metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(4-amino­benzoato-κO)copper(II)]-μ-1,1′-(pentane-1,5-di­yl)di­imidazole] trihydrate]

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 19 November 2007; accepted 29 November 2007; online 12 December 2007)

In the title compound, {[Cu(C7H6NO2)2(C11H16N4)]·3H2O}n, each CuII atom is coordinated by two O atoms from two 4-amino­benzoate anions, and two N atoms from two different 1,1′-(pentane-1,5-di­yl)diimidazole (biim-5) ligands, to furnish a distorted square-planar geometry. The biim-5 ligand coordinates to two copper(II) cations, acting as a bridging ligand; as a result the copper(II) cations are connected to form an infinite chain structure. The polymeric chains are linked through a variety of hydrogen bonds to form a three-dimensional structure.

Related literature

For related literature, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1491.]); Chen & Gao (2002[Chen, X. M. & Gao, F. L. (2002). Chem. Eur. J. 8, 4811-4817.]); Ma et al. (2000[Ma, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403-2407.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Tong et al. (2002[Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846-4848.]); Yang et al. (2005[Yang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174-2180.], 2006[Yang, J., Ma, J. F., Liu, Y. Y., Ma, J. C., Jia, H. Q. & Hu, N. H. (2006). Eur. J. Inorg. Chem. pp. 1208-1215.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H6NO2)2(C11H16N4)]·3H2O

  • Mr = 594.12

  • Monoclinic, P 21 /n

  • a = 13.082 (9) Å

  • b = 11.151 (1) Å

  • c = 19.505 (2) Å

  • β = 93.725 (1)°

  • V = 2839.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 (2) K

  • 0.68 × 0.45 × 0.38 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.635, Tmax = 0.746

  • 16576 measured reflections

  • 6488 independent reflections

  • 4988 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.03

  • 6488 reflections

  • 382 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2A⋯O4i 0.86 (3) 2.09 (3) 2.954 (3) 174 (4)
N5—H5A⋯O1Wii 0.79 (3) 2.32 (3) 3.100 (3) 172 (5)
N6—H6B⋯O1Wiii 0.88 (4) 2.18 (4) 3.046 (3) 170 (5)
O1W—H1A⋯O2W 0.86 (3) 1.95 (3) 2.805 (3) 172 (5)
O1W—H1B⋯O4 0.87 (3) 1.96 (3) 2.802 (2) 163 (4)
O2W—H2B⋯O1 0.94 (3) 2.01 (3) 2.889 (3) 155 (4)
O3W—H3A⋯O2 0.89 (3) 1.87 (3) 2.734 (3) 164 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, research into coordination polymers has been expanding rapidly because of their fascinating structural diversity and potential application as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). To date, a number of one-, two- and three-dimensional infinite frameworks have been generated with linear N,N'-bidentate spacers (Tong et al., 2002). Much of the work has been focused on coordination polymers with rigid ligands, such as 4,4'-bipyridine, pyrazine and their analogues. In our previous work, we have synthsis some compounds contaning 1,1'-(1,4-butanediyl)bis(imidazole) (Ma et al., 2000; Yang et al., 2006). However, flexible ligands such as 1,1'-(1,5-pentanediyl) bis(imidazole) have not been well explored to date. In the present paper, we report the preparation and crystal structure of three-dimensional supermolecule coordination polymer of compound, (I).

As shown in Fig. 1, each CuII atom is primarily coordinated by two oxygen atoms from two para-aminobenzoate anions, and two nitrogen atoms from two different biim-5 ligands, to furnish a distorted square-planar geometry. The Cu—N distances range from 1.967 (2) to 1.975 (2) Å, which are similar to reported Cu—N distances. The Cu1—O distances of 1.970 (1) and 1.976 (1) Å are also similar to reported Cu—O distances (Yang et al., 2006). The pendant carboxy oxygen atoms have weak bonding interactions with the CuII atom at the axial sites due to the Jahn-Teller effect. The Cu—O distances range from 2.712 to 2.727 Å, which indicated the weak bonding interactions. Each biim-5 ligand coordinates to two CuII atoms, acting as a bridging ligand and as a result, an one-dimensional chain structure is formed.

The hydrogen bonds in this study have been considered with liberal distance cut-off criteria of 2.5< D···A < 3.0 Å and 120 < D—H···A < 180 °. The selected hydrogen-bond distances and angles are listed in Table 2. It can be seen that there are three H atoms involved in hydrogen bonding in the asymmetric unit, two of which are from amino group and one of which from water molecules. The uncoordinated carboxylate O atoms are also involved in hydrogen bonds and play the role of acceptors. The polymeric chains are connected through various hydrogen bonds to form a three-dimensional structure (Fig. 2).

Related literature top

For related literature, see: Batten & Robson (1998); Chen & Gao (2002); Ma et al. (2000); Moulton & Zaworotko (2001); Tong et al. (2002); Yang et al., (2005, 2006).

Experimental top

A mixture of CuCl2.2H2O (0.171 g, 1 mmol), NaOH (0.08 g, 2 mmol) in water was stirring for 10 min at room temperature, then the Cu(OH)2 solid was filtered. P-aminobenzoic acid was added to the Cu(OH)2 suspension in water with stirring. Then biim-5 (0.204 g, 1 mmol) in ethanol was added with stirring for 1 h and blue precipitate was obtained. And then a minimum amount of ammonia (14 M) was added to get the blue solution. Suitable blue crystals were obtained from the filtrate after standing at room temperature for several days.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.96 Å, Uiso = 1.2Ueq (C) for CH2 group. The amino and aqua hydrogen atoms were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5 Ueq(N, O).

Structure description top

In recent years, research into coordination polymers has been expanding rapidly because of their fascinating structural diversity and potential application as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). To date, a number of one-, two- and three-dimensional infinite frameworks have been generated with linear N,N'-bidentate spacers (Tong et al., 2002). Much of the work has been focused on coordination polymers with rigid ligands, such as 4,4'-bipyridine, pyrazine and their analogues. In our previous work, we have synthsis some compounds contaning 1,1'-(1,4-butanediyl)bis(imidazole) (Ma et al., 2000; Yang et al., 2006). However, flexible ligands such as 1,1'-(1,5-pentanediyl) bis(imidazole) have not been well explored to date. In the present paper, we report the preparation and crystal structure of three-dimensional supermolecule coordination polymer of compound, (I).

As shown in Fig. 1, each CuII atom is primarily coordinated by two oxygen atoms from two para-aminobenzoate anions, and two nitrogen atoms from two different biim-5 ligands, to furnish a distorted square-planar geometry. The Cu—N distances range from 1.967 (2) to 1.975 (2) Å, which are similar to reported Cu—N distances. The Cu1—O distances of 1.970 (1) and 1.976 (1) Å are also similar to reported Cu—O distances (Yang et al., 2006). The pendant carboxy oxygen atoms have weak bonding interactions with the CuII atom at the axial sites due to the Jahn-Teller effect. The Cu—O distances range from 2.712 to 2.727 Å, which indicated the weak bonding interactions. Each biim-5 ligand coordinates to two CuII atoms, acting as a bridging ligand and as a result, an one-dimensional chain structure is formed.

The hydrogen bonds in this study have been considered with liberal distance cut-off criteria of 2.5< D···A < 3.0 Å and 120 < D—H···A < 180 °. The selected hydrogen-bond distances and angles are listed in Table 2. It can be seen that there are three H atoms involved in hydrogen bonding in the asymmetric unit, two of which are from amino group and one of which from water molecules. The uncoordinated carboxylate O atoms are also involved in hydrogen bonds and play the role of acceptors. The polymeric chains are connected through various hydrogen bonds to form a three-dimensional structure (Fig. 2).

For related literature, see: Batten & Robson (1998); Chen & Gao (2002); Ma et al. (2000); Moulton & Zaworotko (2001); Tong et al. (2002); Yang et al., (2005, 2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the compound (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the three-dimensional superamolecular structure of (I). The hydrogen bonds are shown as dotted lines. H atoms on the C atoms have been omiited for clarity.
catena-poly[[[bis(4-aminobenzoato-κO)copper(II)]-µ- 1,1'-(pentane-1,5-diyl)diimidazole] trihydrate] top
Crystal data top
[Cu(C7H6NO2)2(C11H16N4)]·3H2OF(000) = 1244
Mr = 594.12Dx = 1.390 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6488 reflections
a = 13.082 (9) Åθ = 1.8–28.5°
b = 11.151 (1) ŵ = 0.82 mm1
c = 19.505 (2) ÅT = 293 K
β = 93.725 (1)°Block, blue
V = 2839.3 (4) Å30.68 × 0.45 × 0.38 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
6488 independent reflections
Radiation source: fine-focus sealed tube4988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 179
Tmin = 0.635, Tmax = 0.746k = 1413
16576 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.6476P]
where P = (Fo2 + 2Fc2)/3
6488 reflections(Δ/σ)max = 0.002
382 parametersΔρmax = 0.41 e Å3
12 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C7H6NO2)2(C11H16N4)]·3H2OV = 2839.3 (4) Å3
Mr = 594.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.082 (9) ŵ = 0.82 mm1
b = 11.151 (1) ÅT = 293 K
c = 19.505 (2) Å0.68 × 0.45 × 0.38 mm
β = 93.725 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6488 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4988 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.746Rint = 0.028
16576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03312 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.41 e Å3
6488 reflectionsΔρmin = 0.34 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.724906 (17)0.20985 (2)0.494309 (9)0.03977 (9)
C10.69874 (15)0.25416 (18)0.70179 (8)0.0414 (4)
C20.63431 (17)0.1687 (2)0.72737 (9)0.0515 (5)
H20.59890.11650.69710.062*
C30.62168 (18)0.1595 (2)0.79711 (10)0.0578 (5)
H30.57720.10240.81310.069*
C40.67506 (17)0.2352 (2)0.84349 (9)0.0503 (5)
C50.74098 (18)0.32010 (19)0.81822 (10)0.0521 (5)
H50.77780.37080.84850.063*
C60.75202 (17)0.32954 (18)0.74842 (10)0.0480 (4)
H60.79580.38730.73230.058*
C70.71394 (15)0.26575 (18)0.62690 (9)0.0437 (4)
C80.72368 (15)0.13276 (17)0.28845 (8)0.0437 (4)
C90.66706 (18)0.05414 (19)0.24653 (10)0.0543 (5)
H90.62300.00020.26590.065*
C100.6749 (2)0.0543 (2)0.17607 (10)0.0605 (6)
H100.63640.00020.14880.073*
C110.73957 (18)0.1343 (2)0.14575 (9)0.0531 (5)
C120.79721 (18)0.21209 (19)0.18774 (10)0.0531 (5)
H120.84180.26530.16840.064*
C130.78948 (16)0.21189 (18)0.25818 (9)0.0483 (5)
H130.82870.26520.28550.058*
C140.71565 (16)0.1321 (2)0.36461 (9)0.0487 (5)
C150.88170 (14)0.07802 (17)0.58180 (9)0.0418 (4)
H150.83330.04380.60870.050*
C160.95172 (16)0.17479 (19)0.50186 (10)0.0484 (5)
H160.96020.22020.46260.058*
C171.02826 (16)0.1299 (2)0.54402 (10)0.0536 (5)
H171.09820.13920.53960.064*
C181.03590 (17)0.0044 (2)0.65268 (10)0.0568 (6)
H18A1.09450.03810.63670.068*
H18B0.98980.05440.67040.068*
C191.07186 (15)0.0899 (2)0.71027 (10)0.0565 (5)
H19A1.11390.04540.74430.068*
H19B1.11480.15090.69140.068*
C200.98658 (16)0.15138 (19)0.74596 (10)0.0529 (5)
H20A1.01700.20830.77890.063*
H20B0.94490.19640.71200.063*
C210.91748 (15)0.0677 (2)0.78300 (10)0.0549 (5)
H21A0.88710.01100.74990.066*
H21B0.86220.11460.80030.066*
C220.96906 (17)0.00216 (19)0.84230 (10)0.0541 (5)
H22A0.92110.06030.85850.065*
H22B1.02690.04580.82610.065*
C231.09798 (15)0.12327 (18)0.90985 (9)0.0438 (4)
H231.15180.10890.88200.053*
C241.00978 (16)0.18889 (19)0.99050 (10)0.0501 (5)
H240.99120.22891.02960.060*
C250.94779 (16)0.1173 (2)0.95058 (10)0.0546 (5)
H250.87940.09990.95660.065*
N10.85934 (12)0.14264 (14)0.52616 (7)0.0413 (3)
N20.98308 (12)0.06823 (15)0.59449 (7)0.0443 (4)
N31.00482 (12)0.07559 (14)0.89960 (7)0.0429 (4)
N41.10431 (12)0.19343 (14)0.96448 (7)0.0422 (4)
N50.6617 (2)0.2274 (2)0.91329 (9)0.0714 (6)
N60.7484 (2)0.1342 (2)0.07524 (9)0.0745 (7)
O10.67388 (10)0.18549 (13)0.58642 (6)0.0461 (3)
O20.76375 (14)0.35143 (14)0.60610 (7)0.0639 (4)
O1W0.69005 (16)0.12845 (16)0.48742 (9)0.0730 (5)
O30.76716 (11)0.21141 (14)0.39921 (6)0.0529 (4)
O2W0.55952 (17)0.03625 (18)0.58310 (12)0.0875 (6)
O40.65989 (14)0.05708 (15)0.39138 (7)0.0671 (4)
O3W0.8944 (2)0.4784 (2)0.52971 (15)0.1152 (9)
H5A0.704 (3)0.261 (4)0.937 (2)0.173*
H5B0.638 (4)0.161 (3)0.927 (2)0.173*
H6A0.698 (3)0.091 (4)0.051 (2)0.173*
H6B0.774 (4)0.199 (4)0.058 (2)0.173*
H1A0.645 (3)0.104 (4)0.5145 (18)0.173*
H1B0.691 (3)0.078 (4)0.4530 (17)0.173*
H2A0.496 (2)0.038 (4)0.593 (2)0.173*
H2B0.577 (3)0.045 (3)0.584 (2)0.173*
H3A0.845 (2)0.436 (4)0.547 (2)0.173*
H3B0.952 (2)0.449 (4)0.558 (2)0.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04202 (14)0.05555 (15)0.02164 (11)0.00707 (10)0.00120 (8)0.00176 (9)
C10.0499 (11)0.0473 (10)0.0272 (8)0.0124 (9)0.0031 (8)0.0012 (7)
C20.0583 (12)0.0659 (13)0.0305 (9)0.0015 (10)0.0036 (9)0.0037 (9)
C30.0654 (14)0.0754 (14)0.0333 (9)0.0059 (12)0.0091 (9)0.0021 (10)
C40.0611 (13)0.0621 (13)0.0282 (8)0.0174 (10)0.0062 (9)0.0008 (8)
C50.0675 (13)0.0528 (12)0.0353 (9)0.0119 (10)0.0025 (9)0.0088 (8)
C60.0589 (12)0.0454 (10)0.0397 (9)0.0064 (9)0.0047 (9)0.0004 (8)
C70.0484 (11)0.0519 (11)0.0313 (9)0.0139 (9)0.0055 (8)0.0052 (8)
C80.0519 (11)0.0521 (11)0.0274 (8)0.0174 (9)0.0044 (8)0.0053 (8)
C90.0648 (13)0.0584 (12)0.0400 (10)0.0036 (11)0.0061 (10)0.0058 (9)
C100.0808 (16)0.0640 (14)0.0361 (10)0.0039 (12)0.0013 (10)0.0023 (10)
C110.0728 (14)0.0586 (12)0.0281 (8)0.0209 (11)0.0048 (9)0.0041 (8)
C120.0677 (14)0.0582 (12)0.0346 (9)0.0090 (10)0.0111 (9)0.0085 (9)
C130.0572 (12)0.0550 (12)0.0327 (9)0.0100 (10)0.0038 (8)0.0013 (8)
C140.0523 (11)0.0641 (13)0.0302 (9)0.0259 (10)0.0063 (8)0.0084 (9)
C150.0431 (10)0.0515 (10)0.0308 (8)0.0052 (8)0.0017 (7)0.0023 (8)
C160.0497 (11)0.0607 (12)0.0354 (9)0.0012 (10)0.0068 (8)0.0043 (9)
C170.0410 (10)0.0758 (14)0.0446 (10)0.0005 (10)0.0069 (9)0.0010 (10)
C180.0539 (12)0.0754 (14)0.0403 (10)0.0257 (11)0.0038 (9)0.0039 (10)
C190.0414 (10)0.0871 (16)0.0398 (10)0.0031 (11)0.0065 (8)0.0059 (10)
C200.0565 (12)0.0582 (12)0.0419 (10)0.0009 (10)0.0120 (9)0.0039 (9)
C210.0413 (10)0.0783 (14)0.0442 (10)0.0032 (10)0.0038 (9)0.0154 (10)
C220.0603 (13)0.0522 (12)0.0496 (11)0.0180 (10)0.0012 (10)0.0102 (9)
C230.0428 (10)0.0544 (11)0.0343 (9)0.0051 (9)0.0036 (8)0.0047 (8)
C240.0476 (11)0.0656 (13)0.0379 (10)0.0019 (10)0.0077 (8)0.0067 (9)
C250.0414 (10)0.0752 (14)0.0479 (11)0.0067 (10)0.0086 (9)0.0042 (10)
N10.0418 (8)0.0544 (9)0.0276 (7)0.0055 (7)0.0024 (6)0.0011 (6)
N20.0422 (8)0.0580 (10)0.0321 (7)0.0108 (7)0.0011 (6)0.0000 (7)
N30.0445 (8)0.0481 (9)0.0358 (7)0.0073 (7)0.0003 (7)0.0021 (7)
N40.0422 (8)0.0558 (9)0.0285 (7)0.0049 (7)0.0018 (6)0.0013 (6)
N50.0936 (17)0.0929 (17)0.0282 (8)0.0059 (13)0.0091 (9)0.0018 (9)
N60.1137 (19)0.0827 (15)0.0279 (8)0.0114 (13)0.0109 (10)0.0024 (9)
O10.0482 (7)0.0655 (9)0.0245 (6)0.0049 (6)0.0022 (5)0.0000 (6)
O20.0887 (12)0.0600 (9)0.0449 (8)0.0038 (9)0.0186 (8)0.0064 (7)
O1W0.0865 (12)0.0683 (11)0.0655 (11)0.0060 (9)0.0135 (9)0.0146 (9)
O30.0486 (8)0.0851 (11)0.0250 (6)0.0149 (7)0.0024 (6)0.0009 (6)
O2W0.0846 (13)0.0803 (13)0.0985 (15)0.0034 (11)0.0133 (12)0.0157 (11)
O40.0865 (12)0.0744 (10)0.0425 (8)0.0088 (9)0.0203 (8)0.0176 (7)
O3W0.130 (2)0.0837 (15)0.140 (2)0.0016 (14)0.0703 (18)0.0213 (14)
Geometric parameters (Å, º) top
Cu1—N4i1.9677 (15)C17—N21.367 (3)
Cu1—O31.9698 (12)C17—H170.9300
Cu1—N11.9745 (15)C18—N21.473 (2)
Cu1—O11.9757 (12)C18—C191.524 (3)
C1—C21.387 (3)C18—H18A0.9700
C1—C61.392 (3)C18—H18B0.9700
C1—C71.493 (2)C19—C201.517 (3)
C2—C31.385 (2)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C41.391 (3)C20—C211.515 (3)
C3—H30.9300C20—H20A0.9700
C4—N51.387 (2)C20—H20B0.9700
C4—C51.392 (3)C21—C221.516 (3)
C5—C61.382 (3)C21—H21A0.9700
C5—H50.9300C21—H21B0.9700
C6—H60.9300C22—N31.467 (2)
C7—O21.239 (2)C22—H22A0.9700
C7—O11.283 (2)C22—H22B0.9700
C8—C91.381 (3)C23—N41.320 (2)
C8—C131.391 (3)C23—N31.333 (2)
C8—C141.496 (2)C23—H230.9300
C9—C101.385 (3)C24—C251.349 (3)
C9—H90.9300C24—N41.368 (2)
C10—C111.389 (3)C24—H240.9300
C10—H100.9300C25—N31.363 (2)
C11—C121.383 (3)C25—H250.9300
C11—N61.387 (2)N4—Cu1ii1.9677 (15)
C12—C131.384 (3)N5—H5A0.79 (3)
C12—H120.9300N5—H5B0.86 (3)
C13—H130.9300N6—H6A0.92 (3)
C14—O41.247 (3)N6—H6B0.88 (4)
C14—O31.278 (3)O1W—H1A0.86 (3)
C15—N11.320 (2)O1W—H1B0.87 (3)
C15—N21.338 (2)O2W—H2A0.86 (3)
C15—H150.9300O2W—H2B0.94 (3)
C16—C171.350 (3)O3W—H3A0.89 (3)
C16—N11.374 (2)O3W—H3B0.97 (3)
C16—H160.9300
N4i—Cu1—O389.16 (6)N2—C18—H18B109.2
N4i—Cu1—N1169.04 (7)C19—C18—H18B109.2
O3—Cu1—N190.06 (6)H18A—C18—H18B107.9
N4i—Cu1—O191.86 (6)C20—C19—C18114.84 (17)
O3—Cu1—O1171.77 (6)C20—C19—H19A108.6
N1—Cu1—O190.48 (6)C18—C19—H19A108.6
C2—C1—C6118.06 (16)C20—C19—H19B108.6
C2—C1—C7122.31 (17)C18—C19—H19B108.6
C6—C1—C7119.62 (18)H19A—C19—H19B107.5
C3—C2—C1121.22 (19)C21—C20—C19114.83 (18)
C3—C2—H2119.4C21—C20—H20A108.6
C1—C2—H2119.4C19—C20—H20A108.6
C2—C3—C4120.5 (2)C21—C20—H20B108.6
C2—C3—H3119.8C19—C20—H20B108.6
C4—C3—H3119.8H20A—C20—H20B107.5
N5—C4—C3120.7 (2)C20—C21—C22115.50 (17)
N5—C4—C5120.7 (2)C20—C21—H21A108.4
C3—C4—C5118.60 (17)C22—C21—H21A108.4
C6—C5—C4120.47 (19)C20—C21—H21B108.4
C6—C5—H5119.8C22—C21—H21B108.4
C4—C5—H5119.8H21A—C21—H21B107.5
C5—C6—C1121.2 (2)N3—C22—C21112.43 (17)
C5—C6—H6119.4N3—C22—H22A109.1
C1—C6—H6119.4C21—C22—H22A109.1
O2—C7—O1122.61 (16)N3—C22—H22B109.1
O2—C7—C1119.56 (18)C21—C22—H22B109.1
O1—C7—C1117.83 (17)H22A—C22—H22B107.8
C9—C8—C13118.32 (17)N4—C23—N3111.48 (16)
C9—C8—C14121.02 (19)N4—C23—H23124.3
C13—C8—C14120.66 (19)N3—C23—H23124.3
C8—C9—C10121.0 (2)C25—C24—N4109.38 (17)
C8—C9—H9119.5C25—C24—H24125.3
C10—C9—H9119.5N4—C24—H24125.3
C9—C10—C11120.6 (2)C24—C25—N3106.62 (17)
C9—C10—H10119.7C24—C25—H25126.7
C11—C10—H10119.7N3—C25—H25126.7
C12—C11—N6120.7 (2)C15—N1—C16105.85 (16)
C12—C11—C10118.36 (17)C15—N1—Cu1127.69 (13)
N6—C11—C10120.9 (2)C16—N1—Cu1125.30 (13)
C11—C12—C13121.0 (2)C15—N2—C17107.20 (15)
C11—C12—H12119.5C15—N2—C18126.28 (17)
C13—C12—H12119.5C17—N2—C18126.52 (17)
C12—C13—C8120.6 (2)C23—N3—C25107.03 (16)
C12—C13—H13119.7C23—N3—C22126.39 (16)
C8—C13—H13119.7C25—N3—C22126.51 (17)
O4—C14—O3123.10 (17)C23—N4—C24105.47 (16)
O4—C14—C8120.0 (2)C23—N4—Cu1ii124.79 (13)
O3—C14—C8116.91 (18)C24—N4—Cu1ii129.60 (13)
N1—C15—N2111.15 (16)C4—N5—H5A114 (4)
N1—C15—H15124.4C4—N5—H5B116 (3)
N2—C15—H15124.4H5A—N5—H5B119 (4)
C17—C16—N1109.12 (17)C11—N6—H6A114 (3)
C17—C16—H16125.4C11—N6—H6B116 (3)
N1—C16—H16125.4H6A—N6—H6B122 (4)
C16—C17—N2106.67 (17)C7—O1—Cu1108.37 (12)
C16—C17—H17126.7H1A—O1W—H1B108 (3)
N2—C17—H17126.7C14—O3—Cu1108.70 (12)
N2—C18—C19111.85 (18)H2A—O2W—H2B105 (3)
N2—C18—H18A109.2H3A—O3W—H3B99 (3)
C19—C18—H18A109.2
C6—C1—C2—C31.1 (3)N2—C15—N1—C160.5 (2)
C7—C1—C2—C3179.84 (19)N2—C15—N1—Cu1167.55 (13)
C1—C2—C3—C41.1 (3)C17—C16—N1—C150.8 (2)
C2—C3—C4—N5179.2 (2)C17—C16—N1—Cu1167.69 (14)
C2—C3—C4—C50.2 (3)N4i—Cu1—N1—C15119.0 (3)
N5—C4—C5—C6178.3 (2)O3—Cu1—N1—C15155.13 (17)
C3—C4—C5—C60.7 (3)O1—Cu1—N1—C1516.65 (17)
C4—C5—C6—C10.6 (3)N4i—Cu1—N1—C1646.9 (4)
C2—C1—C6—C50.2 (3)O3—Cu1—N1—C1638.96 (16)
C7—C1—C6—C5179.02 (18)O1—Cu1—N1—C16149.25 (16)
C2—C1—C7—O2172.4 (2)N1—C15—N2—C170.1 (2)
C6—C1—C7—O28.8 (3)N1—C15—N2—C18179.02 (18)
C2—C1—C7—O17.3 (3)C16—C17—N2—C150.4 (2)
C6—C1—C7—O1171.39 (18)C16—C17—N2—C18179.49 (19)
C13—C8—C9—C100.4 (3)C19—C18—N2—C1599.2 (2)
C14—C8—C9—C10179.67 (19)C19—C18—N2—C1779.8 (2)
C8—C9—C10—C110.4 (3)N4—C23—N3—C250.0 (2)
C9—C10—C11—C121.2 (3)N4—C23—N3—C22177.13 (18)
C9—C10—C11—N6179.4 (2)C24—C25—N3—C230.5 (2)
N6—C11—C12—C13179.4 (2)C24—C25—N3—C22177.63 (19)
C10—C11—C12—C131.1 (3)C21—C22—N3—C2393.1 (2)
C11—C12—C13—C80.3 (3)C21—C22—N3—C2583.5 (2)
C9—C8—C13—C120.5 (3)N3—C23—N4—C240.5 (2)
C14—C8—C13—C12179.72 (17)N3—C23—N4—Cu1ii175.54 (12)
C9—C8—C14—O42.5 (3)C25—C24—N4—C230.8 (2)
C13—C8—C14—O4176.73 (18)C25—C24—N4—Cu1ii174.99 (15)
C9—C8—C14—O3176.92 (18)O2—C7—O1—Cu19.2 (2)
C13—C8—C14—O33.8 (3)C1—C7—O1—Cu1171.10 (13)
N1—C16—C17—N20.7 (2)N4i—Cu1—O1—C794.66 (13)
N2—C18—C19—C2065.9 (2)N1—Cu1—O1—C774.64 (13)
C18—C19—C20—C2162.9 (2)O4—C14—O3—Cu19.3 (2)
C19—C20—C21—C2263.4 (2)C8—C14—O3—Cu1170.13 (12)
C20—C21—C22—N366.3 (2)N4i—Cu1—O3—C1480.43 (13)
N4—C24—C25—N30.8 (2)N1—Cu1—O3—C14110.50 (13)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O4iii0.86 (3)2.09 (3)2.954 (3)174 (4)
N5—H5A···O1Wiv0.79 (3)2.32 (3)3.100 (3)172 (5)
N6—H6B···O1Wv0.88 (4)2.18 (4)3.046 (3)170 (5)
O1W—H1A···O2W0.86 (3)1.95 (3)2.805 (3)172 (5)
O1W—H1B···O40.87 (3)1.96 (3)2.802 (2)163 (4)
O2W—H2B···O10.94 (3)2.01 (3)2.889 (3)155 (4)
O3W—H3A···O20.89 (3)1.87 (3)2.734 (3)164 (4)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+3/2, y+1/2, z+3/2; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H6NO2)2(C11H16N4)]·3H2O
Mr594.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.082 (9), 11.151 (1), 19.505 (2)
β (°) 93.725 (1)
V3)2839.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.68 × 0.45 × 0.38
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.635, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16576, 6488, 4988
Rint0.028
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.03
No. of reflections6488
No. of parameters382
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.34

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2A···O4i0.86 (3)2.09 (3)2.954 (3)174 (4)
N5—H5A···O1Wii0.79 (3)2.32 (3)3.100 (3)172 (5)
N6—H6B···O1Wiii0.88 (4)2.18 (4)3.046 (3)170 (5)
O1W—H1A···O2W0.86 (3)1.95 (3)2.805 (3)172 (5)
O1W—H1B···O40.87 (3)1.96 (3)2.802 (2)163 (4)
O2W—H2B···O10.94 (3)2.01 (3)2.889 (3)155 (4)
O3W—H3A···O20.89 (3)1.87 (3)2.734 (3)164 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation, and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1491.  CrossRef Google Scholar
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. M. & Gao, F. L. (2002). Chem. Eur. J. 8, 4811–4817.  CrossRef PubMed CAS Google Scholar
First citationMa, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). J. Chem. Soc. Dalton Trans. pp. 2403–2407.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, J., Ma, J. F., Liu, Y. Y., Li, S. L. & Zheng, G. L. (2005). Eur. J. Inorg. Chem. pp. 2174–2180.  Web of Science CSD CrossRef Google Scholar
First citationYang, J., Ma, J. F., Liu, Y. Y., Ma, J. C., Jia, H. Q. & Hu, N. H. (2006). Eur. J. Inorg. Chem. pp. 1208–1215.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds