organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-[3-(2-Meth­oxy­phen­yl)-4-phenyl-2,3-di­hydro­thia­zol-2-yl­­idene]-4-methyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 24 October 2007; accepted 21 November 2007; online 6 December 2007)

Geometric parameters of the title compound, C24H20N2O2S, are in the usual ranges. The central heterocycle makes dihedral angles of 41.29 (4) and 72.94 (5)° with the phenyl ring and the methoxy­phenyl ring, respectively.

Related literature

For related literature, see: Arcadi et al. (2003[Arcadi, A., Attanasi, O. A., Giorgi, G., Filippone, P., Rossi, E. & Santeusanio, S. (2003). Tetrahedron Lett. 44, 8391-8394.]); Bae et al. (2005[Bae, S., Hahnand, H.-G. & Nam, K. D. (2005). J. Comb. Chem. 7, 7-10.]); Bonde & Gaikwad (2004[Bonde, C. G. & Gaikwad, N. J. (2004). J. Bioorg. Med. Chem. 12, 2151-1254.]); Kim et al. (2007[Kim, D.-S., Jeong, Y.-M., Park, I.-K., Hahn, H.-G. & Lee, H.-K. (2007). Biol. Pharm. Bull. 30, 180-184.]); Lee & Sim (2000[Lee, C. L. & Sim, M. M. (2000). Tetrahedron Lett. 41, 5729-5732.]); Manaka et al. (2005[Manaka, A., Ishii, T., Takahashi, K. & Sato, M. (2005). Tetrahedron Lett. 46, 419-422.]); Saeed & Parvez (2006[Saeed, A. & Parvez, M. (2006). J. Heterocycl. Chem. 43, 1027-1030.]); Sanemitsu et al. (2006[Sanemitsu, Y., Kawamura, S., Satoh, J., Katayama, T. & Hashimoto, S. J. (2006). Pestic. Sci. 31, 305-306.]); Shehata et al. (1996[Shehata, I. A., Elsubbagh, H. I., Abdelal, A. M., Elsherbeny, M. A. & Alobaid, A. A. (1996). Med. Chem. Res. 6, 148-151.]); Shih & Ke (2004[Shih, M.-H. & Ke, F.-Y. (2004). J. Bioorg. Med. Chem. 12, 4633-4638.]); Venkatachalan et al. (2001[Venkatachalan, T. K., Sudbeck, E. A., Mao, C. & Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523-528.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O2S

  • Mr = 400.48

  • Monoclinic, P 21 /c

  • a = 10.1305 (10) Å

  • b = 20.0583 (14) Å

  • c = 10.0959 (10) Å

  • β = 102.710 (8)°

  • V = 2001.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 (2) K

  • 0.33 × 0.23 × 0.22 mm

Data collection
  • Stoe IPDSII two-circlediffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.942, Tmax = 0.951

  • 11964 measured reflections

  • 3728 independent reflections

  • 3095 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 3728 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Imino derivatives of 1,3-thiazolines posses a wide range of pharmacological and synthetic applications. Thus, these show potent bioactivities ranging from antitubercular (Shehata et al., 1996) to anti-HIV (Venkatachalan et al., 2001) activities. Iminothiazolines containing a pyrazine ring show significant antibacterial and antimicrobial activity (Bonde & Gaikwad 2004), derivatives of rhodanine show antibacterial, anti-inflammatory and antiviral activities (Lee & Sim et al., 2000) and bis-thiazoline derivatives show marked anti-cancer activity against human cell lines (Arcadi et al., 2003). A 2-imino-1,3-thiazoline derivative KHG22394 act as a skin whitening agent (Kim et al., 2007). 4-Phenyl-2-hyrazono?thiazolines exhibit potent DPPH radical scavenging activity (Shih & Ke, 2004). 3-Alkyl-3H-thiazoline derivative PS-028 acts as potent and selective GPllb/llla antagonist (Manaka et al., 2005). 2-Acylimino-1,3-thiazolines show bleaching herbicidal activity (Sanemitsu et al., 2006) and 2-phenylimino-1,3-thiazolines show significant antifungal activity against rice blast fungus Pyricularia oryzae (Bae et al., 2005).

Geometric parameters of the title compound are in the usual ranges. The dihedral angles between the central heterocycle and the phenyl ring is 41.29 (4)and 72.94 (5)° for the methoxyphenyl ring.

Related literature top

For related literature, see: Arcadi et al. (2003); Bae et al. (2005); Bonde & Gaikwad (2004); Kim et al. (2007); Lee & Sim (2000); Manaka et al. (2005); Saeed & Parvez (2006); Sanemitsu et al. (2006); Shehata et al. (1996); Shih & Ke (2004); Venkatachalan et al. (2001).

Experimental top

The title compound was prepared according to the method reported earlier (Saeed & Parvez 2006). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement top

All H atoms were located in a difference map. They were geometrically positioned and refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with C—H ranging from 0.95Å to 0.98 Å.

Structure description top

2-Imino derivatives of 1,3-thiazolines posses a wide range of pharmacological and synthetic applications. Thus, these show potent bioactivities ranging from antitubercular (Shehata et al., 1996) to anti-HIV (Venkatachalan et al., 2001) activities. Iminothiazolines containing a pyrazine ring show significant antibacterial and antimicrobial activity (Bonde & Gaikwad 2004), derivatives of rhodanine show antibacterial, anti-inflammatory and antiviral activities (Lee & Sim et al., 2000) and bis-thiazoline derivatives show marked anti-cancer activity against human cell lines (Arcadi et al., 2003). A 2-imino-1,3-thiazoline derivative KHG22394 act as a skin whitening agent (Kim et al., 2007). 4-Phenyl-2-hyrazono?thiazolines exhibit potent DPPH radical scavenging activity (Shih & Ke, 2004). 3-Alkyl-3H-thiazoline derivative PS-028 acts as potent and selective GPllb/llla antagonist (Manaka et al., 2005). 2-Acylimino-1,3-thiazolines show bleaching herbicidal activity (Sanemitsu et al., 2006) and 2-phenylimino-1,3-thiazolines show significant antifungal activity against rice blast fungus Pyricularia oryzae (Bae et al., 2005).

Geometric parameters of the title compound are in the usual ranges. The dihedral angles between the central heterocycle and the phenyl ring is 41.29 (4)and 72.94 (5)° for the methoxyphenyl ring.

For related literature, see: Arcadi et al. (2003); Bae et al. (2005); Bonde & Gaikwad (2004); Kim et al. (2007); Lee & Sim (2000); Manaka et al. (2005); Saeed & Parvez (2006); Sanemitsu et al. (2006); Shehata et al. (1996); Shih & Ke (2004); Venkatachalan et al. (2001).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with displacement ellipsoids at the 50% probability level.
(Z)—N-[3-(2-Methoxyphenyl)-4-phenyl-2,3-dihydrothiazol-2-ylidene]- 4-methylbenzamide top
Crystal data top
C24H20N2O2SF(000) = 840
Mr = 400.48Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10726 reflections
a = 10.1305 (10) Åθ = 3.8–25.8°
b = 20.0583 (14) ŵ = 0.19 mm1
c = 10.0959 (10) ÅT = 173 K
β = 102.710 (8)°Block, colourless
V = 2001.2 (3) Å30.33 × 0.23 × 0.22 mm
Z = 4
Data collection top
Stoe IPDSII two-circle
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube3095 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 25.6°, θmin = 3.7°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1211
Tmin = 0.942, Tmax = 0.951k = 2124
11964 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.2151P]
where P = (Fo2 + 2Fc2)/3
3728 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C24H20N2O2SV = 2001.2 (3) Å3
Mr = 400.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.1305 (10) ŵ = 0.19 mm1
b = 20.0583 (14) ÅT = 173 K
c = 10.0959 (10) Å0.33 × 0.23 × 0.22 mm
β = 102.710 (8)°
Data collection top
Stoe IPDSII two-circle
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
3095 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.951Rint = 0.039
11964 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
3728 reflectionsΔρmin = 0.28 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98050 (4)0.70737 (2)0.51355 (5)0.04086 (15)
O11.10348 (11)0.68440 (6)0.31286 (12)0.0397 (3)
O20.72991 (11)0.52503 (5)0.53280 (10)0.0332 (3)
N10.75221 (12)0.64830 (6)0.43148 (12)0.0265 (3)
N20.89232 (13)0.63407 (6)0.27787 (12)0.0295 (3)
C10.87220 (15)0.65906 (7)0.39275 (15)0.0281 (3)
C20.74474 (16)0.67752 (8)0.55719 (15)0.0305 (3)
C30.86066 (19)0.70950 (9)0.61315 (18)0.0434 (4)
H30.87550.73110.69890.052*
C41.01248 (15)0.64968 (7)0.24281 (15)0.0303 (3)
C111.02529 (15)0.62264 (8)0.10802 (15)0.0301 (3)
C120.91665 (16)0.59116 (8)0.02041 (16)0.0347 (4)
H120.83350.58510.04780.042*
C130.92970 (18)0.56869 (9)0.10637 (17)0.0396 (4)
H130.85480.54780.16490.047*
C141.05099 (17)0.57628 (9)0.14929 (16)0.0354 (4)
C151.15848 (17)0.60780 (10)0.06097 (17)0.0397 (4)
H151.24180.61350.08810.048*
C161.14651 (16)0.63095 (9)0.06546 (17)0.0372 (4)
H161.22100.65250.12320.045*
C171.0679 (2)0.54980 (10)0.28494 (17)0.0462 (4)
H17A1.08970.50220.27670.069*
H17B1.14150.57380.31300.069*
H17C0.98360.55630.35300.069*
C210.65588 (14)0.60120 (7)0.35548 (14)0.0254 (3)
C220.64954 (14)0.53698 (7)0.40723 (14)0.0259 (3)
C230.56515 (16)0.48964 (8)0.32885 (15)0.0329 (4)
H230.55860.44590.36290.040*
C240.49103 (17)0.50720 (9)0.20088 (16)0.0379 (4)
H240.43450.47490.14730.045*
C250.49813 (17)0.57099 (9)0.14992 (16)0.0387 (4)
H250.44640.58220.06240.046*
C260.58140 (16)0.61869 (8)0.22749 (14)0.0326 (4)
H260.58710.66250.19330.039*
C270.74026 (19)0.45719 (8)0.58037 (16)0.0369 (4)
H27A0.65060.44110.58720.055*
H27B0.80190.45510.66990.055*
H27C0.77530.42910.51640.055*
C310.62025 (16)0.67828 (7)0.61048 (15)0.0297 (3)
C320.63140 (18)0.67578 (8)0.75194 (15)0.0358 (4)
H320.71700.66770.81070.043*
C330.5178 (2)0.68500 (8)0.80611 (17)0.0415 (4)
H330.52640.68270.90160.050*
C340.3918 (2)0.69747 (9)0.72213 (18)0.0414 (4)
H340.31510.70500.76000.050*
C350.37924 (18)0.69885 (8)0.58204 (17)0.0367 (4)
H350.29330.70680.52380.044*
C360.49179 (16)0.68870 (7)0.52706 (15)0.0313 (3)
H360.48150.68880.43120.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0358 (2)0.0385 (3)0.0506 (3)0.01358 (18)0.01446 (18)0.01702 (18)
O10.0342 (6)0.0394 (7)0.0465 (7)0.0054 (5)0.0112 (5)0.0059 (5)
O20.0418 (6)0.0246 (5)0.0292 (5)0.0013 (5)0.0009 (5)0.0015 (4)
N10.0299 (6)0.0224 (6)0.0278 (6)0.0030 (5)0.0074 (5)0.0025 (5)
N20.0315 (7)0.0266 (6)0.0318 (6)0.0011 (5)0.0098 (5)0.0012 (5)
C10.0300 (8)0.0209 (7)0.0335 (7)0.0003 (6)0.0075 (6)0.0014 (6)
C20.0381 (8)0.0246 (7)0.0301 (7)0.0034 (7)0.0102 (6)0.0061 (6)
C30.0458 (10)0.0424 (10)0.0444 (9)0.0146 (8)0.0153 (8)0.0194 (8)
C40.0290 (8)0.0249 (8)0.0377 (8)0.0040 (6)0.0089 (6)0.0051 (6)
C110.0295 (8)0.0274 (8)0.0347 (8)0.0062 (6)0.0098 (6)0.0071 (6)
C120.0290 (8)0.0376 (9)0.0402 (9)0.0020 (7)0.0131 (6)0.0002 (7)
C130.0342 (9)0.0455 (10)0.0393 (9)0.0014 (7)0.0088 (7)0.0037 (7)
C140.0354 (8)0.0383 (9)0.0344 (8)0.0095 (7)0.0120 (7)0.0077 (7)
C150.0326 (8)0.0507 (11)0.0392 (9)0.0038 (8)0.0155 (7)0.0099 (7)
C160.0298 (8)0.0444 (10)0.0382 (8)0.0011 (7)0.0090 (7)0.0071 (7)
C170.0479 (10)0.0561 (12)0.0390 (9)0.0069 (9)0.0192 (8)0.0026 (8)
C210.0251 (7)0.0268 (7)0.0249 (7)0.0006 (6)0.0065 (5)0.0047 (5)
C220.0259 (7)0.0269 (8)0.0252 (7)0.0000 (6)0.0062 (6)0.0033 (5)
C230.0337 (8)0.0296 (8)0.0367 (8)0.0051 (7)0.0103 (7)0.0074 (6)
C240.0332 (9)0.0449 (10)0.0342 (8)0.0064 (7)0.0049 (7)0.0146 (7)
C250.0347 (9)0.0527 (11)0.0261 (7)0.0031 (8)0.0007 (6)0.0055 (7)
C260.0350 (8)0.0357 (9)0.0269 (7)0.0044 (7)0.0065 (6)0.0011 (6)
C270.0517 (10)0.0259 (8)0.0336 (8)0.0036 (7)0.0102 (7)0.0035 (6)
C310.0389 (8)0.0202 (7)0.0319 (7)0.0040 (6)0.0118 (6)0.0053 (6)
C320.0468 (10)0.0290 (8)0.0317 (8)0.0007 (7)0.0091 (7)0.0047 (6)
C330.0645 (12)0.0316 (9)0.0333 (8)0.0023 (8)0.0212 (8)0.0042 (7)
C340.0509 (10)0.0318 (9)0.0492 (10)0.0048 (8)0.0277 (8)0.0057 (7)
C350.0385 (9)0.0293 (8)0.0443 (9)0.0025 (7)0.0134 (7)0.0043 (7)
C360.0410 (9)0.0233 (7)0.0311 (8)0.0030 (7)0.0110 (6)0.0025 (6)
Geometric parameters (Å, º) top
S1—C31.7390 (19)C17—H17B0.9800
S1—C11.7439 (15)C17—H17C0.9800
O1—C41.2442 (19)C21—C261.3903 (19)
O2—C221.3687 (17)C21—C221.397 (2)
O2—C271.4392 (18)C22—C231.400 (2)
N1—C11.373 (2)C23—C241.389 (2)
N1—C21.4151 (19)C23—H230.9500
N1—C211.4505 (17)C24—C251.387 (3)
N2—C11.320 (2)C24—H240.9500
N2—C41.376 (2)C25—C261.396 (2)
C2—C31.348 (2)C25—H250.9500
C2—C311.476 (2)C26—H260.9500
C3—H30.9500C27—H27A0.9800
C4—C111.497 (2)C27—H27B0.9800
C11—C161.397 (2)C27—H27C0.9800
C11—C121.401 (2)C31—C361.402 (2)
C12—C131.390 (2)C31—C321.409 (2)
C12—H120.9500C32—C331.390 (2)
C13—C141.398 (2)C32—H320.9500
C13—H130.9500C33—C341.391 (3)
C14—C151.398 (2)C33—H330.9500
C14—C171.514 (2)C34—C351.392 (2)
C15—C161.388 (2)C34—H340.9500
C15—H150.9500C35—C361.388 (2)
C16—H160.9500C35—H350.9500
C17—H17A0.9800C36—H360.9500
C3—S1—C190.36 (8)C26—C21—C22121.34 (13)
C22—O2—C27117.35 (11)C26—C21—N1119.45 (14)
C1—N1—C2114.55 (12)C22—C21—N1118.93 (12)
C1—N1—C21119.11 (12)O2—C22—C21116.16 (12)
C2—N1—C21125.57 (13)O2—C22—C23124.72 (14)
C1—N2—C4117.12 (13)C21—C22—C23119.12 (13)
N2—C1—N1120.52 (13)C24—C23—C22119.43 (15)
N2—C1—S1129.09 (12)C24—C23—H23120.3
N1—C1—S1110.39 (10)C22—C23—H23120.3
C3—C2—N1111.07 (14)C25—C24—C23121.16 (14)
C3—C2—C31125.28 (14)C25—C24—H24119.4
N1—C2—C31123.35 (13)C23—C24—H24119.4
C2—C3—S1113.61 (12)C24—C25—C26119.89 (14)
C2—C3—H3123.2C24—C25—H25120.1
S1—C3—H3123.2C26—C25—H25120.1
O1—C4—N2124.59 (15)C21—C26—C25119.06 (15)
O1—C4—C11121.19 (15)C21—C26—H26120.5
N2—C4—C11114.19 (13)C25—C26—H26120.5
C16—C11—C12118.75 (15)O2—C27—H27A109.5
C16—C11—C4119.62 (14)O2—C27—H27B109.5
C12—C11—C4121.59 (14)H27A—C27—H27B109.5
C13—C12—C11120.43 (16)O2—C27—H27C109.5
C13—C12—H12119.8H27A—C27—H27C109.5
C11—C12—H12119.8H27B—C27—H27C109.5
C12—C13—C14121.20 (16)C36—C31—C32118.12 (15)
C12—C13—H13119.4C36—C31—C2122.50 (13)
C14—C13—H13119.4C32—C31—C2119.00 (14)
C15—C14—C13117.78 (15)C33—C32—C31120.35 (15)
C15—C14—C17120.57 (16)C33—C32—H32119.8
C13—C14—C17121.64 (16)C31—C32—H32119.8
C16—C15—C14121.64 (16)C32—C33—C34120.80 (15)
C16—C15—H15119.2C32—C33—H33119.6
C14—C15—H15119.2C34—C33—H33119.6
C15—C16—C11120.21 (15)C33—C34—C35119.30 (17)
C15—C16—H16119.9C33—C34—H34120.4
C11—C16—H16119.9C35—C34—H34120.4
C14—C17—H17A109.5C36—C35—C34120.24 (16)
C14—C17—H17B109.5C36—C35—H35119.9
H17A—C17—H17B109.5C34—C35—H35119.9
C14—C17—H17C109.5C35—C36—C31121.14 (14)
H17A—C17—H17C109.5C35—C36—H36119.4
H17B—C17—H17C109.5C31—C36—H36119.4
C4—N2—C1—N1176.95 (12)C4—C11—C16—C15178.16 (15)
C4—N2—C1—S13.0 (2)C1—N1—C21—C2673.97 (18)
C2—N1—C1—N2179.56 (13)C2—N1—C21—C26116.67 (16)
C21—N1—C1—N29.1 (2)C1—N1—C21—C2299.99 (16)
C2—N1—C1—S10.48 (15)C2—N1—C21—C2269.38 (19)
C21—N1—C1—S1170.98 (10)C27—O2—C22—C21171.39 (14)
C3—S1—C1—N2178.83 (15)C27—O2—C22—C237.6 (2)
C3—S1—C1—N11.21 (12)C26—C21—C22—O2178.36 (13)
C1—N1—C2—C30.81 (19)N1—C21—C22—O24.5 (2)
C21—N1—C2—C3168.98 (15)C26—C21—C22—C230.7 (2)
C1—N1—C2—C31173.17 (13)N1—C21—C22—C23174.56 (13)
C21—N1—C2—C3117.0 (2)O2—C22—C23—C24178.17 (15)
N1—C2—C3—S11.76 (19)C21—C22—C23—C240.8 (2)
C31—C2—C3—S1172.09 (12)C22—C23—C24—C250.6 (2)
C1—S1—C3—C21.74 (15)C23—C24—C25—C260.3 (3)
C1—N2—C4—O11.4 (2)C22—C21—C26—C250.4 (2)
C1—N2—C4—C11176.94 (12)N1—C21—C26—C25174.20 (14)
O1—C4—C11—C166.2 (2)C24—C25—C26—C210.2 (2)
N2—C4—C11—C16175.35 (13)C3—C2—C31—C36134.02 (18)
O1—C4—C11—C12171.36 (15)N1—C2—C31—C3639.1 (2)
N2—C4—C11—C127.1 (2)C3—C2—C31—C3238.8 (2)
C16—C11—C12—C130.0 (2)N1—C2—C31—C32148.05 (15)
C4—C11—C12—C13177.59 (15)C36—C31—C32—C331.4 (2)
C11—C12—C13—C140.6 (3)C2—C31—C32—C33171.72 (14)
C12—C13—C14—C150.6 (3)C31—C32—C33—C340.6 (3)
C12—C13—C14—C17177.76 (16)C32—C33—C34—C351.8 (3)
C13—C14—C15—C160.1 (3)C33—C34—C35—C360.8 (2)
C17—C14—C15—C16178.30 (16)C34—C35—C36—C311.3 (2)
C14—C15—C16—C110.5 (3)C32—C31—C36—C352.4 (2)
C12—C11—C16—C150.5 (2)C2—C31—C36—C35170.49 (14)

Experimental details

Crystal data
Chemical formulaC24H20N2O2S
Mr400.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.1305 (10), 20.0583 (14), 10.0959 (10)
β (°) 102.710 (8)
V3)2001.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.33 × 0.23 × 0.22
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.942, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
11964, 3728, 3095
Rint0.039
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections3728
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.28

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

 

Acknowledgements

AS gratefully acknowledges a research grant from the Quaid-i-Azam University, Islamabad, Pakistan.

References

First citationArcadi, A., Attanasi, O. A., Giorgi, G., Filippone, P., Rossi, E. & Santeusanio, S. (2003). Tetrahedron Lett. 44, 8391–8394.  Web of Science CSD CrossRef CAS Google Scholar
First citationBae, S., Hahnand, H.-G. & Nam, K. D. (2005). J. Comb. Chem. 7, 7–10.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBonde, C. G. & Gaikwad, N. J. (2004). J. Bioorg. Med. Chem. 12, 2151–1254.  Web of Science CrossRef CAS Google Scholar
First citationKim, D.-S., Jeong, Y.-M., Park, I.-K., Hahn, H.-G. & Lee, H.-K. (2007). Biol. Pharm. Bull. 30, 180–184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. L. & Sim, M. M. (2000). Tetrahedron Lett. 41, 5729–5732.  Web of Science CrossRef CAS Google Scholar
First citationManaka, A., Ishii, T., Takahashi, K. & Sato, M. (2005). Tetrahedron Lett. 46, 419–422.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, A. & Parvez, M. (2006). J. Heterocycl. Chem. 43, 1027–1030.  CrossRef CAS Google Scholar
First citationSanemitsu, Y., Kawamura, S., Satoh, J., Katayama, T. & Hashimoto, S. J. (2006). Pestic. Sci. 31, 305–306.  CrossRef CAS Google Scholar
First citationShehata, I. A., Elsubbagh, H. I., Abdelal, A. M., Elsherbeny, M. A. & Alobaid, A. A. (1996). Med. Chem. Res. 6, 148–151.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShih, M.-H. & Ke, F.-Y. (2004). J. Bioorg. Med. Chem. 12, 4633–4638.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVenkatachalan, T. K., Sudbeck, E. A., Mao, C. & Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523–528.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds