metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethyl carbazate-κ2N,O)nickel(II) dinitrate

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 13 November 2007; accepted 14 November 2007; online 18 December 2007)

The asymmetric unit of the title compound, [Ni(C3H8N2O2)3](NO3)2, contains two independent cations, each built up around a fac-NiN3O3 octa­hedron, and four nitrate anions. Numerous cation-to-anion N—H⋯O hydrogen bonds, some of which are bifurcated, help to establish the packing.

Related literature

For related structures, see: Lanfredi et al. (1976[Lanfredi, A. M. M., Tiripicchio, A. & Tiripicchio Camellini, M. (1976). Cryst. Struct. Commun. 5, 827-831.]); Zhang et al. (2005[Zhang, T.-L., Song, J.-C., Zhang, J.-G., Ma, G.-X. & Yu, K.-B. (2005). Z. Naturforsch. Teil B, 60, 505-510.]); Srinivasan et al. (2007[Srinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m3028-3029.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H8N2O2)3](NO3)2

  • Mr = 495.07

  • Monoclinic, P 21 /n

  • a = 14.0580 (8) Å

  • b = 8.6571 (3) Å

  • c = 33.6639 (18) Å

  • β = 92.652 (1)°

  • V = 4092.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 (2) K

  • 0.36 × 0.29 × 0.17 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.710, Tmax = 0.845

  • 26981 measured reflections

  • 11856 independent reflections

  • 6057 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.125

  • S = 0.94

  • 11856 reflections

  • 547 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.062 (2)
Ni1—O5 2.065 (2)
Ni1—N3 2.074 (2)
Ni1—N5 2.082 (2)
Ni1—O3 2.0843 (19)
Ni1—N1 2.103 (2)
Ni2—O13 2.056 (2)
Ni2—O15 2.069 (2)
Ni2—O11 2.071 (2)
Ni2—N15 2.075 (2)
Ni2—N11 2.086 (2)
Ni2—N13 2.097 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O21i 0.90 2.41 3.158 (3) 140
N1—H1A⋯O22i 0.90 2.58 3.419 (4) 156
N1—H1B⋯O21ii 0.90 2.32 3.073 (3) 142
N1—H1B⋯O23ii 0.90 2.40 3.280 (4) 165
N2—H2⋯O52ii 0.86 2.14 2.872 (3) 143
N3—H3D⋯O51 0.90 2.16 3.019 (4) 159
N3—H3E⋯O41i 0.90 2.32 3.047 (3) 138
N3—H3E⋯O43i 0.90 2.55 3.435 (4) 170
N4—H4⋯O31 0.86 2.12 2.951 (3) 162
N5—H5C⋯O52 0.90 2.01 2.908 (3) 172
N5—H5D⋯O42 0.90 2.17 3.064 (4) 177
N6—H6⋯O21 0.86 2.30 3.096 (4) 154
N11—H11A⋯O31iii 0.90 2.17 3.071 (3) 177
N11—H11B⋯O22 0.90 2.17 2.989 (3) 151
N12—H12⋯O51iii 0.86 2.19 2.960 (3) 150
N13—H13D⋯O23 0.90 2.26 3.046 (4) 146
N13—H13E⋯O42 0.90 2.30 3.091 (4) 146
N14—H14⋯O53 0.86 2.25 2.984 (4) 143
N15—H15C⋯O32 0.90 2.20 3.077 (4) 165
N15—H15D⋯O41 0.90 2.10 2.951 (4) 157
N16—H16⋯O31iv 0.86 2.13 2.962 (3) 163
N16—H16⋯O32iv 0.86 2.40 3.113 (4) 141
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) -x+1, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), HKL SCALEPACK and SORTAV (Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is isostructural with its zinc congener (Zhang et al., 2005). The cobalt-containing compound was also reported to have the same structure by Zhang and co-workers. We have recently observed a supercell for the latter phase (Srinivasan et al., 2007).

The two [Ni(C3H8N2O2)3]2+ complex cations in (I) are similar (Fig. 1) and are each built up around a slightly distorted fac-NiN3O3 octahedral core (Table 1). A five-membered –Ni—N—N—C—O– chelate ring arises for each of the six distinct N,O-bidentate ligands.

The crystal packing for (I) is consolidated by a large number of cation-to-anion N—H···O hydrogen bonds (Table 2), a number of which are bifurcated.

The crysatl structure of the [Ni(C3H8N2O2)3]2+ complex cation accompanied by chloride ions was described some time ago (Lanfredi et al., 1976).

Related literature top

For related structures, see: Lanfredi et al. (1976); Zhang et al. (2005); Srinivasan et al. (2007).

Experimental top

Ethyl carbazate (0.208 g, 0.002 mol) was added to an aqueous solution (25 ml) containing formic acid (85%, 0.08 ml). To this solution was added nickel nitrate hexahydrate (0.291 g, 0.001 mol) dissolved in 50 ml of double distilled water. The resulting green solution was concentrated over a water bath to about 15 ml and kept for crystallization at room temperature. Blue blocks of (I) obtained after a week were separated and washed with ethanol and air dried.

Refinement top

The diffraction data were carefully examined, but no trace of a supercell was discernable. The hydrogen atoms were geometrically placed (N—H = 0.86–0.90 Å, C—H = 0.96–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(N,C) or 1.5Ueq(methyl C).

Structure description top

The title compound, (I), is isostructural with its zinc congener (Zhang et al., 2005). The cobalt-containing compound was also reported to have the same structure by Zhang and co-workers. We have recently observed a supercell for the latter phase (Srinivasan et al., 2007).

The two [Ni(C3H8N2O2)3]2+ complex cations in (I) are similar (Fig. 1) and are each built up around a slightly distorted fac-NiN3O3 octahedral core (Table 1). A five-membered –Ni—N—N—C—O– chelate ring arises for each of the six distinct N,O-bidentate ligands.

The crystal packing for (I) is consolidated by a large number of cation-to-anion N—H···O hydrogen bonds (Table 2), a number of which are bifurcated.

The crysatl structure of the [Ni(C3H8N2O2)3]2+ complex cation accompanied by chloride ions was described some time ago (Lanfredi et al., 1976).

For related structures, see: Lanfredi et al. (1976); Zhang et al. (2005); Srinivasan et al. (2007).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997), HKL SCALEPACK (Otwinowski & Minor 1997) and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the Ni2-containing complex cation in (I) shoiwng 50% displacement ellipsoids (arbitrary spheres for the H atoms). The C-bound H atoms are omitted for clarity.
Tris(ethyl carbazate-κ2N,O)nickel(II) dinitrate top
Crystal data top
[Ni(C3H8N2O2)3](NO3)2F(000) = 2064
Mr = 495.07Dx = 1.607 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6204 reflections
a = 14.0580 (8) Åθ = 4.3–28.0°
b = 8.6571 (3) ŵ = 1.02 mm1
c = 33.6639 (18) ÅT = 293 K
β = 92.652 (1)°Block, blue
V = 4092.6 (3) Å30.36 × 0.29 × 0.17 mm
Z = 8
Data collection top
Bruker SMART1000 CCD
diffractometer
11856 independent reflections
Radiation source: fine-focus sealed tube6057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 30.2°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1918
Tmin = 0.710, Tmax = 0.845k = 612
26981 measured reflectionsl = 4747
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
11856 reflections(Δ/σ)max = 0.001
547 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C3H8N2O2)3](NO3)2V = 4092.6 (3) Å3
Mr = 495.07Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.0580 (8) ŵ = 1.02 mm1
b = 8.6571 (3) ÅT = 293 K
c = 33.6639 (18) Å0.36 × 0.29 × 0.17 mm
β = 92.652 (1)°
Data collection top
Bruker SMART1000 CCD
diffractometer
11856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6057 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.845Rint = 0.042
26981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.94Δρmax = 0.42 e Å3
11856 reflectionsΔρmin = 0.36 e Å3
547 parameters
Special details top

Experimental. ? ?

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.81839 (3)0.75534 (4)0.154396 (10)0.04181 (10)
C10.9239 (2)1.0247 (4)0.15603 (9)0.0508 (7)
C21.0145 (4)1.1639 (6)0.10942 (15)0.1108 (17)
H2A1.08301.17740.11050.133*
H2B0.99931.07330.09340.133*
C30.9722 (6)1.2897 (8)0.09249 (18)0.159 (3)
H3A0.99891.30940.06730.239*
H3B0.98261.37750.10950.239*
H3C0.90501.27130.08860.239*
N10.82926 (19)0.9099 (3)0.20261 (7)0.0487 (6)
H1A0.77230.95290.20670.058*
H1B0.84920.85990.22490.058*
N20.8955 (2)1.0241 (3)0.19293 (7)0.0552 (7)
H20.91651.09040.21020.066*
O10.90039 (15)0.9274 (2)0.13099 (6)0.0508 (5)
O20.9818 (2)1.1409 (3)0.14981 (8)0.0813 (8)
C40.7404 (2)0.6828 (3)0.07980 (9)0.0511 (7)
C50.7692 (3)0.5000 (5)0.02964 (12)0.0849 (13)
H5A0.72870.43800.01180.102*
H5B0.79080.43530.05180.102*
C60.8520 (5)0.5551 (7)0.00840 (16)0.135 (2)
H6A0.88910.46830.00040.202*
H6B0.89050.62060.02560.202*
H6C0.83040.61240.01470.202*
N30.69577 (18)0.8548 (3)0.12911 (7)0.0484 (6)
H3D0.64590.83590.14430.058*
H3E0.70310.95770.12710.058*
N40.6800 (2)0.7887 (3)0.09118 (7)0.0574 (7)
H40.63240.81670.07590.069*
O30.81106 (15)0.6415 (2)0.09979 (6)0.0500 (5)
O40.7153 (2)0.6283 (3)0.04421 (6)0.0738 (7)
C70.9102 (3)0.5165 (4)0.19524 (10)0.0562 (8)
C81.0668 (4)0.4764 (7)0.2236 (2)0.129 (2)
H8A1.06720.58820.22540.155*
H8B1.09010.43410.24890.155*
C91.1191 (6)0.4303 (10)0.1952 (3)0.188 (4)
H9A1.18420.45800.20140.282*
H9B1.09770.47870.17070.282*
H9C1.11400.32020.19250.282*
N50.75100 (18)0.5674 (3)0.17952 (7)0.0500 (6)
H5C0.71050.60030.19760.060*
H5D0.71760.51440.16060.060*
N60.8211 (2)0.4720 (3)0.19776 (8)0.0572 (7)
H60.80650.38870.21000.069*
O50.93445 (15)0.6349 (2)0.17806 (6)0.0535 (5)
O60.9692 (2)0.4191 (3)0.21322 (10)0.0970 (10)
Ni20.36902 (3)0.22636 (4)0.106643 (10)0.04364 (11)
C110.3169 (2)0.0113 (4)0.16235 (9)0.0523 (8)
C120.1854 (3)0.0161 (6)0.20373 (15)0.1049 (17)
H12A0.19700.07780.21890.126*
H12B0.14190.00810.18140.126*
C130.1443 (4)0.1278 (6)0.22789 (18)0.130 (2)
H13A0.08870.08540.23930.196*
H13B0.18940.15780.24870.196*
H13C0.12660.21650.21210.196*
N110.45074 (17)0.0358 (3)0.12481 (7)0.0460 (6)
H11A0.46270.02410.10380.055*
H11B0.50660.06700.13620.055*
N120.39883 (19)0.0466 (3)0.15207 (8)0.0565 (7)
H120.41970.13260.16190.068*
O110.28303 (15)0.1324 (2)0.14873 (6)0.0532 (5)
O120.27538 (17)0.0737 (3)0.18905 (8)0.0753 (7)
C140.2889 (2)0.5054 (4)0.12510 (10)0.0546 (8)
C150.1668 (5)0.6550 (7)0.09490 (19)0.150 (3)
H15A0.20000.65350.07030.180*
H15B0.12140.57050.09400.180*
C160.1206 (6)0.7853 (9)0.0973 (2)0.181 (3)
H16A0.07670.79550.07470.272*
H16B0.16490.86970.09770.272*
H16C0.08610.78650.12130.272*
N130.42753 (18)0.3833 (3)0.14845 (7)0.0486 (6)
H13D0.44340.33480.17150.058*
H13E0.48000.42780.13930.058*
N140.35665 (19)0.4951 (3)0.15428 (8)0.0544 (6)
H140.35690.55270.17510.065*
O130.27628 (15)0.4088 (2)0.09905 (6)0.0567 (5)
O140.2364 (2)0.6297 (3)0.12846 (8)0.0846 (8)
C170.3493 (3)0.1147 (3)0.03006 (9)0.0521 (8)
C180.2543 (4)0.0744 (5)0.00350 (12)0.0909 (14)
H18A0.25620.12510.02220.109*
H18B0.26620.15190.02350.109*
C190.1596 (4)0.0083 (7)0.01148 (19)0.143 (2)
H19A0.11210.08590.00770.215*
H19B0.15430.02830.03840.215*
H19C0.15020.07620.00640.215*
N150.45223 (19)0.2944 (3)0.06042 (7)0.0507 (6)
H15C0.44410.39580.05540.061*
H15D0.51420.27740.06680.061*
N160.4231 (2)0.2065 (3)0.02672 (7)0.0591 (7)
H160.45240.21260.00490.071*
O150.30548 (16)0.0995 (2)0.06056 (6)0.0540 (5)
O160.32763 (19)0.0407 (3)0.00376 (6)0.0726 (7)
N210.6243 (2)0.1811 (3)0.20952 (7)0.0493 (6)
O210.70396 (17)0.1946 (3)0.22680 (7)0.0665 (6)
O220.60891 (19)0.0714 (3)0.18656 (7)0.0773 (7)
O230.5623 (2)0.2750 (4)0.21627 (8)0.0940 (9)
N310.4518 (2)0.7144 (3)0.05618 (8)0.0550 (6)
O310.49163 (16)0.8417 (2)0.05117 (6)0.0578 (5)
O320.4373 (2)0.6266 (3)0.02821 (8)0.0954 (9)
O330.4328 (3)0.6772 (4)0.08930 (9)0.1372 (15)
N410.6723 (2)0.2646 (3)0.11276 (8)0.0543 (6)
O410.63393 (18)0.1611 (3)0.09159 (7)0.0688 (6)
O420.63042 (17)0.3890 (3)0.11677 (8)0.0743 (7)
O430.7498 (2)0.2417 (3)0.12965 (9)0.0895 (8)
N510.5319 (2)0.6816 (3)0.20948 (8)0.0537 (6)
O510.53746 (17)0.7060 (3)0.17313 (7)0.0660 (6)
O520.60552 (17)0.6768 (3)0.23136 (6)0.0670 (6)
O530.45284 (19)0.6607 (4)0.22271 (9)0.0893 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0468 (2)0.0397 (2)0.03881 (18)0.00573 (16)0.00038 (14)0.00073 (15)
C10.056 (2)0.0479 (18)0.0477 (17)0.0015 (14)0.0029 (14)0.0069 (14)
C20.157 (5)0.078 (3)0.100 (3)0.026 (3)0.036 (3)0.015 (3)
C30.215 (8)0.155 (6)0.108 (4)0.041 (5)0.005 (5)0.041 (4)
N10.0639 (17)0.0460 (14)0.0365 (12)0.0081 (12)0.0040 (11)0.0040 (10)
N20.0730 (19)0.0509 (16)0.0413 (14)0.0059 (13)0.0011 (13)0.0037 (11)
O10.0630 (14)0.0492 (12)0.0404 (11)0.0011 (10)0.0058 (10)0.0006 (9)
O20.104 (2)0.0658 (17)0.0755 (17)0.0298 (15)0.0178 (15)0.0017 (13)
C40.068 (2)0.0428 (17)0.0418 (16)0.0023 (15)0.0059 (15)0.0009 (13)
C50.121 (4)0.062 (3)0.070 (2)0.016 (2)0.014 (2)0.0215 (19)
C60.164 (6)0.136 (5)0.108 (4)0.035 (4)0.046 (4)0.005 (4)
N30.0560 (16)0.0452 (14)0.0440 (13)0.0098 (11)0.0010 (11)0.0010 (11)
N40.0665 (18)0.0561 (17)0.0478 (14)0.0159 (13)0.0152 (12)0.0044 (12)
O30.0578 (13)0.0470 (12)0.0448 (11)0.0087 (10)0.0013 (10)0.0052 (9)
O40.103 (2)0.0658 (16)0.0503 (13)0.0144 (14)0.0208 (13)0.0160 (11)
C70.063 (2)0.0385 (17)0.066 (2)0.0086 (15)0.0067 (17)0.0040 (15)
C80.088 (4)0.116 (4)0.184 (6)0.015 (3)0.006 (4)0.074 (4)
C90.149 (7)0.209 (8)0.211 (8)0.043 (6)0.074 (6)0.073 (7)
N50.0499 (15)0.0462 (14)0.0543 (14)0.0042 (11)0.0049 (12)0.0054 (11)
N60.0617 (18)0.0450 (15)0.0650 (17)0.0019 (13)0.0032 (14)0.0135 (12)
O50.0494 (13)0.0451 (12)0.0654 (13)0.0044 (9)0.0045 (10)0.0090 (10)
O60.0696 (18)0.0669 (17)0.152 (3)0.0096 (14)0.0220 (18)0.0428 (17)
Ni20.0471 (2)0.0433 (2)0.04003 (19)0.00219 (16)0.00265 (15)0.00044 (15)
C110.052 (2)0.056 (2)0.0480 (17)0.0015 (15)0.0010 (15)0.0084 (14)
C120.065 (3)0.130 (4)0.122 (4)0.016 (3)0.035 (3)0.055 (3)
C130.122 (4)0.106 (4)0.170 (5)0.002 (3)0.074 (4)0.029 (4)
N110.0466 (14)0.0475 (14)0.0440 (13)0.0017 (11)0.0023 (11)0.0042 (11)
N120.0534 (17)0.0475 (15)0.0687 (17)0.0072 (12)0.0046 (13)0.0159 (13)
O110.0489 (12)0.0590 (14)0.0520 (12)0.0097 (10)0.0053 (10)0.0113 (10)
O120.0631 (16)0.0813 (17)0.0829 (17)0.0032 (13)0.0171 (13)0.0314 (14)
C140.058 (2)0.0467 (19)0.0591 (19)0.0036 (15)0.0003 (16)0.0006 (15)
C150.152 (5)0.112 (4)0.176 (6)0.082 (4)0.080 (5)0.036 (4)
C160.210 (8)0.164 (7)0.164 (7)0.070 (6)0.052 (6)0.009 (5)
N130.0511 (15)0.0504 (15)0.0438 (13)0.0014 (11)0.0036 (11)0.0037 (11)
N140.0571 (17)0.0492 (16)0.0566 (15)0.0047 (12)0.0006 (13)0.0095 (12)
O130.0570 (14)0.0523 (13)0.0592 (13)0.0072 (10)0.0150 (11)0.0006 (10)
O140.0826 (19)0.0653 (17)0.104 (2)0.0302 (14)0.0172 (16)0.0148 (14)
C170.071 (2)0.0429 (17)0.0410 (16)0.0004 (15)0.0097 (15)0.0034 (13)
C180.137 (4)0.063 (3)0.070 (3)0.035 (3)0.013 (3)0.010 (2)
C190.124 (5)0.134 (5)0.167 (6)0.056 (4)0.046 (4)0.026 (4)
N150.0592 (16)0.0478 (15)0.0447 (13)0.0055 (12)0.0034 (11)0.0015 (11)
N160.081 (2)0.0618 (18)0.0346 (12)0.0138 (15)0.0013 (12)0.0011 (11)
O150.0633 (14)0.0526 (13)0.0456 (12)0.0088 (10)0.0029 (10)0.0015 (9)
O160.107 (2)0.0668 (16)0.0431 (12)0.0217 (14)0.0077 (12)0.0066 (11)
N210.0588 (17)0.0517 (16)0.0372 (13)0.0036 (13)0.0005 (12)0.0029 (11)
O210.0641 (15)0.0782 (17)0.0555 (13)0.0017 (12)0.0166 (11)0.0032 (11)
O220.0901 (19)0.0786 (18)0.0626 (15)0.0167 (14)0.0026 (13)0.0278 (13)
O230.091 (2)0.104 (2)0.0855 (19)0.0506 (18)0.0087 (15)0.0140 (16)
N310.0649 (18)0.0522 (17)0.0476 (15)0.0040 (13)0.0011 (13)0.0021 (13)
O310.0696 (15)0.0432 (12)0.0606 (13)0.0031 (11)0.0027 (11)0.0028 (10)
O320.160 (3)0.0598 (17)0.0659 (16)0.0157 (17)0.0025 (17)0.0126 (13)
O330.228 (4)0.115 (3)0.072 (2)0.074 (3)0.053 (2)0.0056 (18)
N410.0540 (17)0.0521 (17)0.0572 (15)0.0012 (14)0.0091 (13)0.0035 (13)
O410.0794 (17)0.0554 (15)0.0709 (15)0.0011 (12)0.0043 (13)0.0107 (12)
O420.0631 (16)0.0480 (14)0.111 (2)0.0075 (12)0.0006 (14)0.0144 (13)
O430.0623 (17)0.091 (2)0.113 (2)0.0121 (14)0.0181 (16)0.0019 (16)
N510.0582 (18)0.0486 (16)0.0544 (16)0.0097 (12)0.0037 (14)0.0034 (12)
O510.0750 (16)0.0711 (16)0.0505 (13)0.0006 (12)0.0125 (11)0.0134 (11)
O520.0616 (15)0.0911 (18)0.0472 (12)0.0203 (13)0.0099 (11)0.0027 (11)
O530.0603 (17)0.112 (2)0.098 (2)0.0084 (15)0.0240 (15)0.0276 (17)
Geometric parameters (Å, º) top
Ni1—O12.062 (2)C11—O111.231 (4)
Ni1—O52.065 (2)C11—N121.317 (4)
Ni1—N32.074 (2)C11—O121.319 (4)
Ni1—N52.082 (2)C12—C131.405 (6)
Ni1—O32.0843 (19)C12—O121.466 (5)
Ni1—N12.103 (2)C12—H12A0.9700
C1—O11.226 (4)C12—H12B0.9700
C1—O21.317 (4)C13—H13A0.9600
C1—N21.322 (4)C13—H13B0.9600
C2—C31.354 (7)C13—H13C0.9600
C2—O21.469 (5)N11—N121.395 (3)
C2—H2A0.9700N11—H11A0.9000
C2—H2B0.9700N11—H11B0.9000
C3—H3A0.9600N12—H120.8600
C3—H3B0.9600C14—O131.218 (4)
C3—H3C0.9600C14—O141.313 (4)
N1—N21.406 (3)C14—N141.339 (4)
N1—H1A0.9000C15—C161.307 (7)
N1—H1B0.9000C15—O141.476 (5)
N2—H20.8600C15—H15A0.9700
C4—O31.227 (3)C15—H15B0.9700
C4—N41.318 (4)C16—H16A0.9600
C4—O41.321 (3)C16—H16B0.9600
C5—O41.443 (4)C16—H16C0.9600
C5—C61.474 (7)N13—N141.409 (3)
C5—H5A0.9700N13—H13D0.9000
C5—H5B0.9700N13—H13E0.9000
C6—H6A0.9600N14—H140.8600
C6—H6B0.9600C17—O151.228 (4)
C6—H6C0.9600C17—N161.316 (4)
N3—N41.407 (3)C17—O161.329 (4)
N3—H3D0.9000C18—O161.434 (5)
N3—H3E0.9000C18—C191.463 (7)
N4—H40.8600C18—H18A0.9700
C7—O51.233 (4)C18—H18B0.9700
C7—O61.311 (4)C19—H19A0.9600
C7—N61.316 (4)C19—H19B0.9600
C8—C91.294 (8)C19—H19C0.9600
C8—O61.485 (6)N15—N161.411 (3)
C8—H8A0.9700N15—H15C0.9000
C8—H8B0.9700N15—H15D0.9000
C9—H9A0.9600N16—H160.8600
C9—H9B0.9600N21—O231.222 (3)
C9—H9C0.9600N21—O221.237 (3)
N5—N61.405 (3)N21—O211.243 (3)
N5—H5C0.9000N31—O331.202 (3)
N5—H5D0.9000N31—O321.220 (3)
N6—H60.8600N31—O311.251 (3)
Ni2—O132.056 (2)N41—O431.222 (3)
Ni2—O152.069 (2)N41—O421.237 (3)
Ni2—O112.071 (2)N41—O411.251 (3)
Ni2—N152.075 (2)N51—O531.230 (3)
Ni2—N112.086 (2)N51—O521.243 (3)
Ni2—N132.097 (2)N51—O511.248 (3)
O1—Ni1—O593.81 (8)O13—Ni2—N11168.92 (9)
O1—Ni1—N390.69 (9)O15—Ni2—N1190.74 (9)
O5—Ni1—N3174.19 (9)O11—Ni2—N1179.61 (9)
O1—Ni1—N5173.06 (9)N15—Ni2—N1197.04 (10)
O5—Ni1—N579.34 (9)O13—Ni2—N1379.20 (9)
N3—Ni1—N596.08 (10)O15—Ni2—N13171.66 (9)
O1—Ni1—O390.59 (8)O11—Ni2—N1391.06 (9)
O5—Ni1—O396.16 (8)N15—Ni2—N1395.86 (10)
N3—Ni1—O380.10 (9)N11—Ni2—N1397.00 (9)
N5—Ni1—O389.08 (9)O11—C11—N12123.6 (3)
O1—Ni1—N179.25 (9)O11—C11—O12123.6 (3)
O5—Ni1—N189.74 (9)N12—C11—O12112.8 (3)
N3—Ni1—N194.71 (10)C13—C12—O12110.2 (4)
N5—Ni1—N1101.64 (10)C13—C12—H12A109.6
O3—Ni1—N1168.59 (8)O12—C12—H12A109.6
O1—C1—O2124.3 (3)C13—C12—H12B109.6
O1—C1—N2124.0 (3)O12—C12—H12B109.6
O2—C1—N2111.6 (3)H12A—C12—H12B108.1
C3—C2—O2110.4 (5)C12—C13—H13A109.5
C3—C2—H2A109.6C12—C13—H13B109.5
O2—C2—H2A109.6H13A—C13—H13B109.5
C3—C2—H2B109.6C12—C13—H13C109.5
O2—C2—H2B109.6H13A—C13—H13C109.5
H2A—C2—H2B108.1H13B—C13—H13C109.5
C2—C3—H3A109.5N12—N11—Ni2107.44 (17)
C2—C3—H3B109.5N12—N11—H11A110.2
H3A—C3—H3B109.5Ni2—N11—H11A110.2
C2—C3—H3C109.5N12—N11—H11B110.2
H3A—C3—H3C109.5Ni2—N11—H11B110.2
H3B—C3—H3C109.5H11A—N11—H11B108.5
N2—N1—Ni1107.07 (16)C11—N12—N11118.0 (2)
N2—N1—H1A110.3C11—N12—H12121.0
Ni1—N1—H1A110.3N11—N12—H12121.0
N2—N1—H1B110.3C11—O11—Ni2111.2 (2)
Ni1—N1—H1B110.3C11—O12—C12117.1 (3)
H1A—N1—H1B108.6O13—C14—O14124.1 (3)
C1—N2—N1116.9 (2)O13—C14—N14123.8 (3)
C1—N2—H2121.5O14—C14—N14112.0 (3)
N1—N2—H2121.5C16—C15—O14113.3 (5)
C1—O1—Ni1111.78 (19)C16—C15—H15A108.9
C1—O2—C2118.2 (3)O14—C15—H15A108.9
O3—C4—N4124.0 (3)C16—C15—H15B108.9
O3—C4—O4124.6 (3)O14—C15—H15B108.9
N4—C4—O4111.4 (3)H15A—C15—H15B107.7
O4—C5—C6110.8 (4)C15—C16—H16A109.5
O4—C5—H5A109.5C15—C16—H16B109.5
C6—C5—H5A109.5H16A—C16—H16B109.5
O4—C5—H5B109.5C15—C16—H16C109.5
C6—C5—H5B109.5H16A—C16—H16C109.5
H5A—C5—H5B108.1H16B—C16—H16C109.5
C5—C6—H6A109.5N14—N13—Ni2106.29 (17)
C5—C6—H6B109.5N14—N13—H13D110.5
H6A—C6—H6B109.5Ni2—N13—H13D110.5
C5—C6—H6C109.5N14—N13—H13E110.5
H6A—C6—H6C109.5Ni2—N13—H13E110.5
H6B—C6—H6C109.5H13D—N13—H13E108.7
N4—N3—Ni1107.26 (17)C14—N14—N13115.3 (2)
N4—N3—H3D110.3C14—N14—H14122.4
Ni1—N3—H3D110.3N13—N14—H14122.4
N4—N3—H3E110.3C14—O13—Ni2111.5 (2)
Ni1—N3—H3E110.3C14—O14—C15114.3 (3)
H3D—N3—H3E108.5O15—C17—N16124.3 (3)
C4—N4—N3118.0 (2)O15—C17—O16124.1 (3)
C4—N4—H4121.0N16—C17—O16111.6 (3)
N3—N4—H4121.0O16—C18—C19112.0 (4)
C4—O3—Ni1110.56 (19)O16—C18—H18A109.2
C4—O4—C5117.5 (3)C19—C18—H18A109.2
O5—C7—O6124.6 (3)O16—C18—H18B109.2
O5—C7—N6123.9 (3)C19—C18—H18B109.2
O6—C7—N6111.5 (3)H18A—C18—H18B107.9
C9—C8—O6105.9 (7)C18—C19—H19A109.5
C9—C8—H8A110.5C18—C19—H19B109.5
O6—C8—H8A110.5H19A—C19—H19B109.5
C9—C8—H8B110.5C18—C19—H19C109.5
O6—C8—H8B110.5H19A—C19—H19C109.5
H8A—C8—H8B108.7H19B—C19—H19C109.5
C8—C9—H9A109.5N16—N15—Ni2107.28 (18)
C8—C9—H9B109.5N16—N15—H15C110.3
H9A—C9—H9B109.5Ni2—N15—H15C110.3
C8—C9—H9C109.5N16—N15—H15D110.3
H9A—C9—H9C109.5Ni2—N15—H15D110.3
H9B—C9—H9C109.5H15C—N15—H15D108.5
N6—N5—Ni1108.28 (18)C17—N16—N15117.2 (2)
N6—N5—H5C110.0C17—N16—H16121.4
Ni1—N5—H5C110.0N15—N16—H16121.4
N6—N5—H5D110.0C17—O15—Ni2110.7 (2)
Ni1—N5—H5D110.0C17—O16—C18117.8 (3)
H5C—N5—H5D108.4O23—N21—O22121.4 (3)
C7—N6—N5116.8 (3)O23—N21—O21119.1 (3)
C7—N6—H6121.6O22—N21—O21119.5 (3)
N5—N6—H6121.6O33—N31—O32120.8 (3)
C7—O5—Ni1111.7 (2)O33—N31—O31118.8 (3)
C7—O6—C8116.9 (3)O32—N31—O31120.3 (3)
O13—Ni2—O1593.74 (9)O43—N41—O42120.6 (3)
O13—Ni2—O1190.00 (9)O43—N41—O41120.0 (3)
O15—Ni2—O1193.39 (9)O42—N41—O41119.4 (3)
O13—Ni2—N1593.71 (10)O53—N51—O52121.5 (3)
O15—Ni2—N1580.05 (9)O53—N51—O51118.6 (3)
O11—Ni2—N15172.65 (9)O52—N51—O51119.9 (3)
O1—Ni1—N1—N28.35 (17)O13—Ni2—N11—N1224.1 (6)
O5—Ni1—N1—N285.58 (18)O15—Ni2—N11—N1289.82 (18)
N3—Ni1—N1—N298.16 (18)O11—Ni2—N11—N123.49 (18)
N5—Ni1—N1—N2164.63 (17)N15—Ni2—N11—N12169.89 (18)
O3—Ni1—N1—N235.8 (6)N13—Ni2—N11—N1293.28 (19)
O1—C1—N2—N14.5 (5)O11—C11—N12—N111.3 (5)
O2—C1—N2—N1176.8 (3)O12—C11—N12—N11178.2 (3)
Ni1—N1—N2—C19.5 (3)Ni2—N11—N12—C113.7 (3)
O2—C1—O1—Ni1175.0 (3)N12—C11—O11—Ni22.1 (4)
N2—C1—O1—Ni13.6 (4)O12—C11—O11—Ni2178.6 (3)
O5—Ni1—O1—C182.2 (2)O13—Ni2—O11—C11179.2 (2)
N3—Ni1—O1—C1101.5 (2)O15—Ni2—O11—C1187.0 (2)
O3—Ni1—O1—C1178.4 (2)N11—Ni2—O11—C113.1 (2)
N1—Ni1—O1—C16.8 (2)N13—Ni2—O11—C11100.0 (2)
O1—C1—O2—C25.4 (5)O11—C11—O12—C121.8 (5)
N2—C1—O2—C2175.9 (4)N12—C11—O12—C12177.6 (3)
C3—C2—O2—C1107.9 (5)C13—C12—O12—C11172.5 (4)
O1—Ni1—N3—N490.63 (19)O13—Ni2—N13—N1416.10 (17)
N5—Ni1—N3—N487.85 (19)O11—Ni2—N13—N1473.70 (18)
O3—Ni1—N3—N40.15 (18)N15—Ni2—N13—N14108.78 (18)
N1—Ni1—N3—N4169.90 (19)N11—Ni2—N13—N14153.36 (17)
O3—C4—N4—N32.2 (5)O13—C14—N14—N1313.9 (5)
O4—C4—N4—N3178.2 (3)O14—C14—N14—N13167.6 (3)
Ni1—N3—N4—C40.9 (3)Ni2—N13—N14—C1420.5 (3)
N4—C4—O3—Ni12.2 (4)O14—C14—O13—Ni2176.5 (3)
O4—C4—O3—Ni1178.3 (3)N14—C14—O13—Ni21.8 (4)
O1—Ni1—O3—C491.8 (2)O15—Ni2—O13—C14173.9 (2)
O5—Ni1—O3—C4174.3 (2)O11—Ni2—O13—C1480.5 (2)
N3—Ni1—O3—C41.2 (2)N15—Ni2—O13—C14105.8 (2)
N5—Ni1—O3—C495.2 (2)N11—Ni2—O13—C1460.3 (6)
N1—Ni1—O3—C464.9 (5)N13—Ni2—O13—C1410.5 (2)
O3—C4—O4—C56.8 (5)O13—C14—O14—C157.3 (6)
N4—C4—O4—C5173.7 (3)N14—C14—O14—C15174.2 (4)
C6—C5—O4—C488.4 (5)C16—C15—O14—C14174.9 (6)
O5—Ni1—N5—N60.67 (18)O13—Ni2—N15—N1698.25 (19)
N3—Ni1—N5—N6177.06 (18)O15—Ni2—N15—N165.10 (18)
O3—Ni1—N5—N697.12 (18)N11—Ni2—N15—N1684.42 (19)
N1—Ni1—N5—N686.84 (19)N13—Ni2—N15—N16177.75 (19)
O5—C7—N6—N50.0 (5)O15—C17—N16—N151.0 (5)
O6—C7—N6—N5180.0 (3)O16—C17—N16—N15178.7 (2)
Ni1—N5—N6—C70.6 (3)Ni2—N15—N16—C175.1 (3)
O6—C7—O5—Ni1179.4 (3)N16—C17—O15—Ni23.8 (4)
N6—C7—O5—Ni10.6 (4)O16—C17—O15—Ni2176.6 (2)
O1—Ni1—O5—C7179.6 (2)O13—Ni2—O15—C1798.0 (2)
N5—Ni1—O5—C70.7 (2)O11—Ni2—O15—C17171.7 (2)
O3—Ni1—O5—C788.6 (2)N15—Ni2—O15—C174.9 (2)
N1—Ni1—O5—C7101.2 (2)N11—Ni2—O15—C1792.1 (2)
O5—C7—O6—C818.3 (6)O15—C17—O16—C186.1 (5)
N6—C7—O6—C8161.7 (4)N16—C17—O16—C18174.2 (3)
C9—C8—O6—C796.9 (6)C19—C18—O16—C1787.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21i0.902.413.158 (3)140
N1—H1A···O22i0.902.583.419 (4)156
N1—H1B···O21ii0.902.323.073 (3)142
N1—H1B···O23ii0.902.403.280 (4)165
N2—H2···O52ii0.862.142.872 (3)143
N3—H3D···O510.902.163.019 (4)159
N3—H3E···O41i0.902.323.047 (3)138
N3—H3E···O43i0.902.553.435 (4)170
N4—H4···O310.862.122.951 (3)162
N5—H5C···O520.902.012.908 (3)172
N5—H5D···O420.902.173.064 (4)177
N6—H6···O210.862.303.096 (4)154
N11—H11A···O31iii0.902.173.071 (3)177
N11—H11B···O220.902.172.989 (3)151
N12—H12···O51iii0.862.192.960 (3)150
N13—H13D···O230.902.263.046 (4)146
N13—H13E···O420.902.303.091 (4)146
N14—H14···O530.862.252.984 (4)143
N15—H15C···O320.902.203.077 (4)165
N15—H15D···O410.902.102.951 (4)157
N16—H16···O31iv0.862.132.962 (3)163
N16—H16···O32iv0.862.403.113 (4)141
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H8N2O2)3](NO3)2
Mr495.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.0580 (8), 8.6571 (3), 33.6639 (18)
β (°) 92.652 (1)
V3)4092.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.36 × 0.29 × 0.17
Data collection
DiffractometerBruker SMART1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.710, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
26981, 11856, 6057
Rint0.042
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.125, 0.94
No. of reflections11856
No. of parameters547
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.36

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor 1997), HKL SCALEPACK (Otwinowski & Minor 1997) and SORTAV (Blessing 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97 Sheldrick, 1997).

Selected bond lengths (Å) top
Ni1—O12.062 (2)Ni2—O132.056 (2)
Ni1—O52.065 (2)Ni2—O152.069 (2)
Ni1—N32.074 (2)Ni2—O112.071 (2)
Ni1—N52.082 (2)Ni2—N152.075 (2)
Ni1—O32.0843 (19)Ni2—N112.086 (2)
Ni1—N12.103 (2)Ni2—N132.097 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21i0.902.413.158 (3)140
N1—H1A···O22i0.902.583.419 (4)156
N1—H1B···O21ii0.902.323.073 (3)142
N1—H1B···O23ii0.902.403.280 (4)165
N2—H2···O52ii0.862.142.872 (3)143
N3—H3D···O510.902.163.019 (4)159
N3—H3E···O41i0.902.323.047 (3)138
N3—H3E···O43i0.902.553.435 (4)170
N4—H4···O310.862.122.951 (3)162
N5—H5C···O520.902.012.908 (3)172
N5—H5D···O420.902.173.064 (4)177
N6—H6···O210.862.303.096 (4)154
N11—H11A···O31iii0.902.173.071 (3)177
N11—H11B···O220.902.172.989 (3)151
N12—H12···O51iii0.862.192.960 (3)150
N13—H13D···O230.902.263.046 (4)146
N13—H13E···O420.902.303.091 (4)146
N14—H14···O530.862.252.984 (4)143
N15—H15C···O320.902.203.077 (4)165
N15—H15D···O410.902.102.951 (4)157
N16—H16···O31iv0.862.132.962 (3)163
N16—H16···O32iv0.862.403.113 (4)141
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1, z.
 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLanfredi, A. M. M., Tiripicchio, A. & Tiripicchio Camellini, M. (1976). Cryst. Struct. Commun. 5, 827–831.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSrinivasan, K., Govindarajan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, m3028–3029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, T.-L., Song, J.-C., Zhang, J.-G., Ma, G.-X. & Yu, K.-B. (2005). Z. Naturforsch. Teil B, 60, 505–510.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds