2—N2—C3—N4178.9 (2)
C2—N1—C1—Cl1179.67 (16)C4—N4—C3—N23.9 (3)
C8—N5—C2—N20.6 (3)C4—N4—C3—N3176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N20.972.302.740 (3)106.5
C7—H7B···N30.972.352.782 (3)106.4
C10—H10···O1i0.932.443.327 (4)158.2
Symmetry code: (i) x+1/2, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Start Foundation for Doctors (grant No. HY071314) of Yantai University.

References

First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDong, C.-M., Chen, L.-G., Duan, X.-M., Shu, X.-G., Zeng, T. & Yan, X.-L. (2005). Acta Cryst. E61, o1168–o1169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManasek, Z. & Hrdlovik, P. (1990). European Patent EP 0377324.  Google Scholar
First citationMathias, P. J. & Simanek, E. E. (1994). J. Am. Chem. Soc. 116, 4326–4340.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds