metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic modification of 1,1,3,3,5,5-hexa­methyl-cyclo-1,3,5-tris­­tanna­thiane

aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India, and bSchool of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: nsingh@bhu.ac.in

(Received 10 November 2007; accepted 27 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, [Sn3(CH3)6S3], contains two molecules with twist-boat conformations. There are intermolecular S⋯H (2.929 Å), S⋯S (3.433 Å), S⋯C (3.465 Å) and C⋯H (2.898 Å) inter­actions in addition to prominent intermolecular Sn⋯S inter­actions of 3.692 and 3.769 Å.

Related literature

For related literature, see: Menzebach & Bleckmann (1975[Menzebach, B. & Bleckmann, P. (1975). J. Organomet. Chem. 91, 291-294.]) (tetragonal form); Jacobsen & Krebs (1977[Jacobsen, H.-J. & Krebs, B. (1977). J. Organomet. Chem. 136, 333-338.]) (monoclinic form); Farina et al. (2001[Farina, Y., Baba, I., Othman, A. H., Razak, I. A., Fun, H.-K. & Ng, S. W. (2001). Acta Cryst. E57, m37-m38.]) (tetragonal form); Spek (2003[Spek, A. L. (2003). J. Appl Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn3(CH3)6S3]

  • Mr = 542.45

  • Monoclinic, P 21 /n

  • a = 14.826 (1) Å

  • b = 12.814 (1) Å

  • c = 17.744 (1) Å

  • β = 108.706 (1)°

  • V = 3192.94 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.01 mm−1

  • T = 150 (2) K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.311, Tmax = 0.361

  • 78537 measured reflections

  • 9326 independent reflections

  • 8221 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.067

  • S = 1.15

  • 9326 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −1.69 e Å−3

Data collection: COLLECT (Nonius, 1997–2000[Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tris(dimethyltin sulfide),1,1,3,3,5,5-hexamethyl-cyclo-1,3,5-tristannathiane was the unexpected product in our attempt to synthesizing dimethyltin(emda) (emda = 1-ethoxycarbonyl-1-methylcarbonyl-2,2-dithiolate) (see Experimental). The literature reports that the compound crystallizes in monoclinic (P21/c; Jacobsen & Krebs, 1977), tetragonal (P4; Menzebach & Bleckmann,1975) and tetragonal (P42212; Farina et al., 2001) modifications. The monoclinic modification was refined in the P21/c space group. However, the checking program PLATON (Spek, 2003) finds P21/n space group which is now being authenticated in the present study. In the monoclinic unit cell the molecules are linked by Sn···S interaction of 3.692 and 3.796 Å, S···H interaction of 2.929 Å, S···S interaction of 3.433 Å, S···C interaction of 3.465 Å and C···H interaction of 2.898 Å.

Related literature top

For related literature, see: Menzebach & Bleckmann (1975) (tetragonal form); Jacobsen & Krebs (1977) (monoclinic form); Farina et al. (2001) (tetragonal form); Spek (2003).

Experimental top

To a stirring 20 ml me thanolic solution of K2emda(1 mmol) was added, 15 ml me thanolic solution of dimethyltin(IV) chloride (1 mmol). The mixture was additionally stirred for 2 h. Whole solvent was vacuum evaporated toobtain solid residue. To this 20 ml chloroform was added and suction filteredto discard KCl. The orange coloured solution thus obtained was layered with methanol to afford yellow crystals.

Structure description top

Tris(dimethyltin sulfide),1,1,3,3,5,5-hexamethyl-cyclo-1,3,5-tristannathiane was the unexpected product in our attempt to synthesizing dimethyltin(emda) (emda = 1-ethoxycarbonyl-1-methylcarbonyl-2,2-dithiolate) (see Experimental). The literature reports that the compound crystallizes in monoclinic (P21/c; Jacobsen & Krebs, 1977), tetragonal (P4; Menzebach & Bleckmann,1975) and tetragonal (P42212; Farina et al., 2001) modifications. The monoclinic modification was refined in the P21/c space group. However, the checking program PLATON (Spek, 2003) finds P21/n space group which is now being authenticated in the present study. In the monoclinic unit cell the molecules are linked by Sn···S interaction of 3.692 and 3.796 Å, S···H interaction of 2.929 Å, S···S interaction of 3.433 Å, S···C interaction of 3.465 Å and C···H interaction of 2.898 Å.

For related literature, see: Menzebach & Bleckmann (1975) (tetragonal form); Jacobsen & Krebs (1977) (monoclinic form); Farina et al. (2001) (tetragonal form); Spek (2003).

Computing details top

Data collection: Collect (Nonius, 1997-2000); cell refinement: HKL and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP plot of tris(dimethyltin sulfide) at the 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of tris(dimethyltin sulfide) showing Sn···S, S···S, S···H, S···C and C···H interactions.
1,1,3,3,5,5-hexamethyl-cyclo-1,3,5-tristannathiane top
Crystal data top
[Sn3(CH3)6S3]Dx = 2.257 Mg m3
Mr = 542.45Melting point: 148 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.826 (1) ÅCell parameters from 24000 reflections
b = 12.814 (1) Åθ = 2.9–27.5°
c = 17.744 (1) ŵ = 5.01 mm1
β = 108.706 (1)°T = 150 K
V = 3192.94 (4) Å3Block, yellow
Z = 80.25 × 0.25 × 0.20 mm
F(000) = 2016
Data collection top
Nonius KappaCCD
diffractometer
9326 independent reflections
Radiation source: fine-focus sealed tube8221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
363 1.6 degree images with φ andω scansθmax = 30.1°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
h = 1920
Tmin = 0.311, Tmax = 0.361k = 1718
78537 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0287P)2 + 3.7599P]
where P = (Fo2 + 2Fc2)/3
9326 reflections(Δ/σ)max = 0.002
229 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 1.69 e Å3
Crystal data top
[Sn3(CH3)6S3]V = 3192.94 (4) Å3
Mr = 542.45Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.826 (1) ŵ = 5.01 mm1
b = 12.814 (1) ÅT = 150 K
c = 17.744 (1) Å0.25 × 0.25 × 0.20 mm
β = 108.706 (1)°
Data collection top
Nonius KappaCCD
diffractometer
9326 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
8221 reflections with I > 2σ(I)
Tmin = 0.311, Tmax = 0.361Rint = 0.046
78537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.15Δρmax = 0.93 e Å3
9326 reflectionsΔρmin = 1.69 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.407801 (14)0.393311 (15)0.330468 (12)0.02220 (5)
Sn20.292630 (16)0.244657 (15)0.143631 (12)0.02433 (5)
Sn30.260380 (14)0.539580 (15)0.143724 (12)0.02231 (5)
Sn40.595000 (14)0.105237 (15)0.215469 (13)0.02279 (5)
Sn50.775307 (14)0.255910 (15)0.373674 (12)0.02168 (5)
Sn60.784610 (16)0.045519 (16)0.370081 (13)0.02807 (5)
S10.38690 (6)0.21710 (6)0.28053 (5)0.02717 (15)
S20.34811 (6)0.40429 (6)0.10117 (5)0.02742 (16)
S30.26038 (5)0.48569 (6)0.27553 (4)0.02501 (14)
S40.73866 (6)0.00869 (6)0.23204 (5)0.02779 (15)
S50.74693 (8)0.10168 (6)0.44061 (5)0.03455 (19)
S60.63617 (6)0.28120 (6)0.25940 (5)0.02786 (15)
C10.5255 (3)0.4688 (3)0.3101 (3)0.0405 (8)
H1A0.58400.43050.33740.061*
H1B0.51600.47050.25280.061*
H1C0.53060.54030.33060.061*
C20.4245 (3)0.3748 (3)0.4546 (2)0.0427 (9)
H2A0.41200.44150.47640.064*
H2B0.37940.32220.46090.064*
H2C0.48960.35220.48320.064*
C30.1441 (2)0.2544 (3)0.1283 (2)0.0361 (8)
H3A0.12030.18530.13600.054*
H3B0.13400.30320.16730.054*
H3C0.11000.27930.07440.054*
C40.3309 (3)0.1254 (3)0.0757 (2)0.0411 (9)
H4A0.28460.12390.02200.062*
H4B0.39450.13980.07240.062*
H4C0.33130.05770.10140.062*
C50.1159 (2)0.5364 (3)0.06916 (19)0.0285 (6)
H5A0.09690.60620.04720.043*
H5B0.10900.48690.02560.043*
H5C0.07530.51460.10030.043*
C60.3447 (2)0.6776 (2)0.1555 (2)0.0298 (6)
H6A0.30900.73750.16550.045*
H6B0.40380.66930.20000.045*
H6C0.35980.68920.10630.045*
C70.5300 (3)0.1155 (3)0.0895 (2)0.0423 (9)
H7A0.50870.04610.06800.063*
H7B0.57630.14250.06550.063*
H7C0.47510.16270.07740.063*
C80.5078 (3)0.0398 (3)0.2777 (3)0.0429 (9)
H8A0.44530.07370.26030.064*
H8B0.53790.05060.33500.064*
H8C0.50010.03520.26650.064*
C90.7751 (3)0.3803 (2)0.4535 (2)0.0313 (7)
H9A0.78920.35260.50750.047*
H9B0.71230.41380.43710.047*
H9C0.82360.43180.45250.047*
C100.9028 (3)0.2408 (3)0.3437 (2)0.0364 (8)
H10A0.91760.30750.32330.055*
H10B0.89420.18690.30270.055*
H10C0.95540.22090.39120.055*
C110.6965 (3)0.1716 (3)0.3834 (2)0.0416 (9)
H11A0.71220.23470.35890.062*
H11B0.62950.15370.35730.062*
H11C0.70750.18430.44010.062*
C120.9340 (3)0.0702 (3)0.4128 (2)0.0425 (9)
H12A0.95380.08600.46980.064*
H12B0.96670.00720.40400.064*
H12C0.95030.12890.38420.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02077 (10)0.02012 (10)0.02404 (10)0.00078 (7)0.00487 (8)0.00072 (7)
Sn20.02967 (11)0.01939 (10)0.02465 (10)0.00053 (7)0.00974 (8)0.00356 (7)
Sn30.02227 (10)0.01899 (9)0.02482 (10)0.00015 (7)0.00638 (8)0.00101 (7)
Sn40.02074 (10)0.02090 (10)0.02697 (11)0.00286 (7)0.00798 (8)0.00433 (7)
Sn50.02387 (10)0.01951 (10)0.02113 (10)0.00017 (7)0.00645 (8)0.00146 (7)
Sn60.03327 (12)0.01932 (10)0.02936 (11)0.00007 (8)0.00690 (9)0.00062 (8)
S10.0324 (4)0.0176 (3)0.0293 (4)0.0025 (3)0.0070 (3)0.0022 (3)
S20.0326 (4)0.0234 (4)0.0311 (4)0.0020 (3)0.0171 (3)0.0019 (3)
S30.0253 (3)0.0250 (4)0.0266 (3)0.0048 (3)0.0110 (3)0.0019 (3)
S40.0304 (4)0.0268 (4)0.0287 (4)0.0056 (3)0.0129 (3)0.0016 (3)
S50.0580 (6)0.0244 (4)0.0275 (4)0.0035 (3)0.0225 (4)0.0037 (3)
S60.0296 (4)0.0178 (3)0.0299 (4)0.0010 (3)0.0008 (3)0.0002 (3)
C10.0286 (17)0.040 (2)0.054 (2)0.0095 (15)0.0137 (16)0.0019 (17)
C20.053 (2)0.048 (2)0.0230 (16)0.0027 (18)0.0071 (16)0.0010 (15)
C30.0268 (17)0.0341 (18)0.043 (2)0.0044 (13)0.0058 (15)0.0018 (14)
C40.064 (3)0.0281 (17)0.040 (2)0.0004 (17)0.0280 (19)0.0102 (14)
C50.0243 (14)0.0335 (16)0.0260 (15)0.0020 (12)0.0056 (12)0.0023 (12)
C60.0322 (16)0.0234 (14)0.0351 (16)0.0051 (12)0.0126 (13)0.0015 (12)
C70.038 (2)0.050 (2)0.0300 (18)0.0039 (16)0.0020 (15)0.0081 (15)
C80.0358 (19)0.042 (2)0.059 (2)0.0133 (16)0.0270 (18)0.0004 (17)
C90.0403 (18)0.0248 (15)0.0263 (15)0.0008 (13)0.0071 (14)0.0085 (12)
C100.0282 (17)0.0370 (18)0.049 (2)0.0013 (13)0.0187 (15)0.0021 (15)
C110.051 (2)0.0274 (17)0.041 (2)0.0122 (16)0.0082 (17)0.0065 (14)
C120.0344 (19)0.046 (2)0.039 (2)0.0020 (16)0.0001 (15)0.0160 (17)
Geometric parameters (Å, º) top
Sn1—C12.125 (3)C3—H3A0.9800
Sn1—C22.149 (4)C3—H3B0.9800
Sn1—S32.4005 (8)C3—H3C0.9800
Sn1—S12.4090 (8)C4—H4A0.9800
Sn2—C42.133 (3)C4—H4B0.9800
Sn2—C32.133 (4)C4—H4C0.9800
Sn2—S12.4086 (8)C5—H5A0.9800
Sn2—S22.4136 (8)C5—H5B0.9800
Sn3—C52.126 (3)C5—H5C0.9800
Sn3—C62.136 (3)C6—H6A0.9800
Sn3—S22.4284 (8)C6—H6B0.9800
Sn3—S32.4386 (8)C6—H6C0.9800
Sn4—C82.123 (3)C7—H7A0.9800
Sn4—C72.135 (4)C7—H7B0.9800
Sn4—S42.3982 (8)C7—H7C0.9800
Sn4—S62.3999 (8)C8—H8A0.9800
Sn5—C102.131 (3)C8—H8B0.9800
Sn5—C92.133 (3)C8—H8C0.9800
Sn5—S62.4060 (8)C9—H9A0.9800
Sn5—S52.4112 (8)C9—H9B0.9800
Sn6—C122.121 (4)C9—H9C0.9800
Sn6—C112.138 (3)C10—H10A0.9800
Sn6—S42.4240 (8)C10—H10B0.9800
Sn6—S52.4259 (8)C10—H10C0.9800
C1—H1A0.9800C11—H11A0.9800
C1—H1B0.9800C11—H11B0.9800
C1—H1C0.9800C11—H11C0.9800
C2—H2A0.9800C12—H12A0.9800
C2—H2B0.9800C12—H12B0.9800
C2—H2C0.9800C12—H12C0.9800
C1—Sn1—C2113.19 (17)Sn2—C3—H3C109.5
C1—Sn1—S3113.37 (11)H3A—C3—H3C109.5
C2—Sn1—S3105.13 (12)H3B—C3—H3C109.5
C1—Sn1—S1112.33 (11)Sn2—C4—H4A109.5
C2—Sn1—S1103.44 (12)Sn2—C4—H4B109.5
S3—Sn1—S1108.66 (3)H4A—C4—H4B109.5
C4—Sn2—C3114.88 (16)Sn2—C4—H4C109.5
C4—Sn2—S1106.94 (12)H4A—C4—H4C109.5
C3—Sn2—S1112.25 (11)H4B—C4—H4C109.5
C4—Sn2—S2104.57 (11)Sn3—C5—H5A109.5
C3—Sn2—S2110.58 (10)Sn3—C5—H5B109.5
S1—Sn2—S2107.06 (3)H5A—C5—H5B109.5
C5—Sn3—C6121.18 (13)Sn3—C5—H5C109.5
C5—Sn3—S2109.01 (9)H5A—C5—H5C109.5
C6—Sn3—S2105.44 (9)H5B—C5—H5C109.5
C5—Sn3—S3106.35 (9)Sn3—C6—H6A109.5
C6—Sn3—S3108.70 (9)Sn3—C6—H6B109.5
S2—Sn3—S3105.12 (3)H6A—C6—H6B109.5
C8—Sn4—C7115.01 (17)Sn3—C6—H6C109.5
C8—Sn4—S4113.41 (12)H6A—C6—H6C109.5
C7—Sn4—S4104.21 (11)H6B—C6—H6C109.5
C8—Sn4—S6109.64 (11)Sn4—C7—H7A109.5
C7—Sn4—S6105.33 (11)Sn4—C7—H7B109.5
S4—Sn4—S6108.75 (3)H7A—C7—H7B109.5
C10—Sn5—C9115.11 (15)Sn4—C7—H7C109.5
C10—Sn5—S6113.04 (11)H7A—C7—H7C109.5
C9—Sn5—S6105.97 (10)H7B—C7—H7C109.5
C10—Sn5—S5110.93 (10)Sn4—C8—H8A109.5
C9—Sn5—S5104.36 (10)Sn4—C8—H8B109.5
S6—Sn5—S5106.72 (3)H8A—C8—H8B109.5
C12—Sn6—C11116.90 (17)Sn4—C8—H8C109.5
C12—Sn6—S4109.05 (12)H8A—C8—H8C109.5
C11—Sn6—S4110.17 (11)H8B—C8—H8C109.5
C12—Sn6—S5108.57 (10)Sn5—C9—H9A109.5
C11—Sn6—S5106.29 (12)Sn5—C9—H9B109.5
S4—Sn6—S5105.18 (3)H9A—C9—H9B109.5
Sn2—S1—Sn1101.43 (3)Sn5—C9—H9C109.5
Sn2—S2—Sn3103.76 (3)H9A—C9—H9C109.5
Sn1—S3—Sn3104.42 (3)H9B—C9—H9C109.5
Sn4—S4—Sn6102.86 (3)Sn5—C10—H10A109.5
Sn5—S5—Sn6106.13 (3)Sn5—C10—H10B109.5
Sn4—S6—Sn5101.96 (3)H10A—C10—H10B109.5
Sn1—C1—H1A109.5Sn5—C10—H10C109.5
Sn1—C1—H1B109.5H10A—C10—H10C109.5
H1A—C1—H1B109.5H10B—C10—H10C109.5
Sn1—C1—H1C109.5Sn6—C11—H11A109.5
H1A—C1—H1C109.5Sn6—C11—H11B109.5
H1B—C1—H1C109.5H11A—C11—H11B109.5
Sn1—C2—H2A109.5Sn6—C11—H11C109.5
Sn1—C2—H2B109.5H11A—C11—H11C109.5
H2A—C2—H2B109.5H11B—C11—H11C109.5
Sn1—C2—H2C109.5Sn6—C12—H12A109.5
H2A—C2—H2C109.5Sn6—C12—H12B109.5
H2B—C2—H2C109.5H12A—C12—H12B109.5
Sn2—C3—H3A109.5Sn6—C12—H12C109.5
Sn2—C3—H3B109.5H12A—C12—H12C109.5
H3A—C3—H3B109.5H12B—C12—H12C109.5

Experimental details

Crystal data
Chemical formula[Sn3(CH3)6S3]
Mr542.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.826 (1), 12.814 (1), 17.744 (1)
β (°) 108.706 (1)
V3)3192.94 (4)
Z8
Radiation typeMo Kα
µ (mm1)5.01
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.311, 0.361
No. of measured, independent and
observed [I > 2σ(I)] reflections
78537, 9326, 8221
Rint0.046
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.15
No. of reflections9326
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 1.69

Computer programs: Collect (Nonius, 1997-2000), HKL and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

 

Acknowledgements

Authors are grateful to the CSIR, New Delhi, for financial assistance in the form of a JRF (AK) and a CSIR Project (NS).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarina, Y., Baba, I., Othman, A. H., Razak, I. A., Fun, H.-K. & Ng, S. W. (2001). Acta Cryst. E57, m37–m38.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJacobsen, H.-J. & Krebs, B. (1977). J. Organomet. Chem. 136, 333–338.  CSD CrossRef CAS Web of Science Google Scholar
First citationMenzebach, B. & Bleckmann, P. (1975). J. Organomet. Chem. 91, 291–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds