organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Chloro-3,3,3-tri­fluoro­prop-1-en­yl)-N-(3-meth­oxy­phen­yl)-2,2-di­methyl­cyclo­propane­carboxamide

aSchool of Materials Science and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: yfytju@yahoo.com

(Received 20 November 2007; accepted 25 November 2007; online 6 December 2007)

The title compound, C16H17ClF3NO2, was synthesized from 3-[(E)-2-chloro-3,3,3-trifluoro­prop-1-en­yl]-2,2-dimethyl­cyclo­propane­carboxylic acid and 3-methoxy­benzenamine. The propenyl and carboxamide substituents lie on the same side of the cyclo­propane ring plane, with the two methyl substituents on either side of the plane. The benzene ring makes a dihedral angle of 76.4 (3)° with the plane of the cyclo­propane ring. The crystal structure involves intermolecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Liu & Yan (2007[Liu, D.-Q. & Yan, F.-Y. (2007). Acta Cryst. E63, o4202.]); Punja (1981[Punja, N. (1981). European Patent EP 0031199.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17ClF3NO2

  • Mr = 347.76

  • Orthorhombic, P c c n

  • a = 16.785 (2) Å

  • b = 22.246 (3) Å

  • c = 9.4791 (12) Å

  • V = 3539.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 294 (2) K

  • 0.22 × 0.10 × 0.01 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.998

  • 16415 measured reflections

  • 3119 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.236

  • S = 1.02

  • 3119 reflections

  • 216 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.901 (10) 2.046 (19) 2.928 (6) 166 (6)
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We reasoned that a structure containing both of 3-((E)-2-Chloro- 3,3,3-trifluoroprop-1-enyl)-2,2- dimethylcyclopropanecarboxylic acid and 3-methoxybenzenamine bioactive units may show enhanced insecticidal activity and prepared the title compound (I), Fig. 1. For preparation of the title compound, see: Liu & Yan (2007); and for the insecticidal properties of related compounds, see: Punja (1981). The propenyl and carboxamide substituents lie on the same side of the C4, C5, C6 cyclopropane ring plane, with the two methyl substituents, C7 and C8 on either side of this plane. The benzene ring system is essentially planar and makes a dihedral angle of 76.4 (3)° with the plane of the cyclopropane ring. The crystal packing of (I) is shown in Fig. 2 at the end of the Comment. The packing can be described as a dimeric arrangement of molecules linked through N—H···O···H—C hydrogen bond as shown in Fig. 2 and Table 1, the packing diagram also shows F and Cl interactions..

Related literature top

For related literature, see: Liu & Yan (2007); Punja (1981).

Experimental top

The title compound was prepared according to the method of Liu & Yan (2007). The product was recrystallized from acetone and ethyl acetate (9:1, v/v) over 2days at ambient temperature, giving colourless single crystals of (I), (E)-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-N– (3-methoxyphenyl)-2,2-dimethylcyclopropanecarboxamide.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined using riding model with Uiso(H) = 1.2Ueq(carrier).The N—H hydrogen atom was located in a difference Fourier map and refined freely with an isotropic displacement parameter.

Structure description top

We reasoned that a structure containing both of 3-((E)-2-Chloro- 3,3,3-trifluoroprop-1-enyl)-2,2- dimethylcyclopropanecarboxylic acid and 3-methoxybenzenamine bioactive units may show enhanced insecticidal activity and prepared the title compound (I), Fig. 1. For preparation of the title compound, see: Liu & Yan (2007); and for the insecticidal properties of related compounds, see: Punja (1981). The propenyl and carboxamide substituents lie on the same side of the C4, C5, C6 cyclopropane ring plane, with the two methyl substituents, C7 and C8 on either side of this plane. The benzene ring system is essentially planar and makes a dihedral angle of 76.4 (3)° with the plane of the cyclopropane ring. The crystal packing of (I) is shown in Fig. 2 at the end of the Comment. The packing can be described as a dimeric arrangement of molecules linked through N—H···O···H—C hydrogen bond as shown in Fig. 2 and Table 1, the packing diagram also shows F and Cl interactions..

For related literature, see: Liu & Yan (2007); Punja (1981).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along c axis
(E)-3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-N-(3-methoxyphenyl)-2,2- dimethylcyclopropanecarboxamide top
Crystal data top
C16H17ClF3NO2Dx = 1.305 Mg m3
Mr = 347.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 2222 reflections
a = 16.785 (2) Åθ = 2.4–25.9°
b = 22.246 (3) ŵ = 0.25 mm1
c = 9.4791 (12) ÅT = 294 K
V = 3539.5 (8) Å3Block, colourless
Z = 80.22 × 0.10 × 0.01 mm
F(000) = 1440
Data collection top
Bruker SMART CCD area-detector
diffractometer
3119 independent reflections
Radiation source: fine-focus sealed tube1325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1619
Tmin = 0.947, Tmax = 0.998k = 2626
16415 measured reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.P)2 + 13.2989P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3119 reflectionsΔρmax = 0.69 e Å3
216 parametersΔρmin = 0.55 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (5)
Crystal data top
C16H17ClF3NO2V = 3539.5 (8) Å3
Mr = 347.76Z = 8
Orthorhombic, PccnMo Kα radiation
a = 16.785 (2) ŵ = 0.25 mm1
b = 22.246 (3) ÅT = 294 K
c = 9.4791 (12) Å0.22 × 0.10 × 0.01 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3119 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1325 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.998Rint = 0.081
16415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0771 restraint
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.P)2 + 13.2989P]
where P = (Fo2 + 2Fc2)/3
3119 reflectionsΔρmax = 0.69 e Å3
216 parametersΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1468 (2)0.28489 (9)0.5467 (3)0.1433 (13)
C10.1084 (5)0.3528 (4)0.3245 (8)0.085 (2)
F10.0466 (4)0.3193 (3)0.2950 (5)0.160 (3)
F20.1668 (4)0.3302 (3)0.2454 (5)0.155 (2)
F30.0957 (4)0.4067 (2)0.2724 (4)0.129 (2)
O10.2154 (3)0.51918 (18)0.5554 (4)0.0682 (12)
O20.3834 (4)0.6927 (2)0.4146 (6)0.113 (2)
N10.2915 (3)0.5393 (2)0.7504 (5)0.0606 (14)
C20.1288 (4)0.3544 (3)0.4765 (7)0.0666 (18)
C30.1300 (4)0.4042 (3)0.5513 (6)0.0613 (16)
H30.11900.44000.50430.074*
C40.1473 (4)0.4082 (3)0.7024 (6)0.0652 (17)
H40.15380.36920.74920.078*
C50.1987 (4)0.4585 (3)0.7641 (6)0.0635 (17)
H50.23190.44570.84360.076*
C60.1101 (4)0.4567 (3)0.7950 (6)0.0722 (19)
C70.0558 (4)0.5034 (3)0.7319 (8)0.091 (2)
H7A0.05470.53820.79180.136*
H7B0.00300.48720.72340.136*
H7C0.07510.51460.64030.136*
C80.0874 (5)0.4372 (4)0.9438 (7)0.114 (3)
H8A0.12340.40650.97540.171*
H8B0.03400.42170.94370.171*
H8C0.09050.47111.00620.171*
C90.2344 (4)0.5077 (2)0.6786 (6)0.0558 (15)
C100.3371 (4)0.5896 (3)0.7084 (6)0.0598 (16)
C110.3868 (4)0.6149 (3)0.8111 (7)0.077 (2)
H110.38900.59830.90110.092*
C120.4326 (5)0.6643 (4)0.7784 (10)0.096 (3)
H120.46480.68150.84740.115*
C130.4313 (5)0.6888 (3)0.6451 (10)0.092 (2)
H130.46360.72150.62330.111*
C140.3815 (4)0.6643 (3)0.5434 (8)0.078 (2)
C150.3347 (4)0.6142 (3)0.5744 (7)0.0675 (18)
H150.30220.59740.50540.081*
C160.3299 (6)0.6743 (4)0.3071 (9)0.133 (4)
H16A0.33760.63230.28780.199*
H16B0.33980.69710.22300.199*
H16C0.27610.68090.33780.199*
H10.297 (4)0.529 (3)0.842 (2)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.222 (3)0.0645 (13)0.143 (2)0.0358 (16)0.034 (2)0.0058 (13)
C10.108 (7)0.078 (5)0.071 (5)0.016 (5)0.004 (5)0.016 (4)
F10.181 (6)0.187 (6)0.112 (4)0.107 (5)0.039 (4)0.009 (4)
F20.177 (5)0.184 (6)0.105 (4)0.016 (5)0.042 (4)0.075 (4)
F30.212 (6)0.118 (4)0.055 (3)0.006 (4)0.025 (3)0.001 (3)
O10.090 (3)0.079 (3)0.036 (2)0.016 (2)0.003 (2)0.007 (2)
O20.116 (5)0.107 (4)0.116 (5)0.055 (4)0.012 (4)0.031 (4)
N10.077 (4)0.062 (3)0.043 (3)0.008 (3)0.003 (3)0.000 (3)
C20.076 (5)0.061 (4)0.063 (4)0.003 (3)0.000 (3)0.003 (3)
C30.077 (5)0.059 (4)0.048 (3)0.005 (3)0.003 (3)0.004 (3)
C40.086 (5)0.059 (4)0.051 (3)0.007 (4)0.003 (3)0.002 (3)
C50.084 (5)0.070 (4)0.037 (3)0.013 (4)0.003 (3)0.006 (3)
C60.093 (5)0.078 (5)0.046 (3)0.016 (4)0.020 (4)0.003 (3)
C70.078 (5)0.087 (5)0.107 (6)0.005 (4)0.016 (5)0.022 (5)
C80.148 (8)0.139 (7)0.054 (4)0.057 (6)0.037 (5)0.013 (5)
C90.070 (4)0.056 (4)0.042 (3)0.003 (3)0.006 (3)0.000 (3)
C100.061 (4)0.057 (4)0.061 (4)0.000 (3)0.004 (3)0.006 (3)
C110.079 (5)0.078 (5)0.074 (5)0.002 (4)0.012 (4)0.014 (4)
C120.081 (6)0.081 (6)0.126 (8)0.012 (5)0.018 (5)0.025 (5)
C130.082 (6)0.075 (5)0.120 (7)0.019 (4)0.008 (5)0.005 (5)
C140.076 (5)0.067 (4)0.091 (5)0.012 (4)0.006 (4)0.005 (4)
C150.078 (5)0.062 (4)0.063 (4)0.015 (4)0.001 (3)0.002 (3)
C160.160 (9)0.130 (8)0.109 (7)0.060 (7)0.034 (7)0.041 (6)
Geometric parameters (Å, º) top
Cl1—C21.710 (6)C6—C81.524 (8)
C1—F11.308 (8)C7—H7A0.9600
C1—F31.314 (8)C7—H7B0.9600
C1—F21.333 (9)C7—H7C0.9600
C1—C21.481 (9)C8—H8A0.9600
O1—C91.238 (6)C8—H8B0.9600
O2—C141.375 (8)C8—H8C0.9600
O2—C161.419 (9)C10—C151.383 (8)
N1—C91.370 (7)C10—C111.401 (8)
N1—C101.412 (7)C11—C121.377 (10)
N1—H10.901 (10)C11—H110.9300
C2—C31.316 (8)C12—C131.377 (10)
C3—C41.464 (8)C12—H120.9300
C3—H30.9300C13—C141.388 (9)
C4—C61.524 (9)C13—H130.9300
C4—C51.530 (8)C14—C151.396 (8)
C4—H40.9800C15—H150.9300
C5—C91.487 (7)C16—H16A0.9600
C5—C61.516 (9)C16—H16B0.9600
C5—H50.9800C16—H16C0.9600
C6—C71.506 (9)
F1—C1—F3108.1 (8)C6—C7—H7C109.5
F1—C1—F2104.3 (6)H7A—C7—H7C109.5
F3—C1—F2104.6 (7)H7B—C7—H7C109.5
F1—C1—C2113.9 (7)C6—C8—H8A109.5
F3—C1—C2112.5 (6)C6—C8—H8B109.5
F2—C1—C2112.8 (7)H8A—C8—H8B109.5
C14—O2—C16119.3 (6)C6—C8—H8C109.5
C9—N1—C10130.2 (5)H8A—C8—H8C109.5
C9—N1—H1114 (4)H8B—C8—H8C109.5
C10—N1—H1115 (4)O1—C9—N1122.8 (5)
C3—C2—C1123.2 (6)O1—C9—C5124.2 (6)
C3—C2—Cl1123.3 (5)N1—C9—C5113.0 (5)
C1—C2—Cl1113.4 (5)C15—C10—C11119.8 (6)
C2—C3—C4125.5 (6)C15—C10—N1123.8 (6)
C2—C3—H3117.2C11—C10—N1116.4 (6)
C4—C3—H3117.2C12—C11—C10119.7 (7)
C3—C4—C6121.6 (6)C12—C11—H11120.1
C3—C4—C5122.0 (5)C10—C11—H11120.1
C6—C4—C559.5 (4)C13—C12—C11121.0 (7)
C3—C4—H4114.3C13—C12—H12119.5
C6—C4—H4114.3C11—C12—H12119.5
C5—C4—H4114.3C12—C13—C14119.4 (7)
C9—C5—C6121.4 (6)C12—C13—H13120.3
C9—C5—C4123.9 (5)C14—C13—H13120.3
C6—C5—C460.1 (4)O2—C14—C13115.0 (7)
C9—C5—H5113.7O2—C14—C15124.6 (7)
C6—C5—H5113.7C13—C14—C15120.5 (7)
C4—C5—H5113.7C10—C15—C14119.5 (6)
C7—C6—C5119.9 (6)C10—C15—H15120.2
C7—C6—C4120.5 (6)C14—C15—H15120.2
C5—C6—C460.4 (4)O2—C16—H16A109.5
C7—C6—C8114.4 (7)O2—C16—H16B109.5
C5—C6—C8115.5 (6)H16A—C16—H16B109.5
C4—C6—C8115.7 (6)O2—C16—H16C109.5
C6—C7—H7A109.5H16A—C16—H16C109.5
C6—C7—H7B109.5H16B—C16—H16C109.5
H7A—C7—H7B109.5
F1—C1—C2—C3120.4 (8)C5—C4—C6—C8106.1 (7)
F3—C1—C2—C33.0 (11)C10—N1—C9—O12.2 (10)
F2—C1—C2—C3121.0 (8)C10—N1—C9—C5178.0 (6)
F1—C1—C2—Cl157.3 (9)C6—C5—C9—O159.5 (8)
F3—C1—C2—Cl1179.3 (6)C4—C5—C9—O113.4 (10)
F2—C1—C2—Cl161.3 (8)C6—C5—C9—N1120.7 (6)
C1—C2—C3—C4178.0 (7)C4—C5—C9—N1166.4 (6)
Cl1—C2—C3—C40.6 (10)C9—N1—C10—C154.8 (10)
C2—C3—C4—C6149.2 (7)C9—N1—C10—C11175.1 (6)
C2—C3—C4—C5139.4 (7)C15—C10—C11—C120.5 (10)
C3—C4—C5—C90.8 (10)N1—C10—C11—C12179.4 (6)
C6—C4—C5—C9109.7 (7)C10—C11—C12—C131.2 (12)
C3—C4—C5—C6110.5 (7)C11—C12—C13—C141.8 (13)
C9—C5—C6—C73.4 (9)C16—O2—C14—C13174.8 (8)
C4—C5—C6—C7110.3 (7)C16—O2—C14—C155.7 (12)
C9—C5—C6—C4113.7 (6)C12—C13—C14—O2178.7 (7)
C9—C5—C6—C8139.9 (6)C12—C13—C14—C151.8 (12)
C4—C5—C6—C8106.4 (7)C11—C10—C15—C140.5 (10)
C3—C4—C6—C71.8 (9)N1—C10—C15—C14179.4 (6)
C5—C4—C6—C7109.3 (7)O2—C14—C15—C10179.4 (7)
C3—C4—C6—C5111.0 (6)C13—C14—C15—C101.2 (11)
C3—C4—C6—C8142.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (1)2.05 (2)2.928 (6)166 (6)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17ClF3NO2
Mr347.76
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)294
a, b, c (Å)16.785 (2), 22.246 (3), 9.4791 (12)
V3)3539.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.10 × 0.01
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.947, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
16415, 3119, 1325
Rint0.081
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.236, 1.02
No. of reflections3119
No. of parameters216
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.P)2 + 13.2989P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.69, 0.55

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.901 (10)2.046 (19)2.928 (6)166 (6)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation (No. 20376059) and Tianjin Polytechnic University.

References

First citationBruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, D.-Q. & Yan, F.-Y. (2007). Acta Cryst. E63, o4202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPunja, N. (1981). European Patent EP 0031199.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds