metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-5-n-butyl­tetra­zolato-κ2N1:N4)zinc(II)]

aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: jianrongli@nankai.edu.cn

(Received 20 November 2007; accepted 3 December 2007; online 6 December 2007)

In the title complex, [Zn(C5H9N4)2]n, the ZnII center is coordinated by four N atoms of different tetra­zolate ligands with a slightly distorted tetra­hedral geometry [Zn—N distances and N—Zn—N angles are in the ranges 1.991 (2)–2.007 (2) Å and 104.22 (8)–116.13 (8)°, respectively]. Each ligand links two ZnII atoms through its 1- and 4-position tetra­zole N atoms, forming a single, fully connected three-dimensional framework with a diamond-like topology. In the crystal structure, the Zn⋯Zn separations across each tetra­zole unit are 6.115 (2) and 6.134 (2) Å and the Zn⋯Zn⋯Zn angles are in the range 107.77 (8)–116.83 (8)°.

Related literature

For related literature, see: Li et al. (2007[Li, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527-1529.]) and references therein; Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Ye et al. (2005[Ye, Q., Li, Y.-H., Song, Y.-M., Huang, X.-F., Xiong, R.-G. & Xue, Z. (2005). Inorg. Chem. 44, 3618-3625.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H9N4)2]

  • Mr = 315.69

  • Orthorhombic, P 21 21 21

  • a = 9.6534 (19) Å

  • b = 10.096 (2) Å

  • c = 14.359 (3) Å

  • V = 1399.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 113 (2) K

  • 0.24 × 0.22 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 1.000 (expected range = 0.665–0.680)

  • 17371 measured reflections

  • 3325 independent reflections

  • 3068 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.02

  • 3325 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1405 Friedel pairs

  • Flack parameter: −0.012 (9)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As the analogue of carboxylic acid, it has been realised that 5-substituted tetrazolate-based organic ligands have great potential in generating coordination polymers with novel network topologies and interesting properties [Li et al., 2007 and references therein]. Recently, three ZnII tetrazolate-based complexes having similar diamondoid structure to the title complex, [Zn(C5H9N4)2]n: catena-[bis(µ2-5-phenyltetrazolato-N,N''')-zinc(II)], catena-[bis(µ2-5-(4'-amino-6'-pyridyl)tetrazolato-N,N''')-zinc(II)] (Ye et al., 2005) and catena-[bis(µ2tetrazolato-N,N''')-zinc(II)] (Wang et al., 2005) were reported.

As shown in Fig. 1, in the title complex the ZnII center locates at the crystallographically general position and is coordinated by four N atoms of distinct tetrazolate ligands. The coordination geometry is of slightly distorted tetrahedron with Zn—N distances and N—Zn—N angles being in the range of 1.991 (2)–2.007 (2) Å and 104.22 (8)–116.13 (8) °, respectively. Each ligand links two ZnII atoms through its 1- and 4-position tetrazole N atoms to form a single three-dimensional diamond-like framework (Fig. 2). In the structure, the Zn—Zn separations across each tetrazole moiety are 6.115 (2) and 6.134 (2) Å and the Zn—Zn—Zn angles are revealed to range from 107.77 (8) to 116.83 (8) °.

Related literature top

For related literature, see: Li et al. (2007) and references therein; Wang et al. (2005); Ye et al. (2005).

Experimental top

A mixture of ZnCl2 (27 mg, 0.2 mmol), NaN3 (33 mg, 0.5 mmol) and valeronitrile (33 mg, 0.4 mmol) in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 373 K for 48 h. Colorless crystals of the title compound were collected after the bomb was allowed to cool to room temperature spontaneously. Yield, 30% with respect to ZnII. Caution: Metal azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.97 and 0.96 Å and Uiso(H) = 1.2 Ueq(C, N).

Structure description top

As the analogue of carboxylic acid, it has been realised that 5-substituted tetrazolate-based organic ligands have great potential in generating coordination polymers with novel network topologies and interesting properties [Li et al., 2007 and references therein]. Recently, three ZnII tetrazolate-based complexes having similar diamondoid structure to the title complex, [Zn(C5H9N4)2]n: catena-[bis(µ2-5-phenyltetrazolato-N,N''')-zinc(II)], catena-[bis(µ2-5-(4'-amino-6'-pyridyl)tetrazolato-N,N''')-zinc(II)] (Ye et al., 2005) and catena-[bis(µ2tetrazolato-N,N''')-zinc(II)] (Wang et al., 2005) were reported.

As shown in Fig. 1, in the title complex the ZnII center locates at the crystallographically general position and is coordinated by four N atoms of distinct tetrazolate ligands. The coordination geometry is of slightly distorted tetrahedron with Zn—N distances and N—Zn—N angles being in the range of 1.991 (2)–2.007 (2) Å and 104.22 (8)–116.13 (8) °, respectively. Each ligand links two ZnII atoms through its 1- and 4-position tetrazole N atoms to form a single three-dimensional diamond-like framework (Fig. 2). In the structure, the Zn—Zn separations across each tetrazole moiety are 6.115 (2) and 6.134 (2) Å and the Zn—Zn—Zn angles are revealed to range from 107.77 (8) to 116.83 (8) °.

For related literature, see: Li et al. (2007) and references therein; Wang et al. (2005); Ye et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. View of coordination environments of ZnII and ligand in the title complex with 40% displacement probability. [Herein, labelled atoms A—D correspond to symmetry oprations i-iv, respectively. (i) = 1/2 + x, -3/2 - y, -z; (ii) = -x, 1/2 + y, -1/2 - z; (iii) = -x, -1/2 + y, -1/2 - z and (iv) = -1/2 + x, -3/2 - y, -z]
[Figure 2] Fig. 2. three-dimensional structure of the title compound with butyl groups omitted for clarity.
Poly[bis(µ2-5-n-butyltetrazolato-κ2N1:N4)zinc(II)] top
Crystal data top
[Zn(C5H9N4)2]F(000) = 656
Mr = 315.69Dx = 1.498 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5045 reflections
a = 9.6534 (19) Åθ = 2.8–27.9°
b = 10.096 (2) ŵ = 1.76 mm1
c = 14.359 (3) ÅT = 113 K
V = 1399.4 (5) Å3Block, colorless
Z = 40.24 × 0.22 × 0.22 mm
Data collection top
Bruker Smart 1000 CCD area-detector
diffractometer
3325 independent reflections
Radiation source: fine-focus sealed tube3068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scanθmax = 27.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1112
Tmin = 0.978, Tmax = 1.000k = 1313
17371 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0274P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3325 reflectionsΔρmax = 0.50 e Å3
172 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack (1983), 1405 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (9)
Crystal data top
[Zn(C5H9N4)2]V = 1399.4 (5) Å3
Mr = 315.69Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.6534 (19) ŵ = 1.76 mm1
b = 10.096 (2) ÅT = 113 K
c = 14.359 (3) Å0.24 × 0.22 × 0.22 mm
Data collection top
Bruker Smart 1000 CCD area-detector
diffractometer
3325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3068 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 1.000Rint = 0.032
17371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.50 e Å3
S = 1.02Δρmin = 0.35 e Å3
3325 reflectionsAbsolute structure: Flack (1983), 1405 Friedel pairs
172 parametersAbsolute structure parameter: 0.012 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.029407 (19)0.736890 (17)0.131493 (12)0.01072 (6)
C10.26406 (18)0.79890 (17)0.00726 (12)0.0128 (4)
C20.2305 (2)0.94018 (19)0.02652 (15)0.0211 (4)
H2A0.20720.94980.09190.025*
H2B0.14970.96530.00960.025*
C30.3495 (2)1.03381 (19)0.00312 (17)0.0294 (5)
H3A0.36061.03820.06390.035*
H3B0.43470.99930.02940.035*
C40.3233 (3)1.1747 (2)0.0416 (2)0.0495 (7)
H4A0.24411.21330.01010.059*
H4B0.30181.16930.10750.059*
C50.4459 (3)1.2612 (2)0.0281 (2)0.0636 (8)
H5A0.42741.34720.05380.085*
H5B0.46521.26950.03730.085*
H5C0.52451.22300.05900.085*
C60.04569 (18)0.97174 (16)0.25457 (11)0.0131 (4)
C70.19069 (19)0.92793 (18)0.27100 (14)0.0168 (4)
H7A0.20210.83920.24630.020*
H7B0.20730.92400.33760.020*
C80.29893 (19)1.01919 (19)0.22630 (15)0.0226 (4)
H8A0.28831.10790.25120.027*
H8B0.28281.02320.15970.027*
C90.4475 (2)0.9711 (2)0.24428 (16)0.0313 (5)
H9A0.51211.03690.22100.038*
H9B0.46190.96290.31090.038*
C100.4783 (2)0.8388 (2)0.1982 (2)0.0468 (7)
H10A0.57180.81280.21200.070*
H10B0.46730.84700.13200.070*
H10C0.41540.77290.22140.070*
N10.19539 (15)0.71806 (14)0.05010 (10)0.0135 (3)
N20.25827 (17)0.59748 (15)0.04447 (12)0.0188 (4)
N30.36058 (17)0.60558 (15)0.01261 (11)0.0177 (3)
N40.36690 (14)0.73163 (15)0.04700 (10)0.0137 (3)
N50.04611 (16)0.90468 (13)0.20430 (10)0.0131 (3)
N60.16579 (16)0.97651 (15)0.20460 (11)0.0162 (3)
N70.14673 (16)1.08254 (16)0.25271 (11)0.0162 (3)
N80.01317 (16)1.08258 (14)0.28558 (10)0.0136 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01061 (9)0.01059 (9)0.01096 (9)0.00005 (7)0.00044 (8)0.00010 (7)
C10.0115 (8)0.0141 (9)0.0126 (8)0.0008 (6)0.0007 (7)0.0011 (7)
C20.0235 (11)0.0146 (10)0.0250 (10)0.0049 (8)0.0080 (9)0.0031 (8)
C30.0306 (12)0.0158 (11)0.0418 (14)0.0035 (9)0.0143 (10)0.0064 (9)
C40.0491 (16)0.0252 (13)0.074 (2)0.0053 (12)0.0047 (16)0.0033 (13)
C50.066 (2)0.0236 (13)0.071 (2)0.0005 (14)0.0079 (17)0.0005 (14)
C60.0151 (9)0.0116 (8)0.0126 (8)0.0030 (7)0.0003 (8)0.0003 (6)
C70.0139 (9)0.0140 (9)0.0223 (10)0.0017 (7)0.0028 (8)0.0055 (8)
C80.0185 (10)0.0204 (10)0.0288 (11)0.0016 (8)0.0013 (9)0.0045 (8)
C90.0156 (11)0.0356 (12)0.0425 (13)0.0034 (9)0.0011 (10)0.0062 (10)
C100.0216 (12)0.0350 (13)0.074 (2)0.0046 (11)0.0066 (15)0.0078 (13)
N10.0142 (7)0.0127 (8)0.0136 (7)0.0004 (6)0.0014 (6)0.0001 (6)
N20.0200 (8)0.0135 (8)0.0229 (9)0.0030 (6)0.0073 (7)0.0021 (7)
N30.0213 (9)0.0119 (8)0.0200 (8)0.0004 (6)0.0064 (7)0.0032 (6)
N40.0166 (7)0.0105 (7)0.0140 (7)0.0007 (6)0.0007 (6)0.0014 (6)
N50.0123 (8)0.0124 (7)0.0146 (7)0.0003 (6)0.0014 (6)0.0006 (6)
N60.0132 (8)0.0161 (8)0.0195 (8)0.0045 (6)0.0017 (7)0.0047 (7)
N70.0129 (8)0.0194 (8)0.0162 (8)0.0011 (6)0.0027 (7)0.0027 (6)
N80.0124 (8)0.0141 (7)0.0143 (7)0.0016 (6)0.0015 (6)0.0024 (6)
Geometric parameters (Å, º) top
Zn1—N11.9923 (15)C6—C71.487 (2)
Zn1—N51.9971 (14)C7—C81.534 (3)
Zn1—N8i2.0035 (14)C7—H7A0.9700
Zn1—N4ii2.0085 (14)C7—H7B0.9700
C1—N41.331 (2)C8—C91.536 (3)
C1—N11.336 (2)C8—H8A0.9700
C1—C21.489 (3)C8—H8B0.9700
C2—C31.525 (3)C9—C101.521 (3)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—C41.547 (3)C10—H10A0.9600
C3—H3A0.9700C10—H10B0.9600
C3—H3B0.9700C10—H10C0.9600
C4—C51.484 (3)N1—N21.363 (2)
C4—H4A0.9700N2—N31.286 (2)
C4—H4B0.9700N3—N41.366 (2)
C5—H5A0.9600N4—Zn1iii2.0085 (14)
C5—H5B0.9600N5—N61.364 (2)
C5—H5C0.9600N6—N71.287 (2)
C6—N51.329 (2)N7—N81.373 (2)
C6—N81.332 (2)N8—Zn1iv2.0035 (14)
N1—Zn1—N5108.85 (6)C8—C7—H7A108.9
N1—Zn1—N8i116.07 (6)C6—C7—H7B108.9
N5—Zn1—N8i111.41 (6)C8—C7—H7B108.9
N1—Zn1—N4ii106.79 (6)H7A—C7—H7B107.7
N5—Zn1—N4ii104.18 (6)C7—C8—C9112.09 (17)
N8i—Zn1—N4ii108.77 (6)C7—C8—H8A109.2
N4—C1—N1108.82 (16)C9—C8—H8A109.2
N4—C1—C2124.86 (16)C7—C8—H8B109.2
N1—C1—C2126.30 (16)C9—C8—H8B109.2
C1—C2—C3112.90 (17)H8A—C8—H8B107.9
C1—C2—H2A109.0C10—C9—C8112.78 (18)
C3—C2—H2A109.0C10—C9—H9A109.0
C1—C2—H2B109.0C8—C9—H9A109.0
C3—C2—H2B109.0C10—C9—H9B109.0
H2A—C2—H2B107.8C8—C9—H9B109.0
C2—C3—C4111.6 (2)H9A—C9—H9B107.8
C2—C3—H3A109.3C9—C10—H10A109.5
C4—C3—H3A109.3C9—C10—H10B109.5
C2—C3—H3B109.3H10A—C10—H10B109.5
C4—C3—H3B109.3C9—C10—H10C109.5
H3A—C3—H3B108.0H10A—C10—H10C109.5
C5—C4—C3111.4 (2)H10B—C10—H10C109.5
C5—C4—H4A109.4C1—N1—N2106.75 (14)
C3—C4—H4A109.4C1—N1—Zn1134.64 (12)
C5—C4—H4B109.4N2—N1—Zn1118.57 (11)
C3—C4—H4B109.4N3—N2—N1108.85 (14)
H4A—C4—H4B108.0N2—N3—N4108.89 (14)
C4—C5—H5A109.5C1—N4—N3106.68 (14)
C4—C5—H5B109.5C1—N4—Zn1iii139.52 (13)
H5A—C5—H5B109.5N3—N4—Zn1iii113.61 (11)
C4—C5—H5C109.5C6—N5—N6106.99 (14)
H5A—C5—H5C109.5C6—N5—Zn1131.52 (12)
H5B—C5—H5C109.5N6—N5—Zn1121.40 (11)
N5—C6—N8108.99 (15)N7—N6—N5108.83 (14)
N5—C6—C7124.24 (15)N6—N7—N8108.60 (14)
N8—C6—C7126.77 (16)C6—N8—N7106.59 (14)
C6—C7—C8113.35 (16)C6—N8—Zn1iv139.87 (13)
C6—C7—H7A108.9N7—N8—Zn1iv113.40 (11)
N4—C1—C2—C360.4 (3)N1—C1—N4—Zn1iii174.28 (14)
N1—C1—C2—C3121.4 (2)C2—C1—N4—Zn1iii7.2 (3)
C1—C2—C3—C4168.7 (2)N2—N3—N4—C10.44 (19)
C2—C3—C4—C5173.6 (2)N2—N3—N4—Zn1iii176.38 (12)
N5—C6—C7—C8114.1 (2)N8—C6—N5—N60.20 (19)
N8—C6—C7—C864.9 (2)C7—C6—N5—N6179.41 (16)
C6—C7—C8—C9179.85 (16)N8—C6—N5—Zn1176.40 (12)
C7—C8—C9—C1065.2 (2)C7—C6—N5—Zn12.8 (3)
N4—C1—N1—N20.4 (2)N1—Zn1—N5—C6166.75 (15)
C2—C1—N1—N2178.09 (17)N8i—Zn1—N5—C664.01 (17)
N4—C1—N1—Zn1177.93 (12)N4ii—Zn1—N5—C653.10 (16)
C2—C1—N1—Zn10.5 (3)N1—Zn1—N5—N69.43 (14)
N5—Zn1—N1—C146.63 (19)N8i—Zn1—N5—N6119.81 (13)
N8i—Zn1—N1—C1173.24 (16)N4ii—Zn1—N5—N6123.08 (13)
N4ii—Zn1—N1—C165.30 (18)C6—N5—N6—N70.2 (2)
N5—Zn1—N1—N2136.05 (13)Zn1—N5—N6—N7176.78 (11)
N8i—Zn1—N1—N29.44 (15)N5—N6—N7—N80.18 (19)
N4ii—Zn1—N1—N2112.02 (13)N5—C6—N8—N70.09 (18)
C1—N1—N2—N30.7 (2)C7—C6—N8—N7179.28 (17)
Zn1—N1—N2—N3178.68 (12)N5—C6—N8—Zn1iv175.30 (14)
N1—N2—N3—N40.7 (2)C7—C6—N8—Zn1iv5.5 (3)
N1—C1—N4—N30.01 (19)N6—N7—N8—C60.06 (18)
C2—C1—N4—N3178.52 (17)N6—N7—N8—Zn1iv176.58 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1/2, y3/2, z; (iii) x1/2, y3/2, z; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C5H9N4)2]
Mr315.69
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)9.6534 (19), 10.096 (2), 14.359 (3)
V3)1399.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.24 × 0.22 × 0.22
Data collection
DiffractometerBruker Smart 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.978, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17371, 3325, 3068
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.02
No. of reflections3325
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.35
Absolute structureFlack (1983), 1405 Friedel pairs
Absolute structure parameter0.012 (9)

Computer programs: SMART (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

 

Acknowledgements

The authors thank Nankai University for supporting this work.

References

First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J.-R., Tao, Y., Yu, Q. & Bu, X.-H. (2007). Chem. Commun. pp. 1527–1529.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, P. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Li, Y.-H., Song, Y.-M., Huang, X.-F., Xiong, R.-G. & Xue, Z. (2005). Inorg. Chem. 44, 3618–3625.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds