metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(8-Quinolylmeth­yl)imino­di­ethanol-κ4N,N′,O,O′]bis­­(thio­cyanato-κN)nickel(II) monohydrate

aDepartment of Chemistry and Chemical Engineering, University of Science and Technology of Suzhou, Suzhou 215009, People's Republic of China
*Correspondence e-mail: songrf@mail.usts.edu.cn

(Received 1 November 2007; accepted 23 November 2007; online 6 December 2007)

In the neutral title complex, [Ni(NCS)2(C14H18N2O2)]·H2O, the NiII ion has a distorted octa­hedral geometry with cis-isothio­cyanate ligands.

Related literature

For diethano­lamine and N-substituted diethano­lamine transition metal coordination compounds, see: Saalfrank et al. (2001[Saalfrank, R. F., Bertnt, I. & Hampel, F. (2001). Chem. Eur. J. 7, 2770-2774.]); Yilmaz et al. (2000[Yilmaz, V. T., Karadag, A., Thöne, C. & Herbst-Irmer, R. (2000). Acta Cryst. C56, 948-949.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C14H18N2O2)]·H2O

  • Mr = 439.19

  • Monoclinic, P 21 /c

  • a = 14.693 (6) Å

  • b = 10.142 (4) Å

  • c = 13.965 (6) Å

  • β = 115.460 (6)°

  • V = 1878.9 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 293 (2) K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.800, Tmax = 1.000 (expected range = 0.722–0.903)

  • 8517 measured reflections

  • 3783 independent reflections

  • 2673 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.097

  • S = 1.08

  • 3783 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N3 2.011 (3)
Ni1—N4 2.018 (3)
Ni1—N2 2.061 (3)
Ni1—O2 2.067 (2)
Ni1—O1 2.089 (2)
Ni1—N1 2.093 (3)
N3—Ni1—N4 96.64 (12)
N3—Ni1—N2 97.00 (11)
N3—Ni1—O2 89.15 (12)
N4—Ni1—O2 91.29 (11)
N2—Ni1—O2 79.51 (10)
N4—Ni1—O1 85.70 (10)
N2—Ni1—O1 80.54 (10)
O2—Ni1—O1 89.84 (10)
N3—Ni1—N1 90.10 (12)
N4—Ni1—N1 96.35 (11)
N2—Ni1—N1 93.04 (10)
O1—Ni1—N1 90.59 (10)

Data collection: SMART (Bruker, 1998[Bruker (1998). SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As shown in Fig. 1, (I) is a neutral mononuclear complex, consisting of one nickel(II) ion, one N-(8-quinolylmethyl)iminodiethanol ligand, two SCN- and one uncoordinated H2O molecule. Each NiII center has a distorted octahedral geometry (Table 1) comprised of two isothiocyanate N atoms, the quinoline N donor, the tertiary N donor and two O donor of the ligand. The NSC groups are almost linear [178.9 (3)° and 178.2 (4)°], though he Ni—N—C linkage [158.8 (3)° and 171.5 (3)°] is bent. No intermolecular hydrogen bonds interactions were observed in the complex.

Related literature top

For diethanolamine and N-substituted diethanolamine transition metal coordination compounds of various structures, see: Saalfrank et al. (2001); Yilmaz et al. (2000).

Experimental top

Synthesis of the N-(8-quinolylmethyl)iminodiethanol ligand. 8-bromomethylquinoline (0.01 mol) was added to the solution of diethanolamine (0.03 mol) in ethanol (50 ml) with stirring. The mixture was refluxed for 15 h, and the solvent was evaporated. The residual oil was dissolved in 10 ml H2O, and the mixture was extracted with benzene and dried over MgSO4. The solvent was evaporated to give a pale yellow liquid, 1.92 g (78% yield). IR (cm-1): 3357vs, 2926 s, 2869 s, 1454 s, 1425m, 1321m, 1130m, 1071 s, 1438 s, 834m. 1H NMR (CDCl3): 4.21 (2H,S,-CH2Ar), 8.88 (1H, d, Ar—H2), 7.41 (1H, t, Ar—H3), 8.16 (1H, d, Ar—H4), 7.75 (1H, d, Ar—H5), 7.47(1H, t, Ar—H6), 7.57 (1H, d, Ar—H7), 2.74 (4H, t, NCH2C), 3.62 (4H, t, CH2O), 1.25 (2H, s, OH). Anal. Found: C, 68.51; H, 7.62; N, 11.39%; calculated for C14H18N2O2: C, 68.27; H, 7.37; N, 11.37.

Synthesis of the title complex (I). Solid KSCN (0.2 mmol) was added slowly with continuous stirring to a solution of NiSO4.6H2O (0.1 mmol) in distilled water (15 ml), the ligand (0.1 mmol) was dissolved in methanol (15 ml) and two solutions were mixed. The mixture was filtered, and green crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from the resulting solution at room temperature. Anal. Found: C, 43.28; H, 4.63; N, 12.78%; calculated for C16H20N4NiO3S2: C, 43.76; H, 4.59; N, 12.76%.

Refinement top

H atoms were included in calculated positions refined as part of a riding with C—H distances of 0.93 Å (aromatic H) and 0.97 Å (ethyl H), and with Uiso(aromatic H, ethyl H) = 1.2Ueq(C). H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.93 Å (hydroxy H) and 0.852Å (H2O molecular H), and with Uiso (hydroxy H)= 1.2Ueq(O) and Uiso (H2O molecular H) = 1.5Ueq(O).

Structure description top

As shown in Fig. 1, (I) is a neutral mononuclear complex, consisting of one nickel(II) ion, one N-(8-quinolylmethyl)iminodiethanol ligand, two SCN- and one uncoordinated H2O molecule. Each NiII center has a distorted octahedral geometry (Table 1) comprised of two isothiocyanate N atoms, the quinoline N donor, the tertiary N donor and two O donor of the ligand. The NSC groups are almost linear [178.9 (3)° and 178.2 (4)°], though he Ni—N—C linkage [158.8 (3)° and 171.5 (3)°] is bent. No intermolecular hydrogen bonds interactions were observed in the complex.

For diethanolamine and N-substituted diethanolamine transition metal coordination compounds of various structures, see: Saalfrank et al. (2001); Yilmaz et al. (2000).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms and uncoordinated H2O molecular.
[N-(8-Quinolylmethyl)iminodiethanol-κ4N,N',O,O']bis(thiocyanato- κN)nickel(II) monohydrate top
Crystal data top
[Ni(NCS)2(C14H18N2O2)]·H2OF(000) = 912
Mr = 439.19Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.693 (6) ÅCell parameters from 783 reflections
b = 10.142 (4) Åθ = 2.6–25.0°
c = 13.965 (6) ŵ = 1.28 mm1
β = 115.460 (6)°T = 293 K
V = 1878.9 (13) Å3Block, green
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3783 independent reflections
Radiation source: fine-focus sealed tube2673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 26.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1813
Tmin = 0.800, Tmax = 1.000k = 1112
8517 measured reflectionsl = 617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.8315P]
where P = (Fo2 + 2Fc2)/3
3783 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(NCS)2(C14H18N2O2)]·H2OV = 1878.9 (13) Å3
Mr = 439.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.693 (6) ŵ = 1.28 mm1
b = 10.142 (4) ÅT = 293 K
c = 13.965 (6) Å0.15 × 0.10 × 0.08 mm
β = 115.460 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3783 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2673 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 1.000Rint = 0.033
8517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.08Δρmax = 0.50 e Å3
3783 reflectionsΔρmin = 0.40 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.20147 (3)0.81623 (4)0.28870 (3)0.03578 (13)
O10.15578 (17)0.7221 (2)0.39381 (17)0.0461 (6)
H1A0.13440.63490.38680.055*
O20.05232 (18)0.8491 (2)0.1858 (2)0.0596 (7)
H2A0.01360.78630.13660.072*
O30.9140 (3)0.7780 (4)1.0013 (3)0.1413 (18)
H310.94480.84340.99060.212*
H320.89050.72750.94730.212*
N10.35206 (19)0.8079 (3)0.4011 (2)0.0399 (6)
N20.1710 (2)0.9792 (2)0.3581 (2)0.0391 (6)
N30.2430 (2)0.9143 (3)0.1887 (2)0.0513 (8)
N40.1975 (2)0.6352 (3)0.2271 (2)0.0500 (7)
S10.27361 (8)1.03083 (10)0.02603 (8)0.0606 (3)
S20.20208 (9)0.36476 (10)0.22047 (9)0.0679 (3)
C10.4045 (3)0.7104 (4)0.3897 (3)0.0561 (10)
H10.37900.66610.32510.067*
C20.4961 (3)0.6688 (4)0.4681 (4)0.0707 (12)
H20.53230.60180.45490.085*
C30.5309 (3)0.7265 (4)0.5624 (4)0.0699 (13)
H30.58960.69540.61750.084*
C40.4804 (3)0.8329 (4)0.5791 (3)0.0558 (10)
C50.5166 (3)0.9007 (5)0.6756 (3)0.0753 (13)
H50.57400.87070.73300.090*
C60.4696 (4)1.0072 (6)0.6857 (3)0.0832 (15)
H60.49361.05060.75070.100*
C70.3841 (3)1.0554 (4)0.6000 (3)0.0627 (11)
H70.35351.13190.60860.075*
C80.3448 (3)0.9931 (3)0.5044 (3)0.0453 (8)
C90.3920 (2)0.8769 (3)0.4943 (3)0.0418 (8)
C100.2622 (3)1.0574 (3)0.4120 (3)0.0457 (8)
H10A0.24421.13880.43610.055*
H10B0.28791.08070.36090.055*
C110.1257 (3)0.9385 (3)0.4299 (3)0.0528 (9)
H11A0.05290.93720.39070.063*
H11B0.14291.00260.48660.063*
C120.1611 (3)0.8060 (4)0.4765 (3)0.0543 (9)
H12A0.22990.81100.53090.065*
H12B0.11870.77240.50850.065*
C130.0982 (3)1.0567 (3)0.2689 (3)0.0522 (9)
H13A0.13251.09630.23020.063*
H13B0.07151.12720.29620.063*
C140.0131 (3)0.9727 (4)0.1949 (3)0.0636 (11)
H14A0.03690.96170.22240.076*
H14B0.01911.01450.12590.076*
C150.2565 (2)0.9625 (3)0.1223 (3)0.0412 (8)
C160.1984 (2)0.5241 (4)0.2227 (2)0.0410 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0407 (2)0.0316 (2)0.0351 (2)0.00054 (19)0.01630 (17)0.00133 (19)
O10.0596 (15)0.0355 (12)0.0487 (13)0.0080 (11)0.0285 (12)0.0020 (11)
O20.0500 (15)0.0436 (15)0.0632 (16)0.0030 (12)0.0033 (13)0.0080 (13)
O30.129 (3)0.119 (3)0.089 (3)0.042 (3)0.034 (2)0.044 (2)
N10.0388 (15)0.0357 (15)0.0473 (15)0.0007 (13)0.0204 (13)0.0018 (13)
N20.0401 (15)0.0323 (14)0.0452 (15)0.0015 (12)0.0185 (13)0.0009 (12)
N30.066 (2)0.0496 (18)0.0418 (16)0.0036 (15)0.0270 (16)0.0034 (15)
N40.068 (2)0.0354 (16)0.0477 (17)0.0002 (15)0.0261 (16)0.0028 (14)
S10.0704 (7)0.0682 (7)0.0519 (6)0.0214 (5)0.0346 (5)0.0013 (5)
S20.0805 (8)0.0359 (5)0.0753 (7)0.0001 (5)0.0221 (6)0.0013 (5)
C10.043 (2)0.051 (2)0.077 (3)0.0035 (18)0.028 (2)0.002 (2)
C20.041 (2)0.053 (3)0.116 (4)0.0086 (19)0.031 (3)0.011 (3)
C30.034 (2)0.066 (3)0.093 (3)0.000 (2)0.012 (2)0.028 (3)
C40.037 (2)0.064 (3)0.059 (2)0.0102 (19)0.0132 (18)0.011 (2)
C50.052 (3)0.100 (4)0.052 (3)0.017 (3)0.001 (2)0.013 (3)
C60.074 (3)0.116 (4)0.047 (3)0.037 (3)0.015 (2)0.020 (3)
C70.064 (3)0.065 (3)0.059 (2)0.015 (2)0.026 (2)0.018 (2)
C80.044 (2)0.047 (2)0.046 (2)0.0124 (17)0.0198 (16)0.0067 (17)
C90.0385 (19)0.0432 (19)0.0433 (19)0.0064 (16)0.0173 (16)0.0044 (16)
C100.051 (2)0.0290 (17)0.057 (2)0.0036 (16)0.0235 (18)0.0068 (16)
C110.059 (2)0.050 (2)0.061 (2)0.0010 (18)0.036 (2)0.0048 (19)
C120.072 (3)0.051 (2)0.054 (2)0.000 (2)0.039 (2)0.0027 (19)
C130.053 (2)0.0356 (19)0.063 (2)0.0103 (17)0.0205 (19)0.0040 (18)
C140.052 (2)0.058 (3)0.067 (3)0.013 (2)0.012 (2)0.003 (2)
C150.0418 (19)0.0401 (19)0.0387 (18)0.0025 (15)0.0143 (15)0.0036 (15)
C160.043 (2)0.048 (2)0.0321 (17)0.0027 (16)0.0161 (15)0.0015 (16)
Geometric parameters (Å, º) top
Ni1—N32.011 (3)C3—C41.385 (6)
Ni1—N42.018 (3)C3—H30.9300
Ni1—N22.061 (3)C4—C51.398 (6)
Ni1—O22.067 (2)C4—C91.403 (5)
Ni1—O12.089 (2)C5—C61.322 (7)
Ni1—N12.093 (3)C5—H50.9300
O1—C121.409 (4)C6—C71.399 (6)
O1—H1A0.9300C6—H60.9300
O2—C141.408 (4)C7—C81.362 (5)
O2—H2A0.9300C7—H70.9300
O3—H310.8520C8—C91.406 (5)
O3—H320.8520C8—C101.488 (5)
N1—C11.305 (4)C10—H10A0.9700
N1—C91.368 (4)C10—H10B0.9700
N2—C101.457 (4)C11—C121.486 (5)
N2—C131.472 (4)C11—H11A0.9700
N2—C111.481 (4)C11—H11B0.9700
N3—C151.139 (4)C12—H12A0.9700
N4—C161.129 (4)C12—H12B0.9700
S1—C151.625 (3)C13—C141.499 (5)
S2—C161.617 (4)C13—H13A0.9700
C1—C21.385 (6)C13—H13B0.9700
C1—H10.9300C14—H14A0.9700
C2—C31.326 (6)C14—H14B0.9700
C2—H20.9300
N3—Ni1—N496.64 (12)C6—C5—H5119.8
N3—Ni1—N297.00 (11)C4—C5—H5119.8
N4—Ni1—N2163.40 (11)C5—C6—C7120.8 (4)
N3—Ni1—O289.15 (12)C5—C6—H6119.6
N4—Ni1—O291.29 (11)C7—C6—H6119.6
N2—Ni1—O279.51 (10)C8—C7—C6121.6 (4)
N3—Ni1—O1177.48 (10)C8—C7—H7119.2
N4—Ni1—O185.70 (10)C6—C7—H7119.2
N2—Ni1—O180.54 (10)C7—C8—C9117.9 (4)
O2—Ni1—O189.84 (10)C7—C8—C10119.4 (3)
N3—Ni1—N190.10 (12)C9—C8—C10122.3 (3)
N4—Ni1—N196.35 (11)N1—C9—C4120.3 (3)
N2—Ni1—N193.04 (10)N1—C9—C8119.7 (3)
O2—Ni1—N1172.36 (10)C4—C9—C8120.0 (3)
O1—Ni1—N190.59 (10)N2—C10—C8115.8 (3)
C12—O1—Ni1112.29 (19)N2—C10—H10A108.3
C12—O1—H1A123.9C8—C10—H10A108.3
Ni1—O1—H1A123.9N2—C10—H10B108.3
C14—O2—Ni1115.7 (2)C8—C10—H10B108.3
C14—O2—H2A122.1H10A—C10—H10B107.4
Ni1—O2—H2A122.1N2—C11—C12112.0 (3)
H31—O3—H32110.9N2—C11—H11A109.2
C1—N1—C9118.0 (3)C12—C11—H11A109.2
C1—N1—Ni1115.4 (2)N2—C11—H11B109.2
C9—N1—Ni1125.2 (2)C12—C11—H11B109.2
C10—N2—C13108.6 (3)H11A—C11—H11B107.9
C10—N2—C11112.5 (3)O1—C12—C11107.5 (3)
C13—N2—C11110.3 (3)O1—C12—H12A110.2
C10—N2—Ni1110.02 (19)C11—C12—H12A110.2
C13—N2—Ni1104.8 (2)O1—C12—H12B110.2
C11—N2—Ni1110.26 (19)C11—C12—H12B110.2
C15—N3—Ni1171.5 (3)H12A—C12—H12B108.5
C16—N4—Ni1158.8 (3)N2—C13—C14111.6 (3)
N1—C1—C2123.9 (4)N2—C13—H13A109.3
N1—C1—H1118.0C14—C13—H13A109.3
C2—C1—H1118.0N2—C13—H13B109.3
C3—C2—C1118.7 (4)C14—C13—H13B109.3
C3—C2—H2120.7H13A—C13—H13B108.0
C1—C2—H2120.7O2—C14—C13108.4 (3)
C2—C3—C4120.3 (4)O2—C14—H14A110.0
C2—C3—H3119.8C13—C14—H14A110.0
C4—C3—H3119.8O2—C14—H14B110.0
C3—C4—C5122.5 (4)C13—C14—H14B110.0
C3—C4—C9118.3 (4)H14A—C14—H14B108.4
C5—C4—C9119.2 (4)N3—C15—S1178.9 (3)
C6—C5—C4120.3 (4)N4—C16—S2178.2 (4)
N3—Ni1—O1—C1232 (3)O1—Ni1—N4—C1622.4 (8)
N4—Ni1—O1—C12169.9 (2)N1—Ni1—N4—C1667.7 (8)
N2—Ni1—O1—C1219.4 (2)C9—N1—C1—C23.0 (5)
O2—Ni1—O1—C1298.8 (2)Ni1—N1—C1—C2163.8 (3)
N1—Ni1—O1—C1273.5 (2)N1—C1—C2—C33.4 (6)
N3—Ni1—O2—C1482.8 (3)C1—C2—C3—C44.9 (6)
N4—Ni1—O2—C14179.4 (3)C2—C3—C4—C5177.1 (4)
N2—Ni1—O2—C1414.5 (3)C2—C3—C4—C90.2 (6)
O1—Ni1—O2—C1494.9 (3)C3—C4—C5—C6175.3 (4)
N1—Ni1—O2—C141.6 (9)C9—C4—C5—C61.9 (6)
N3—Ni1—N1—C184.8 (3)C4—C5—C6—C71.1 (7)
N4—Ni1—N1—C111.9 (3)C5—C6—C7—C81.7 (7)
N2—Ni1—N1—C1178.2 (3)C6—C7—C8—C90.8 (6)
O2—Ni1—N1—C1169.2 (7)C6—C7—C8—C10172.1 (4)
O1—Ni1—N1—C197.6 (3)C1—N1—C9—C47.9 (5)
N3—Ni1—N1—C9109.5 (3)Ni1—N1—C9—C4157.5 (2)
N4—Ni1—N1—C9153.9 (2)C1—N1—C9—C8171.4 (3)
N2—Ni1—N1—C912.4 (3)Ni1—N1—C9—C823.2 (4)
O2—Ni1—N1—C925.1 (9)C3—C4—C9—N16.4 (5)
O1—Ni1—N1—C968.1 (2)C5—C4—C9—N1176.3 (3)
N3—Ni1—N2—C1062.0 (2)C3—C4—C9—C8172.9 (3)
N4—Ni1—N2—C10153.0 (4)C5—C4—C9—C84.4 (5)
O2—Ni1—N2—C10149.8 (2)C7—C8—C9—N1176.9 (3)
O1—Ni1—N2—C10118.6 (2)C10—C8—C9—N110.4 (5)
N1—Ni1—N2—C1028.5 (2)C7—C8—C9—C43.8 (5)
N3—Ni1—N2—C1354.6 (2)C10—C8—C9—C4168.9 (3)
N4—Ni1—N2—C1390.4 (4)C13—N2—C10—C8179.4 (3)
O2—Ni1—N2—C1333.2 (2)C11—N2—C10—C858.1 (4)
O1—Ni1—N2—C13124.8 (2)Ni1—N2—C10—C865.3 (3)
N1—Ni1—N2—C13145.1 (2)C7—C8—C10—N2125.4 (3)
N3—Ni1—N2—C11173.3 (2)C9—C8—C10—N262.1 (4)
N4—Ni1—N2—C1128.3 (5)C10—N2—C11—C1293.4 (3)
O2—Ni1—N2—C1185.5 (2)C13—N2—C11—C12145.1 (3)
O1—Ni1—N2—C116.1 (2)Ni1—N2—C11—C1229.8 (4)
N1—Ni1—N2—C1196.2 (2)Ni1—O1—C12—C1139.9 (3)
N4—Ni1—N3—C1553 (2)N2—C11—C12—O145.8 (4)
N2—Ni1—N3—C15117 (2)C10—N2—C13—C14166.7 (3)
O2—Ni1—N3—C1538 (2)C11—N2—C13—C1469.5 (4)
O1—Ni1—N3—C15104 (3)Ni1—N2—C13—C1449.1 (3)
N1—Ni1—N3—C15150 (2)Ni1—O2—C14—C138.5 (4)
N3—Ni1—N4—C16158.5 (8)N2—C13—C14—O238.5 (4)
N2—Ni1—N4—C1656.4 (10)Ni1—N3—C15—S120 (20)
O2—Ni1—N4—C16112.2 (8)Ni1—N4—C16—S231 (11)

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C14H18N2O2)]·H2O
Mr439.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.693 (6), 10.142 (4), 13.965 (6)
β (°) 115.460 (6)
V3)1878.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.800, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8517, 3783, 2673
Rint0.033
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.097, 1.08
No. of reflections3783
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Ni1—N32.011 (3)Ni1—O22.067 (2)
Ni1—N42.018 (3)Ni1—O12.089 (2)
Ni1—N22.061 (3)Ni1—N12.093 (3)
N3—Ni1—N496.64 (12)N2—Ni1—O180.54 (10)
N3—Ni1—N297.00 (11)O2—Ni1—O189.84 (10)
N3—Ni1—O289.15 (12)N3—Ni1—N190.10 (12)
N4—Ni1—O291.29 (11)N4—Ni1—N196.35 (11)
N2—Ni1—O279.51 (10)N2—Ni1—N193.04 (10)
N4—Ni1—O185.70 (10)O1—Ni1—N190.59 (10)
 

Acknowledgements

This work was supported by the Qinglan Project Foundation of the University of Jiangsu Province and the Science Foundation of the University of Science and Technology of Suzhou.

References

First citationBruker (1998). SHELXTL and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSaalfrank, R. F., Bertnt, I. & Hampel, F. (2001). Chem. Eur. J. 7, 2770–2774.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationYilmaz, V. T., Karadag, A., Thöne, C. & Herbst-Irmer, R. (2000). Acta Cryst. C56, 948–949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds