organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E)-4-Pyridylmethyl­ene]-4-[(E)-4-(4-pyridylmethyl­ene­amino)benz­yl]aniline tetra­hydrate

aKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: hushengli168@126.com

(Received 21 November 2007; accepted 25 November 2007; online 6 December 2007)

The title compound, C25H20N4·4H2O, crystallizes with the organic mol­ecule lying on a twofold rotation axis through the methyl­ene bridge C atom; there are also two water molecules in the asymmetric unit. The crystal structure is stabilized by C—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, linking the water mol­ecules to each other and to the pyridine N atom.

Related literature

For related literature, see: Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]); Coucouvanis et al. (1993[Coucouvanis, D., Jonasdottir, S. G., Jonasdottir, D., Kim, C. G. & Kampf, J. W. (1993). Inorg. Chem. 32, 2987-2988.]); Hodnett & Mooney (1970[Hodnett, E. M. & Mooney, P. D. (1970). J. Med. Chem. 13, 786.]); Li et al. (2005[Li, Z.-K., Liang, L., Yang, L., Chen, H. & Zhou, X. G. (2005). J. Mol. Catal. A Chem. 235, 108-113.]); Yam & Pui (2002[Yam, V. W. W. & Pui, Y. L. (2002). New J. Chem. 26, 536-542.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N4·4H2O

  • Mr = 448.51

  • Monoclinic, C 2/c

  • a = 17.7743 (14) Å

  • b = 4.7309 (4) Å

  • c = 28.478 (2) Å

  • β = 99.69 (1)°

  • V = 2360.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7552 measured reflections

  • 2302 independent reflections

  • 1850 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.158

  • S = 1.08

  • 2302 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1 0.93 2.52 3.443 (3) 175
O1—H1C⋯O2 0.91 (4) 1.90 (4) 2.810 (3) 178 (4)
O2—H2B⋯N2i 0.87 (5) 1.94 (5) 2.782 (3) 163 (4)
O2—H2A⋯O1ii 0.88 (5) 1.93 (5) 2.765 (3) 160 (4)
O1—H1D⋯O2iii 0.91 (4) 1.88 (4) 2.799 (3) 178 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received much attention due to their versatile properties and utilities such as anticancer properties (Hodnett & Mooney, 1970), supramolecule chemistry and molecular recognition (Coucouvanis et al., 1993; Yam & Pui, 2002) and catalysis in organic reaction through their metal complexes(Li et al., 2005). In this paper we report the crystal structure of the title schiff base, (I)(Fig. 1), I crystallizes with the main molecule lying on a twofold rotation axis through atom C1 and two independent water molecules in general positions. The phenyl ring C2/C3/C4/C5/C6/C7 and pyridine ring C9/C10/C11/N2/C12/C13 are trans with respect to C?N bond, and the dihedral angle between them is 7.21 (3)°. In the crystal structure, molecules are connected by water molecules via C—H···O, O—H···O, O—H···N hydrogen bonds. (Fig. 2 and Table 1). The molecular wings are approximately perpendicular to each other, and molecules pack by tucking their exo surfaces into the endo surface of the adjacent molecule along b - forming good Π stacking. The water molecules create an infinite puckered ladder along b which links to the terminal N atoms of the organic amide.

Related literature top

For related literature, see: Jursic et al. (2002); Coucouvanis et al. (1993); Hodnett & Mooney (1970); Li et al. (2005); Yam & Pui (2002).

Experimental top

The title compound was synthesized using a method analogous to the literature procedure of Jursic et al. (2002), Crystals appropriate for data collection were obtained by slow evaporation from a methanol-chloroform solution (1:20 V/V)of (I).

Refinement top

The water probably derives from the methanol solvent used for recrystallization. The H atoms were constrained to an ideal geometry and constrained to ride on their parent atoms as follows: methylene H with d(C—H)=0.97 Å and Uiso(H) = 1.2Ueq(C); aromatic H with d(C—H)=0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases have received much attention due to their versatile properties and utilities such as anticancer properties (Hodnett & Mooney, 1970), supramolecule chemistry and molecular recognition (Coucouvanis et al., 1993; Yam & Pui, 2002) and catalysis in organic reaction through their metal complexes(Li et al., 2005). In this paper we report the crystal structure of the title schiff base, (I)(Fig. 1), I crystallizes with the main molecule lying on a twofold rotation axis through atom C1 and two independent water molecules in general positions. The phenyl ring C2/C3/C4/C5/C6/C7 and pyridine ring C9/C10/C11/N2/C12/C13 are trans with respect to C?N bond, and the dihedral angle between them is 7.21 (3)°. In the crystal structure, molecules are connected by water molecules via C—H···O, O—H···O, O—H···N hydrogen bonds. (Fig. 2 and Table 1). The molecular wings are approximately perpendicular to each other, and molecules pack by tucking their exo surfaces into the endo surface of the adjacent molecule along b - forming good Π stacking. The water molecules create an infinite puckered ladder along b which links to the terminal N atoms of the organic amide.

For related literature, see: Jursic et al. (2002); Coucouvanis et al. (1993); Hodnett & Mooney (1970); Li et al. (2005); Yam & Pui (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms atoms shown as circles of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of (I), with hydrogen bonds shown as dashed lines
N-[(E)-4-Pyridylmethylene]-4-[(E)-4-(4-pyridylmethyleneamino)benzyl]aniline tetrahydrate top
Crystal data top
C25H20N4·4H2OF(000) = 952
Mr = 448.51Dx = 1.262 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2/cCell parameters from 2376 reflections
a = 17.7743 (14) Åθ = 2.3–27.4°
b = 4.7309 (4) ŵ = 0.09 mm1
c = 28.478 (2) ÅT = 294 K
β = 99.69 (1)°Block, yellow
V = 2360.5 (3) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1850 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
phi and ω scansh = 1321
7552 measured reflectionsk = 55
2302 independent reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0751P)2 + 1.2009P]
where P = (Fo2 + 2Fc2)/3
2302 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H20N4·4H2OV = 2360.5 (3) Å3
Mr = 448.51Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.7743 (14) ŵ = 0.09 mm1
b = 4.7309 (4) ÅT = 294 K
c = 28.478 (2) Å0.40 × 0.30 × 0.30 mm
β = 99.69 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1850 reflections with I > 2σ(I)
7552 measured reflectionsRint = 0.022
2302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
2302 reflectionsΔρmin = 0.18 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.50000.9902 (5)0.25000.0468 (6)
H1A0.46951.11040.22660.056*0.50
H1B0.53051.11040.27340.056*0.50
C20.44833 (9)0.8053 (3)0.27406 (6)0.0400 (4)
C30.47436 (10)0.6805 (4)0.31775 (6)0.0493 (5)
H30.52310.72340.33360.059*
C40.42989 (11)0.4944 (4)0.33839 (7)0.0504 (5)
H40.44870.41480.36790.060*
C50.35682 (10)0.4251 (4)0.31521 (6)0.0419 (4)
C60.32993 (10)0.5543 (4)0.27215 (6)0.0456 (4)
H60.28080.51410.25650.055*
C70.37470 (10)0.7423 (4)0.25190 (6)0.0449 (4)
H70.35510.82760.22300.054*
C80.32973 (11)0.0807 (4)0.36783 (7)0.0511 (5)
H80.38110.08870.38140.061*
C90.27972 (11)0.1144 (4)0.38837 (6)0.0492 (5)
C100.30718 (14)0.2665 (5)0.42886 (8)0.0658 (6)
H100.35780.24670.44350.079*
C110.25914 (16)0.4484 (5)0.44754 (9)0.0739 (7)
H110.27880.54900.47490.089*
C120.16076 (14)0.3398 (6)0.38962 (10)0.0770 (7)
H120.10980.36330.37590.092*
C130.20413 (12)0.1544 (5)0.36816 (8)0.0642 (6)
H130.18300.05790.34060.077*
N10.30633 (9)0.2361 (3)0.33305 (5)0.0481 (4)
N20.18689 (13)0.4874 (4)0.42866 (8)0.0748 (6)
O10.49404 (13)0.2296 (5)0.45062 (7)0.0944 (7)
H1C0.472 (2)0.249 (8)0.4769 (14)0.142*
H1D0.521 (2)0.065 (9)0.4559 (14)0.142*
O20.42372 (14)0.2747 (5)0.53161 (9)0.1114 (8)
H2A0.442 (3)0.440 (11)0.5419 (15)0.167*
H2B0.386 (3)0.219 (10)0.5448 (16)0.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0515 (15)0.0357 (13)0.0585 (15)0.0000.0250 (12)0.000
C20.0424 (9)0.0319 (8)0.0501 (10)0.0024 (7)0.0206 (7)0.0036 (7)
C30.0425 (10)0.0537 (11)0.0523 (10)0.0080 (8)0.0102 (8)0.0007 (8)
C40.0506 (11)0.0545 (11)0.0463 (10)0.0080 (9)0.0091 (8)0.0062 (8)
C50.0434 (10)0.0382 (9)0.0481 (10)0.0037 (7)0.0190 (7)0.0058 (7)
C60.0384 (9)0.0460 (10)0.0528 (10)0.0032 (8)0.0089 (7)0.0003 (8)
C70.0458 (10)0.0424 (10)0.0487 (10)0.0049 (8)0.0140 (8)0.0042 (7)
C80.0493 (11)0.0475 (10)0.0589 (11)0.0087 (8)0.0159 (9)0.0010 (9)
C90.0597 (12)0.0397 (10)0.0530 (11)0.0085 (8)0.0237 (9)0.0064 (8)
C100.0730 (14)0.0611 (13)0.0651 (13)0.0125 (11)0.0167 (11)0.0066 (10)
C110.0983 (19)0.0629 (14)0.0663 (14)0.0161 (13)0.0303 (13)0.0112 (11)
C120.0674 (14)0.0750 (16)0.0933 (18)0.0255 (12)0.0271 (13)0.0000 (14)
C130.0630 (13)0.0626 (13)0.0695 (14)0.0158 (11)0.0179 (10)0.0047 (10)
N10.0490 (9)0.0456 (9)0.0527 (9)0.0083 (7)0.0173 (7)0.0003 (7)
N20.0899 (15)0.0609 (12)0.0839 (14)0.0222 (11)0.0440 (12)0.0001 (10)
O10.1031 (15)0.1013 (15)0.0787 (12)0.0129 (12)0.0153 (10)0.0224 (11)
O20.1177 (18)0.0957 (16)0.1373 (19)0.0295 (13)0.0691 (15)0.0062 (13)
Geometric parameters (Å, º) top
C1—C2i1.513 (2)C8—C91.469 (3)
C1—C21.513 (2)C8—H80.9300
C1—H1A0.9700C9—C101.377 (3)
C1—H1B0.9700C9—C131.383 (3)
C2—C31.385 (3)C10—C111.380 (3)
C2—C71.386 (3)C10—H100.9300
C3—C41.379 (2)C11—N21.319 (3)
C3—H30.9300C11—H110.9300
C4—C51.393 (3)C12—N21.329 (3)
C4—H40.9300C12—C131.377 (3)
C5—C61.382 (2)C12—H120.9300
C5—N11.420 (2)C13—H130.9300
C6—C71.382 (2)O1—H1C0.91 (4)
C6—H60.9300O1—H1D0.91 (4)
C7—H70.9300O2—H2A0.88 (5)
C8—N11.247 (2)O2—H2B0.87 (5)
C2i—C1—C2109.37 (19)C2—C7—H7119.5
C2i—C1—H1A109.8N1—C8—C9122.89 (18)
C2—C1—H1A109.8N1—C8—H8118.6
C2i—C1—H1B109.8C9—C8—H8118.6
C2—C1—H1B109.8C10—C9—C13117.36 (18)
H1A—C1—H1B108.2C10—C9—C8120.58 (19)
C3—C2—C7117.66 (16)C13—C9—C8122.06 (18)
C3—C2—C1121.12 (14)C9—C10—C11119.6 (2)
C7—C2—C1121.11 (14)C9—C10—H10120.2
C4—C3—C2121.77 (17)C11—C10—H10120.2
C4—C3—H3119.1N2—C11—C10123.6 (2)
C2—C3—H3119.1N2—C11—H11118.2
C3—C4—C5120.24 (17)C10—C11—H11118.2
C3—C4—H4119.9N2—C12—C13124.3 (2)
C5—C4—H4119.9N2—C12—H12117.9
C6—C5—C4118.18 (16)C13—C12—H12117.9
C6—C5—N1116.81 (15)C12—C13—C9118.7 (2)
C4—C5—N1124.99 (16)C12—C13—H13120.7
C5—C6—C7121.16 (16)C9—C13—H13120.7
C5—C6—H6119.4C8—N1—C5120.59 (16)
C7—C6—H6119.4C11—N2—C12116.53 (19)
C6—C7—C2120.95 (16)H1C—O1—H1D104 (3)
C6—C7—H7119.5H2A—O2—H2B113 (4)
C2i—C1—C2—C379.47 (15)N1—C8—C9—C135.0 (3)
C2i—C1—C2—C796.86 (15)C13—C9—C10—C110.3 (3)
C7—C2—C3—C41.5 (3)C8—C9—C10—C11179.97 (19)
C1—C2—C3—C4174.93 (16)C9—C10—C11—N20.1 (4)
C2—C3—C4—C50.5 (3)N2—C12—C13—C90.7 (4)
C3—C4—C5—C62.0 (3)C10—C9—C13—C120.6 (3)
C3—C4—C5—N1179.84 (16)C8—C9—C13—C12179.7 (2)
C4—C5—C6—C71.5 (3)C9—C8—N1—C5178.70 (15)
N1—C5—C6—C7179.84 (15)C6—C5—N1—C8169.49 (17)
C5—C6—C7—C20.5 (3)C4—C5—N1—C812.3 (3)
C3—C2—C7—C62.0 (2)C10—C11—N2—C120.1 (4)
C1—C2—C7—C6174.46 (16)C13—C12—N2—C110.5 (4)
N1—C8—C9—C10175.31 (19)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.523.443 (3)175
O1—H1C···O20.91 (4)1.90 (4)2.810 (3)178 (4)
O2—H2B···N2ii0.87 (5)1.94 (5)2.782 (3)163 (4)
O2—H2A···O1iii0.88 (5)1.93 (5)2.765 (3)160 (4)
O1—H1D···O2iv0.91 (4)1.88 (4)2.799 (3)178 (4)
Symmetry codes: (ii) x+1/2, y1/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H20N4·4H2O
Mr448.51
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)17.7743 (14), 4.7309 (4), 28.478 (2)
β (°) 99.69 (1)
V3)2360.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7552, 2302, 1850
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.158, 1.08
No. of reflections2302
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.523.443 (3)175.4
O1—H1C···O20.91 (4)1.90 (4)2.810 (3)178 (4)
O2—H2B···N2i0.87 (5)1.94 (5)2.782 (3)163 (4)
O2—H2A···O1ii0.88 (5)1.93 (5)2.765 (3)160 (4)
O1—H1D···O2iii0.91 (4)1.88 (4)2.799 (3)178 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Footnotes

Also at Hubei Key Laboratory of Bioanalytical Techniques (Hubei Normal University), Huangshi 435002, People's Republic of China.

Acknowledgements

We are grateful to the Central China Normal University for financial support

References

First citationBruker (2001). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoucouvanis, D., Jonasdottir, S. G., Jonasdottir, D., Kim, C. G. & Kampf, J. W. (1993). Inorg. Chem. 32, 2987–2988.  CSD CrossRef CAS Web of Science Google Scholar
First citationHodnett, E. M. & Mooney, P. D. (1970). J. Med. Chem. 13, 786.  CrossRef PubMed Web of Science Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-K., Liang, L., Yang, L., Chen, H. & Zhou, X. G. (2005). J. Mol. Catal. A Chem. 235, 108–113.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYam, V. W. W. & Pui, Y. L. (2002). New J. Chem. 26, 536–542.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds