metal-organic compounds
catena-Poly[[[bis(4-aminobenzoato-κO)copper(II)]-μ-1,1′-(pentane-1,5-diyl)diimidazole] trihydrate]
aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn
In the title compound, {[Cu(C7H6NO2)2(C11H16N4)]·3H2O}n, each CuII atom is coordinated by two O atoms from two 4-aminobenzoate anions, and two N atoms from two different 1,1′-(pentane-1,5-diyl)diimidazole (biim-5) ligands, to furnish a distorted square-planar geometry. The biim-5 ligand coordinates to two copper(II) cations, acting as a bridging ligand; as a result the copper(II) cations are connected to form an infinite chain structure. The polymeric chains are linked through a variety of hydrogen bonds to form a three-dimensional structure.
Related literature
For related literature, see: Batten & Robson (1998); Chen & Gao (2002); Ma et al. (2000); Moulton & Zaworotko (2001); Tong et al. (2002); Yang et al. (2005, 2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807064586/sf2009sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064586/sf2009Isup2.hkl
A mixture of CuCl2.2H2O (0.171 g, 1 mmol), NaOH (0.08 g, 2 mmol) in water was stirring for 10 min at room temperature, then the Cu(OH)2 solid was filtered. P-aminobenzoic acid was added to the Cu(OH)2 suspension in water with stirring. Then biim-5 (0.204 g, 1 mmol) in ethanol was added with stirring for 1 h and blue precipitate was obtained. And then a minimum amount of ammonia (14 M) was added to get the blue solution. Suitable blue crystals were obtained from the filtrate after standing at room temperature for several days.
All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.96 Å, Uiso = 1.2Ueq (C) for CH2 group. The amino and aqua hydrogen atoms were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5 Ueq(N, O).
In recent years, research into coordination polymers has been expanding rapidly because of their fascinating structural diversity and potential application as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). To date, a number of one-, two- and three-dimensional infinite frameworks have been generated with linear N,N'-bidentate spacers (Tong et al., 2002). Much of the work has been focused on coordination polymers with rigid ligands, such as 4,4'-bipyridine, pyrazine and their analogues. In our previous work, we have synthsis some compounds contaning 1,1'-(1,4-butanediyl)bis(imidazole) (Ma et al., 2000; Yang et al., 2006). However, flexible ligands such as 1,1'-(1,5-pentanediyl) bis(imidazole) have not been well explored to date. In the present paper, we report the preparation and
of three-dimensional supermolecule coordination polymer of compound, (I).As shown in Fig. 1, each CuII atom is primarily coordinated by two oxygen atoms from two para-aminobenzoate anions, and two nitrogen atoms from two different biim-5 ligands, to furnish a distorted square-planar geometry. The Cu—N distances range from 1.967 (2) to 1.975 (2) Å, which are similar to reported Cu—N distances. The Cu1—O distances of 1.970 (1) and 1.976 (1) Å are also similar to reported Cu—O distances (Yang et al., 2006). The pendant carboxy oxygen atoms have weak bonding interactions with the CuII atom at the axial sites due to the Jahn-Teller effect. The Cu—O distances range from 2.712 to 2.727 Å, which indicated the weak bonding interactions. Each biim-5 ligand coordinates to two CuII atoms, acting as a bridging ligand and as a result, an one-dimensional chain structure is formed.
The hydrogen bonds in this study have been considered with liberal distance cut-off criteria of 2.5< D···A < 3.0 Å and 120 < D—H···A < 180 °. The selected hydrogen-bond distances and angles are listed in Table 2. It can be seen that there are three H atoms involved in hydrogen bonding in the
two of which are from amino group and one of which from water molecules. The uncoordinated carboxylate O atoms are also involved in hydrogen bonds and play the role of acceptors. The polymeric chains are connected through various hydrogen bonds to form a three-dimensional structure (Fig. 2).For related literature, see: Batten & Robson (1998); Chen & Gao (2002); Ma et al. (2000); Moulton & Zaworotko (2001); Tong et al. (2002); Yang et al., (2005, 2006).
Data collection: SMART (Bruker, 1997); cell
SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.Fig. 1. View of the compound (I). Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. View of the three-dimensional superamolecular structure of (I). The hydrogen bonds are shown as dotted lines. H atoms on the C atoms have been omiited for clarity. |
[Cu(C7H6NO2)2(C11H16N4)]·3H2O | F(000) = 1244 |
Mr = 594.12 | Dx = 1.390 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 6488 reflections |
a = 13.082 (9) Å | θ = 1.8–28.5° |
b = 11.151 (1) Å | µ = 0.82 mm−1 |
c = 19.505 (2) Å | T = 293 K |
β = 93.725 (1)° | Block, blue |
V = 2839.3 (4) Å3 | 0.68 × 0.45 × 0.38 mm |
Z = 4 |
Bruker APEX CCD area-detector diffractometer | 6488 independent reflections |
Radiation source: fine-focus sealed tube | 4988 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 28.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→9 |
Tmin = 0.635, Tmax = 0.746 | k = −14→13 |
16576 measured reflections | l = −25→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0448P)2 + 0.6476P] where P = (Fo2 + 2Fc2)/3 |
6488 reflections | (Δ/σ)max = 0.002 |
382 parameters | Δρmax = 0.41 e Å−3 |
12 restraints | Δρmin = −0.34 e Å−3 |
[Cu(C7H6NO2)2(C11H16N4)]·3H2O | V = 2839.3 (4) Å3 |
Mr = 594.12 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.082 (9) Å | µ = 0.82 mm−1 |
b = 11.151 (1) Å | T = 293 K |
c = 19.505 (2) Å | 0.68 × 0.45 × 0.38 mm |
β = 93.725 (1)° |
Bruker APEX CCD area-detector diffractometer | 6488 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4988 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.746 | Rint = 0.028 |
16576 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 12 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.41 e Å−3 |
6488 reflections | Δρmin = −0.34 e Å−3 |
382 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.724906 (17) | 0.20985 (2) | 0.494309 (9) | 0.03977 (9) | |
C1 | 0.69874 (15) | 0.25416 (18) | 0.70179 (8) | 0.0414 (4) | |
C2 | 0.63431 (17) | 0.1687 (2) | 0.72737 (9) | 0.0515 (5) | |
H2 | 0.5989 | 0.1165 | 0.6971 | 0.062* | |
C3 | 0.62168 (18) | 0.1595 (2) | 0.79711 (10) | 0.0578 (5) | |
H3 | 0.5772 | 0.1024 | 0.8131 | 0.069* | |
C4 | 0.67506 (17) | 0.2352 (2) | 0.84349 (9) | 0.0503 (5) | |
C5 | 0.74098 (18) | 0.32010 (19) | 0.81822 (10) | 0.0521 (5) | |
H5 | 0.7778 | 0.3708 | 0.8485 | 0.063* | |
C6 | 0.75202 (17) | 0.32954 (18) | 0.74842 (10) | 0.0480 (4) | |
H6 | 0.7958 | 0.3873 | 0.7323 | 0.058* | |
C7 | 0.71394 (15) | 0.26575 (18) | 0.62690 (9) | 0.0437 (4) | |
C8 | 0.72368 (15) | 0.13276 (17) | 0.28845 (8) | 0.0437 (4) | |
C9 | 0.66706 (18) | 0.05414 (19) | 0.24653 (10) | 0.0543 (5) | |
H9 | 0.6230 | 0.0002 | 0.2659 | 0.065* | |
C10 | 0.6749 (2) | 0.0543 (2) | 0.17607 (10) | 0.0605 (6) | |
H10 | 0.6364 | 0.0002 | 0.1488 | 0.073* | |
C11 | 0.73957 (18) | 0.1343 (2) | 0.14575 (9) | 0.0531 (5) | |
C12 | 0.79721 (18) | 0.21209 (19) | 0.18774 (10) | 0.0531 (5) | |
H12 | 0.8418 | 0.2653 | 0.1684 | 0.064* | |
C13 | 0.78948 (16) | 0.21189 (18) | 0.25818 (9) | 0.0483 (5) | |
H13 | 0.8287 | 0.2652 | 0.2855 | 0.058* | |
C14 | 0.71565 (16) | 0.1321 (2) | 0.36461 (9) | 0.0487 (5) | |
C15 | 0.88170 (14) | 0.07802 (17) | 0.58180 (9) | 0.0418 (4) | |
H15 | 0.8333 | 0.0438 | 0.6087 | 0.050* | |
C16 | 0.95172 (16) | 0.17479 (19) | 0.50186 (10) | 0.0484 (5) | |
H16 | 0.9602 | 0.2202 | 0.4626 | 0.058* | |
C17 | 1.02826 (16) | 0.1299 (2) | 0.54402 (10) | 0.0536 (5) | |
H17 | 1.0982 | 0.1392 | 0.5396 | 0.064* | |
C18 | 1.03590 (17) | 0.0044 (2) | 0.65268 (10) | 0.0568 (6) | |
H18A | 1.0945 | −0.0381 | 0.6367 | 0.068* | |
H18B | 0.9898 | −0.0544 | 0.6704 | 0.068* | |
C19 | 1.07186 (15) | 0.0899 (2) | 0.71027 (10) | 0.0565 (5) | |
H19A | 1.1139 | 0.0454 | 0.7443 | 0.068* | |
H19B | 1.1148 | 0.1509 | 0.6914 | 0.068* | |
C20 | 0.98658 (16) | 0.15138 (19) | 0.74596 (10) | 0.0529 (5) | |
H20A | 1.0170 | 0.2083 | 0.7789 | 0.063* | |
H20B | 0.9449 | 0.1964 | 0.7120 | 0.063* | |
C21 | 0.91748 (15) | 0.0677 (2) | 0.78300 (10) | 0.0549 (5) | |
H21A | 0.8871 | 0.0110 | 0.7499 | 0.066* | |
H21B | 0.8622 | 0.1146 | 0.8003 | 0.066* | |
C22 | 0.96906 (17) | −0.00216 (19) | 0.84230 (10) | 0.0541 (5) | |
H22A | 0.9211 | −0.0603 | 0.8585 | 0.065* | |
H22B | 1.0269 | −0.0458 | 0.8261 | 0.065* | |
C23 | 1.09798 (15) | 0.12327 (18) | 0.90985 (9) | 0.0438 (4) | |
H23 | 1.1518 | 0.1089 | 0.8820 | 0.053* | |
C24 | 1.00978 (16) | 0.18889 (19) | 0.99050 (10) | 0.0501 (5) | |
H24 | 0.9912 | 0.2289 | 1.0296 | 0.060* | |
C25 | 0.94779 (16) | 0.1173 (2) | 0.95058 (10) | 0.0546 (5) | |
H25 | 0.8794 | 0.0999 | 0.9566 | 0.065* | |
N1 | 0.85934 (12) | 0.14264 (14) | 0.52616 (7) | 0.0413 (3) | |
N2 | 0.98308 (12) | 0.06823 (15) | 0.59449 (7) | 0.0443 (4) | |
N3 | 1.00482 (12) | 0.07559 (14) | 0.89960 (7) | 0.0429 (4) | |
N4 | 1.10431 (12) | 0.19343 (14) | 0.96448 (7) | 0.0422 (4) | |
N5 | 0.6617 (2) | 0.2274 (2) | 0.91329 (9) | 0.0714 (6) | |
N6 | 0.7484 (2) | 0.1342 (2) | 0.07524 (9) | 0.0745 (7) | |
O1 | 0.67388 (10) | 0.18549 (13) | 0.58642 (6) | 0.0461 (3) | |
O2 | 0.76375 (14) | 0.35143 (14) | 0.60610 (7) | 0.0639 (4) | |
O1W | 0.69005 (16) | −0.12845 (16) | 0.48742 (9) | 0.0730 (5) | |
O3 | 0.76716 (11) | 0.21141 (14) | 0.39921 (6) | 0.0529 (4) | |
O2W | 0.55952 (17) | −0.03625 (18) | 0.58310 (12) | 0.0875 (6) | |
O4 | 0.65989 (14) | 0.05708 (15) | 0.39138 (7) | 0.0671 (4) | |
O3W | 0.8944 (2) | 0.4784 (2) | 0.52971 (15) | 0.1152 (9) | |
H5A | 0.704 (3) | 0.261 (4) | 0.937 (2) | 0.173* | |
H5B | 0.638 (4) | 0.161 (3) | 0.927 (2) | 0.173* | |
H6A | 0.698 (3) | 0.091 (4) | 0.051 (2) | 0.173* | |
H6B | 0.774 (4) | 0.199 (4) | 0.058 (2) | 0.173* | |
H1A | 0.645 (3) | −0.104 (4) | 0.5145 (18) | 0.173* | |
H1B | 0.691 (3) | −0.078 (4) | 0.4530 (17) | 0.173* | |
H2A | 0.496 (2) | −0.038 (4) | 0.593 (2) | 0.173* | |
H2B | 0.577 (3) | 0.045 (3) | 0.584 (2) | 0.173* | |
H3A | 0.845 (2) | 0.436 (4) | 0.547 (2) | 0.173* | |
H3B | 0.952 (2) | 0.449 (4) | 0.558 (2) | 0.173* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04202 (14) | 0.05555 (15) | 0.02164 (11) | 0.00707 (10) | 0.00120 (8) | 0.00176 (9) |
C1 | 0.0499 (11) | 0.0473 (10) | 0.0272 (8) | 0.0124 (9) | 0.0031 (8) | 0.0012 (7) |
C2 | 0.0583 (12) | 0.0659 (13) | 0.0305 (9) | −0.0015 (10) | 0.0036 (9) | −0.0037 (9) |
C3 | 0.0654 (14) | 0.0754 (14) | 0.0333 (9) | −0.0059 (12) | 0.0091 (9) | 0.0021 (10) |
C4 | 0.0611 (13) | 0.0621 (13) | 0.0282 (8) | 0.0174 (10) | 0.0062 (9) | −0.0008 (8) |
C5 | 0.0675 (13) | 0.0528 (12) | 0.0353 (9) | 0.0119 (10) | −0.0025 (9) | −0.0088 (8) |
C6 | 0.0589 (12) | 0.0454 (10) | 0.0397 (9) | 0.0064 (9) | 0.0047 (9) | −0.0004 (8) |
C7 | 0.0484 (11) | 0.0519 (11) | 0.0313 (9) | 0.0139 (9) | 0.0055 (8) | 0.0052 (8) |
C8 | 0.0519 (11) | 0.0521 (11) | 0.0274 (8) | 0.0174 (9) | 0.0044 (8) | 0.0053 (8) |
C9 | 0.0648 (13) | 0.0584 (12) | 0.0400 (10) | 0.0036 (11) | 0.0061 (10) | 0.0058 (9) |
C10 | 0.0808 (16) | 0.0640 (14) | 0.0361 (10) | 0.0039 (12) | −0.0013 (10) | −0.0023 (10) |
C11 | 0.0728 (14) | 0.0586 (12) | 0.0281 (8) | 0.0209 (11) | 0.0048 (9) | 0.0041 (8) |
C12 | 0.0677 (14) | 0.0582 (12) | 0.0346 (9) | 0.0090 (10) | 0.0111 (9) | 0.0085 (9) |
C13 | 0.0572 (12) | 0.0550 (12) | 0.0327 (9) | 0.0100 (10) | 0.0038 (8) | 0.0013 (8) |
C14 | 0.0523 (11) | 0.0641 (13) | 0.0302 (9) | 0.0259 (10) | 0.0063 (8) | 0.0084 (9) |
C15 | 0.0431 (10) | 0.0515 (10) | 0.0308 (8) | 0.0052 (8) | 0.0017 (7) | 0.0023 (8) |
C16 | 0.0497 (11) | 0.0607 (12) | 0.0354 (9) | 0.0012 (10) | 0.0068 (8) | 0.0043 (9) |
C17 | 0.0410 (10) | 0.0758 (14) | 0.0446 (10) | 0.0005 (10) | 0.0069 (9) | −0.0010 (10) |
C18 | 0.0539 (12) | 0.0754 (14) | 0.0403 (10) | 0.0257 (11) | −0.0038 (9) | 0.0039 (10) |
C19 | 0.0414 (10) | 0.0871 (16) | 0.0398 (10) | −0.0031 (11) | −0.0065 (8) | 0.0059 (10) |
C20 | 0.0565 (12) | 0.0582 (12) | 0.0419 (10) | 0.0009 (10) | −0.0120 (9) | −0.0039 (9) |
C21 | 0.0413 (10) | 0.0783 (14) | 0.0442 (10) | −0.0032 (10) | −0.0038 (9) | −0.0154 (10) |
C22 | 0.0603 (13) | 0.0522 (12) | 0.0496 (11) | −0.0180 (10) | 0.0012 (10) | −0.0102 (9) |
C23 | 0.0428 (10) | 0.0544 (11) | 0.0343 (9) | −0.0051 (9) | 0.0036 (8) | −0.0047 (8) |
C24 | 0.0476 (11) | 0.0656 (13) | 0.0379 (10) | −0.0019 (10) | 0.0077 (8) | −0.0067 (9) |
C25 | 0.0414 (10) | 0.0752 (14) | 0.0479 (11) | −0.0067 (10) | 0.0086 (9) | −0.0042 (10) |
N1 | 0.0418 (8) | 0.0544 (9) | 0.0276 (7) | 0.0055 (7) | 0.0024 (6) | 0.0011 (6) |
N2 | 0.0422 (8) | 0.0580 (10) | 0.0321 (7) | 0.0108 (7) | −0.0011 (6) | 0.0000 (7) |
N3 | 0.0445 (8) | 0.0481 (9) | 0.0358 (7) | −0.0073 (7) | 0.0003 (7) | −0.0021 (7) |
N4 | 0.0422 (8) | 0.0558 (9) | 0.0285 (7) | −0.0049 (7) | 0.0018 (6) | −0.0013 (6) |
N5 | 0.0936 (17) | 0.0929 (17) | 0.0282 (8) | 0.0059 (13) | 0.0091 (9) | −0.0018 (9) |
N6 | 0.1137 (19) | 0.0827 (15) | 0.0279 (8) | 0.0114 (13) | 0.0109 (10) | 0.0024 (9) |
O1 | 0.0482 (7) | 0.0655 (9) | 0.0245 (6) | 0.0049 (6) | 0.0022 (5) | 0.0000 (6) |
O2 | 0.0887 (12) | 0.0600 (9) | 0.0449 (8) | −0.0038 (9) | 0.0186 (8) | 0.0064 (7) |
O1W | 0.0865 (12) | 0.0683 (11) | 0.0655 (11) | 0.0060 (9) | 0.0135 (9) | 0.0146 (9) |
O3 | 0.0486 (8) | 0.0851 (11) | 0.0250 (6) | 0.0149 (7) | 0.0024 (6) | 0.0009 (6) |
O2W | 0.0846 (13) | 0.0803 (13) | 0.0985 (15) | −0.0034 (11) | 0.0133 (12) | −0.0157 (11) |
O4 | 0.0865 (12) | 0.0744 (10) | 0.0425 (8) | 0.0088 (9) | 0.0203 (8) | 0.0176 (7) |
O3W | 0.130 (2) | 0.0837 (15) | 0.140 (2) | 0.0016 (14) | 0.0703 (18) | 0.0213 (14) |
Cu1—N4i | 1.9677 (15) | C17—N2 | 1.367 (3) |
Cu1—O3 | 1.9698 (12) | C17—H17 | 0.9300 |
Cu1—N1 | 1.9745 (15) | C18—N2 | 1.473 (2) |
Cu1—O1 | 1.9757 (12) | C18—C19 | 1.524 (3) |
C1—C2 | 1.387 (3) | C18—H18A | 0.9700 |
C1—C6 | 1.392 (3) | C18—H18B | 0.9700 |
C1—C7 | 1.493 (2) | C19—C20 | 1.517 (3) |
C2—C3 | 1.385 (2) | C19—H19A | 0.9700 |
C2—H2 | 0.9300 | C19—H19B | 0.9700 |
C3—C4 | 1.391 (3) | C20—C21 | 1.515 (3) |
C3—H3 | 0.9300 | C20—H20A | 0.9700 |
C4—N5 | 1.387 (2) | C20—H20B | 0.9700 |
C4—C5 | 1.392 (3) | C21—C22 | 1.516 (3) |
C5—C6 | 1.382 (3) | C21—H21A | 0.9700 |
C5—H5 | 0.9300 | C21—H21B | 0.9700 |
C6—H6 | 0.9300 | C22—N3 | 1.467 (2) |
C7—O2 | 1.239 (2) | C22—H22A | 0.9700 |
C7—O1 | 1.283 (2) | C22—H22B | 0.9700 |
C8—C9 | 1.381 (3) | C23—N4 | 1.320 (2) |
C8—C13 | 1.391 (3) | C23—N3 | 1.333 (2) |
C8—C14 | 1.496 (2) | C23—H23 | 0.9300 |
C9—C10 | 1.385 (3) | C24—C25 | 1.349 (3) |
C9—H9 | 0.9300 | C24—N4 | 1.368 (2) |
C10—C11 | 1.389 (3) | C24—H24 | 0.9300 |
C10—H10 | 0.9300 | C25—N3 | 1.363 (2) |
C11—C12 | 1.383 (3) | C25—H25 | 0.9300 |
C11—N6 | 1.387 (2) | N4—Cu1ii | 1.9677 (15) |
C12—C13 | 1.384 (3) | N5—H5A | 0.79 (3) |
C12—H12 | 0.9300 | N5—H5B | 0.86 (3) |
C13—H13 | 0.9300 | N6—H6A | 0.92 (3) |
C14—O4 | 1.247 (3) | N6—H6B | 0.88 (4) |
C14—O3 | 1.278 (3) | O1W—H1A | 0.86 (3) |
C15—N1 | 1.320 (2) | O1W—H1B | 0.87 (3) |
C15—N2 | 1.338 (2) | O2W—H2A | 0.86 (3) |
C15—H15 | 0.9300 | O2W—H2B | 0.94 (3) |
C16—C17 | 1.350 (3) | O3W—H3A | 0.89 (3) |
C16—N1 | 1.374 (2) | O3W—H3B | 0.97 (3) |
C16—H16 | 0.9300 | ||
N4i—Cu1—O3 | 89.16 (6) | N2—C18—H18B | 109.2 |
N4i—Cu1—N1 | 169.04 (7) | C19—C18—H18B | 109.2 |
O3—Cu1—N1 | 90.06 (6) | H18A—C18—H18B | 107.9 |
N4i—Cu1—O1 | 91.86 (6) | C20—C19—C18 | 114.84 (17) |
O3—Cu1—O1 | 171.77 (6) | C20—C19—H19A | 108.6 |
N1—Cu1—O1 | 90.48 (6) | C18—C19—H19A | 108.6 |
C2—C1—C6 | 118.06 (16) | C20—C19—H19B | 108.6 |
C2—C1—C7 | 122.31 (17) | C18—C19—H19B | 108.6 |
C6—C1—C7 | 119.62 (18) | H19A—C19—H19B | 107.5 |
C3—C2—C1 | 121.22 (19) | C21—C20—C19 | 114.83 (18) |
C3—C2—H2 | 119.4 | C21—C20—H20A | 108.6 |
C1—C2—H2 | 119.4 | C19—C20—H20A | 108.6 |
C2—C3—C4 | 120.5 (2) | C21—C20—H20B | 108.6 |
C2—C3—H3 | 119.8 | C19—C20—H20B | 108.6 |
C4—C3—H3 | 119.8 | H20A—C20—H20B | 107.5 |
N5—C4—C3 | 120.7 (2) | C20—C21—C22 | 115.50 (17) |
N5—C4—C5 | 120.7 (2) | C20—C21—H21A | 108.4 |
C3—C4—C5 | 118.60 (17) | C22—C21—H21A | 108.4 |
C6—C5—C4 | 120.47 (19) | C20—C21—H21B | 108.4 |
C6—C5—H5 | 119.8 | C22—C21—H21B | 108.4 |
C4—C5—H5 | 119.8 | H21A—C21—H21B | 107.5 |
C5—C6—C1 | 121.2 (2) | N3—C22—C21 | 112.43 (17) |
C5—C6—H6 | 119.4 | N3—C22—H22A | 109.1 |
C1—C6—H6 | 119.4 | C21—C22—H22A | 109.1 |
O2—C7—O1 | 122.61 (16) | N3—C22—H22B | 109.1 |
O2—C7—C1 | 119.56 (18) | C21—C22—H22B | 109.1 |
O1—C7—C1 | 117.83 (17) | H22A—C22—H22B | 107.8 |
C9—C8—C13 | 118.32 (17) | N4—C23—N3 | 111.48 (16) |
C9—C8—C14 | 121.02 (19) | N4—C23—H23 | 124.3 |
C13—C8—C14 | 120.66 (19) | N3—C23—H23 | 124.3 |
C8—C9—C10 | 121.0 (2) | C25—C24—N4 | 109.38 (17) |
C8—C9—H9 | 119.5 | C25—C24—H24 | 125.3 |
C10—C9—H9 | 119.5 | N4—C24—H24 | 125.3 |
C9—C10—C11 | 120.6 (2) | C24—C25—N3 | 106.62 (17) |
C9—C10—H10 | 119.7 | C24—C25—H25 | 126.7 |
C11—C10—H10 | 119.7 | N3—C25—H25 | 126.7 |
C12—C11—N6 | 120.7 (2) | C15—N1—C16 | 105.85 (16) |
C12—C11—C10 | 118.36 (17) | C15—N1—Cu1 | 127.69 (13) |
N6—C11—C10 | 120.9 (2) | C16—N1—Cu1 | 125.30 (13) |
C11—C12—C13 | 121.0 (2) | C15—N2—C17 | 107.20 (15) |
C11—C12—H12 | 119.5 | C15—N2—C18 | 126.28 (17) |
C13—C12—H12 | 119.5 | C17—N2—C18 | 126.52 (17) |
C12—C13—C8 | 120.6 (2) | C23—N3—C25 | 107.03 (16) |
C12—C13—H13 | 119.7 | C23—N3—C22 | 126.39 (16) |
C8—C13—H13 | 119.7 | C25—N3—C22 | 126.51 (17) |
O4—C14—O3 | 123.10 (17) | C23—N4—C24 | 105.47 (16) |
O4—C14—C8 | 120.0 (2) | C23—N4—Cu1ii | 124.79 (13) |
O3—C14—C8 | 116.91 (18) | C24—N4—Cu1ii | 129.60 (13) |
N1—C15—N2 | 111.15 (16) | C4—N5—H5A | 114 (4) |
N1—C15—H15 | 124.4 | C4—N5—H5B | 116 (3) |
N2—C15—H15 | 124.4 | H5A—N5—H5B | 119 (4) |
C17—C16—N1 | 109.12 (17) | C11—N6—H6A | 114 (3) |
C17—C16—H16 | 125.4 | C11—N6—H6B | 116 (3) |
N1—C16—H16 | 125.4 | H6A—N6—H6B | 122 (4) |
C16—C17—N2 | 106.67 (17) | C7—O1—Cu1 | 108.37 (12) |
C16—C17—H17 | 126.7 | H1A—O1W—H1B | 108 (3) |
N2—C17—H17 | 126.7 | C14—O3—Cu1 | 108.70 (12) |
N2—C18—C19 | 111.85 (18) | H2A—O2W—H2B | 105 (3) |
N2—C18—H18A | 109.2 | H3A—O3W—H3B | 99 (3) |
C19—C18—H18A | 109.2 | ||
C6—C1—C2—C3 | 1.1 (3) | N2—C15—N1—C16 | 0.5 (2) |
C7—C1—C2—C3 | 179.84 (19) | N2—C15—N1—Cu1 | −167.55 (13) |
C1—C2—C3—C4 | −1.1 (3) | C17—C16—N1—C15 | −0.8 (2) |
C2—C3—C4—N5 | 179.2 (2) | C17—C16—N1—Cu1 | 167.69 (14) |
C2—C3—C4—C5 | 0.2 (3) | N4i—Cu1—N1—C15 | 119.0 (3) |
N5—C4—C5—C6 | −178.3 (2) | O3—Cu1—N1—C15 | −155.13 (17) |
C3—C4—C5—C6 | 0.7 (3) | O1—Cu1—N1—C15 | 16.65 (17) |
C4—C5—C6—C1 | −0.6 (3) | N4i—Cu1—N1—C16 | −46.9 (4) |
C2—C1—C6—C5 | −0.2 (3) | O3—Cu1—N1—C16 | 38.96 (16) |
C7—C1—C6—C5 | −179.02 (18) | O1—Cu1—N1—C16 | −149.25 (16) |
C2—C1—C7—O2 | 172.4 (2) | N1—C15—N2—C17 | −0.1 (2) |
C6—C1—C7—O2 | −8.8 (3) | N1—C15—N2—C18 | 179.02 (18) |
C2—C1—C7—O1 | −7.3 (3) | C16—C17—N2—C15 | −0.4 (2) |
C6—C1—C7—O1 | 171.39 (18) | C16—C17—N2—C18 | −179.49 (19) |
C13—C8—C9—C10 | −0.4 (3) | C19—C18—N2—C15 | −99.2 (2) |
C14—C8—C9—C10 | −179.67 (19) | C19—C18—N2—C17 | 79.8 (2) |
C8—C9—C10—C11 | −0.4 (3) | N4—C23—N3—C25 | 0.0 (2) |
C9—C10—C11—C12 | 1.2 (3) | N4—C23—N3—C22 | 177.13 (18) |
C9—C10—C11—N6 | 179.4 (2) | C24—C25—N3—C23 | −0.5 (2) |
N6—C11—C12—C13 | −179.4 (2) | C24—C25—N3—C22 | −177.63 (19) |
C10—C11—C12—C13 | −1.1 (3) | C21—C22—N3—C23 | −93.1 (2) |
C11—C12—C13—C8 | 0.3 (3) | C21—C22—N3—C25 | 83.5 (2) |
C9—C8—C13—C12 | 0.5 (3) | N3—C23—N4—C24 | 0.5 (2) |
C14—C8—C13—C12 | 179.72 (17) | N3—C23—N4—Cu1ii | −175.54 (12) |
C9—C8—C14—O4 | 2.5 (3) | C25—C24—N4—C23 | −0.8 (2) |
C13—C8—C14—O4 | −176.73 (18) | C25—C24—N4—Cu1ii | 174.99 (15) |
C9—C8—C14—O3 | −176.92 (18) | O2—C7—O1—Cu1 | 9.2 (2) |
C13—C8—C14—O3 | 3.8 (3) | C1—C7—O1—Cu1 | −171.10 (13) |
N1—C16—C17—N2 | 0.7 (2) | N4i—Cu1—O1—C7 | −94.66 (13) |
N2—C18—C19—C20 | 65.9 (2) | N1—Cu1—O1—C7 | 74.64 (13) |
C18—C19—C20—C21 | 62.9 (2) | O4—C14—O3—Cu1 | −9.3 (2) |
C19—C20—C21—C22 | 63.4 (2) | C8—C14—O3—Cu1 | 170.13 (12) |
C20—C21—C22—N3 | 66.3 (2) | N4i—Cu1—O3—C14 | −80.43 (13) |
N4—C24—C25—N3 | 0.8 (2) | N1—Cu1—O3—C14 | 110.50 (13) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2A···O4iii | 0.86 (3) | 2.09 (3) | 2.954 (3) | 174 (4) |
N5—H5A···O1Wiv | 0.79 (3) | 2.32 (3) | 3.100 (3) | 172 (5) |
N6—H6B···O1Wv | 0.88 (4) | 2.18 (4) | 3.046 (3) | 170 (5) |
O1W—H1A···O2W | 0.86 (3) | 1.95 (3) | 2.805 (3) | 172 (5) |
O1W—H1B···O4 | 0.87 (3) | 1.96 (3) | 2.802 (2) | 163 (4) |
O2W—H2B···O1 | 0.94 (3) | 2.01 (3) | 2.889 (3) | 155 (4) |
O3W—H3A···O2 | 0.89 (3) | 1.87 (3) | 2.734 (3) | 164 (4) |
Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+3/2, y+1/2, −z+3/2; (v) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C7H6NO2)2(C11H16N4)]·3H2O |
Mr | 594.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 13.082 (9), 11.151 (1), 19.505 (2) |
β (°) | 93.725 (1) |
V (Å3) | 2839.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.68 × 0.45 × 0.38 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.635, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16576, 6488, 4988 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.095, 1.03 |
No. of reflections | 6488 |
No. of parameters | 382 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.34 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2A···O4i | 0.86 (3) | 2.09 (3) | 2.954 (3) | 174 (4) |
N5—H5A···O1Wii | 0.79 (3) | 2.32 (3) | 3.100 (3) | 172 (5) |
N6—H6B···O1Wiii | 0.88 (4) | 2.18 (4) | 3.046 (3) | 170 (5) |
O1W—H1A···O2W | 0.86 (3) | 1.95 (3) | 2.805 (3) | 172 (5) |
O1W—H1B···O4 | 0.87 (3) | 1.96 (3) | 2.802 (2) | 163 (4) |
O2W—H2B···O1 | 0.94 (3) | 2.01 (3) | 2.889 (3) | 155 (4) |
O3W—H3A···O2 | 0.89 (3) | 1.87 (3) | 2.734 (3) | 164 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
The authors thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation, and the Analysis and Testing Foundation of Northeast Normal University for support.
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1491. CrossRef Google Scholar
Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, X. M. & Gao, F. L. (2002). Chem. Eur. J. 8, 4811–4817. CrossRef PubMed CAS Google Scholar
Ma, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403–2407. Web of Science CSD CrossRef Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174–2180. Web of Science CSD CrossRef Google Scholar
Yang, J., Ma, J. F., Liu, Y. Y., Ma, J. C., Jia, H. Q. & Hu, N. H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, research into coordination polymers has been expanding rapidly because of their fascinating structural diversity and potential application as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). To date, a number of one-, two- and three-dimensional infinite frameworks have been generated with linear N,N'-bidentate spacers (Tong et al., 2002). Much of the work has been focused on coordination polymers with rigid ligands, such as 4,4'-bipyridine, pyrazine and their analogues. In our previous work, we have synthsis some compounds contaning 1,1'-(1,4-butanediyl)bis(imidazole) (Ma et al., 2000; Yang et al., 2006). However, flexible ligands such as 1,1'-(1,5-pentanediyl) bis(imidazole) have not been well explored to date. In the present paper, we report the preparation and crystal structure of three-dimensional supermolecule coordination polymer of compound, (I).
As shown in Fig. 1, each CuII atom is primarily coordinated by two oxygen atoms from two para-aminobenzoate anions, and two nitrogen atoms from two different biim-5 ligands, to furnish a distorted square-planar geometry. The Cu—N distances range from 1.967 (2) to 1.975 (2) Å, which are similar to reported Cu—N distances. The Cu1—O distances of 1.970 (1) and 1.976 (1) Å are also similar to reported Cu—O distances (Yang et al., 2006). The pendant carboxy oxygen atoms have weak bonding interactions with the CuII atom at the axial sites due to the Jahn-Teller effect. The Cu—O distances range from 2.712 to 2.727 Å, which indicated the weak bonding interactions. Each biim-5 ligand coordinates to two CuII atoms, acting as a bridging ligand and as a result, an one-dimensional chain structure is formed.
The hydrogen bonds in this study have been considered with liberal distance cut-off criteria of 2.5< D···A < 3.0 Å and 120 < D—H···A < 180 °. The selected hydrogen-bond distances and angles are listed in Table 2. It can be seen that there are three H atoms involved in hydrogen bonding in the asymmetric unit, two of which are from amino group and one of which from water molecules. The uncoordinated carboxylate O atoms are also involved in hydrogen bonds and play the role of acceptors. The polymeric chains are connected through various hydrogen bonds to form a three-dimensional structure (Fig. 2).