organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-[(S)-3-iso­butyl-2-oxooxetan-3-yl]carbamate

aInstitute of General & Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland, and bInstitute of Organic Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland
*Correspondence e-mail: lsieron@p.lodz.pl

(Received 15 November 2007; accepted 27 November 2007; online 6 December 2007)

The structure of the title compound, C12H21NO4, contains two crystallographically independent mol­ecules in the asymmetric unit. Mol­ecules are linked into pseudosymmetric R22(8) dimers through two N—H⋯O hydrogen bonds. The dimers are connected by weak C—H⋯O inter­actions, resulting in a three-dimensional network.

Related literature

For related literature, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Olma (2004[Olma, A. (2004). Pol. J. Chem. 78, 8312-8315.]); Olma & Kudaj (2005[Olma, A. & Kudaj, A. (2005). Tetrahedron Lett. 46, 6239-6241.]); Pansare et al. (1991[Pansare, S. V., Hunter, G., Arnold, L. D. & Vaderas, C. J. (1991). Org. Synth. 70, 1-9.]); Smith & Goodman (2003[Smith, N. D. & Goodman, M. (2003). Org. Lett. 5, 1035-1037.]); Yang & Romo (1999[Yang, H. W. & Romo, D. (1999). Tetrahedron, 55, 6403-6434.]).

[Scheme 1]

Experimental

Crystal data
  • C12H21NO4

  • Mr = 243.30

  • Triclinic, P 1

  • a = 6.1642 (7) Å

  • b = 11.2018 (16) Å

  • c = 11.6915 (14) Å

  • α = 115.936 (14)°

  • β = 100.621 (10)°

  • γ = 95.362 (11)°

  • V = 699.58 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • KUMA KM4CCD diffractometer

  • Absorption correction: none

  • 7367 measured reflections

  • 2451 independent reflections

  • 1367 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 0.96

  • 2451 reflections

  • 317 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O29 0.86 2.12 2.937 (6) 158
N28—H28⋯O9 0.86 2.06 2.890 (6) 162
C12—H12C⋯O9 0.96 2.55 3.049 (9) 112
C13—H13A⋯O9 0.96 2.36 2.941 (11) 118
C27—H27C⋯O22 0.96 2.53 3.209 (9) 127
C32—H32C⋯O29 0.96 2.44 3.018 (9) 119

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The discovery of a significant number of natural 2-oxetanones with very interesting biological activities has attracted much attention towards the preparation and its use as a synthetic intermediate (Yang & Romo, 1999). N-Protected-α-amino-β-lactones are useful intermediates for synthesis of β-substituted alanines via ring opening by various nucleophiles (Pansare et al., 1991). Reactions of N-Boc-α-alkylserine β-lactones with soft sulfur nucleophiles (Olma, 2004) or with sodium azide (Olma & Kudaj, 2005) yield potentially interesting building blocks for medicinal chemistry.

As part of out studies in this area, we report here the crystal structure of the title compound, (I). In the crystal structure of (I) the asymmetric unit is composed of two molecules. Pairs of these molecules are connected into pesudocentrosymmetric dimers via N–H···N hydrogen bonds, forming eight-membered rings described by the R22(8) graph-set motif (Etter et al., 1990) (Fig. 1). The same motif with comparable bond lengths is also observed in the structure of α-methyl analog (Smith & Goodman, 2003). The molecules in (I) differ mainly in the orientation of isobutyl substituents (Fig. 2), as indicated by torsion angles of -172.2 (6) and 85.9 (7)° for C2—C3—C5—C6 and C22—C23—C25—C26, respectively.

Related literature top

For related literature, see: Etter et al. (1990); Olma (2004); Olma & Kudaj (2005); Pansare et al. (1991); Smith & Goodman (2003); Yang & Romo (1999).

Experimental top

The title compound was synthesized by treating complex of triphenylphosphine (525 mg, 2 mmol) and diethyldiazadicarboxylate in dry tetrahydrofurane with solution of Boc-(S)-iso-butylserine (N-Boc-(S)-α-hydroxymethylleucine) in dry THF (698 mg, 2 mmol) at 0°C. After stirring 1 hr at 0°C and then 16 hrs at room temperature, THF was removed in vacuo and the crude product was purified by flash chromatography on silica gel 60 (230–400 mesh), using ethyl acetate-n-hexane (1:1) as eluent. The N-Boc-(S)-α-benzylserine lactone was obtained in 95% yield. White crystals of (I) suitable for X-ray investigation were grown from chloroform.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned consistent with the starting material. All H atoms were included in calculated positions and treated as riding, C–H = 0.96–0.98 and N–H = 0.86 Å with Uiso(H) = 1.2 or 1.5Ueq(C) and 1.2Ueq(N).

Structure description top

The discovery of a significant number of natural 2-oxetanones with very interesting biological activities has attracted much attention towards the preparation and its use as a synthetic intermediate (Yang & Romo, 1999). N-Protected-α-amino-β-lactones are useful intermediates for synthesis of β-substituted alanines via ring opening by various nucleophiles (Pansare et al., 1991). Reactions of N-Boc-α-alkylserine β-lactones with soft sulfur nucleophiles (Olma, 2004) or with sodium azide (Olma & Kudaj, 2005) yield potentially interesting building blocks for medicinal chemistry.

As part of out studies in this area, we report here the crystal structure of the title compound, (I). In the crystal structure of (I) the asymmetric unit is composed of two molecules. Pairs of these molecules are connected into pesudocentrosymmetric dimers via N–H···N hydrogen bonds, forming eight-membered rings described by the R22(8) graph-set motif (Etter et al., 1990) (Fig. 1). The same motif with comparable bond lengths is also observed in the structure of α-methyl analog (Smith & Goodman, 2003). The molecules in (I) differ mainly in the orientation of isobutyl substituents (Fig. 2), as indicated by torsion angles of -172.2 (6) and 85.9 (7)° for C2—C3—C5—C6 and C22—C23—C25—C26, respectively.

For related literature, see: Etter et al. (1990); Olma (2004); Olma & Kudaj (2005); Pansare et al. (1991); Smith & Goodman (2003); Yang & Romo (1999).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dotted lines indicate hydrogen bonds.
[Figure 2] Fig. 2. A least-squares overlay of the two independent molecules of (I), fitting on the central eight atoms. H atoms have been omitted.
tert-Butyl N-[(S)-3-isobutyl-2-oxooxetan-3-yl]carbamate top
Crystal data top
C12H21NO4Z = 2
Mr = 243.30F(000) = 264
Triclinic, P1Dx = 1.155 Mg m3
Hall symbol: P 1Melting point = 382–383 K
a = 6.1642 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2018 (16) ÅCell parameters from 4065 reflections
c = 11.6915 (14) Åθ = 3.4–26.0°
α = 115.936 (14)°µ = 0.09 mm1
β = 100.621 (10)°T = 293 K
γ = 95.362 (11)°Rectangular plate, colourless
V = 699.58 (19) Å30.25 × 0.20 × 0.10 mm
Data collection top
KUMA KM4CCD
diffractometer
1367 reflections with I > 2σ(I)
Radiation source: CX-Mo12x0.4-S Seifert Mo tubeRint = 0.032
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
Detector resolution: 8.2356 pixels mm-1h = 77
ω scansk = 1312
7367 measured reflectionsl = 1313
2451 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.118H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max < 0.001
317 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = 0.12 e Å3
Crystal data top
C12H21NO4γ = 95.362 (11)°
Mr = 243.30V = 699.58 (19) Å3
Triclinic, P1Z = 2
a = 6.1642 (7) ÅMo Kα radiation
b = 11.2018 (16) ŵ = 0.09 mm1
c = 11.6915 (14) ÅT = 293 K
α = 115.936 (14)°0.25 × 0.20 × 0.10 mm
β = 100.621 (10)°
Data collection top
KUMA KM4CCD
diffractometer
1367 reflections with I > 2σ(I)
7367 measured reflectionsRint = 0.032
2451 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.96Δρmax = 0.12 e Å3
2451 reflectionsΔρmin = 0.12 e Å3
317 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4399 (10)0.1757 (5)0.4830 (5)0.109 (2)
O21.1035 (11)0.2386 (5)0.4645 (6)0.142 (3)
O91.1871 (6)0.1402 (4)0.0465 (4)0.0732 (16)
O101.4040 (5)0.2338 (4)0.2538 (3)0.0632 (12)
N81.1595 (7)0.0423 (5)0.1767 (4)0.0608 (17)
C21.2281 (16)0.1651 (7)0.4225 (7)0.094 (4)
C31.2177 (8)0.0381 (6)0.3000 (5)0.056 (2)
C41.4709 (10)0.0600 (7)0.3684 (7)0.080 (3)
C51.0644 (10)0.0818 (6)0.2932 (6)0.065 (2)
C61.0612 (10)0.2220 (6)0.1830 (6)0.071 (2)
C71.2908 (11)0.2562 (7)0.1790 (6)0.084 (3)
C80.9089 (13)0.3259 (7)0.1990 (9)0.116 (4)
C91.2485 (9)0.1394 (6)0.1522 (6)0.057 (2)
C111.5447 (9)0.3418 (6)0.2464 (6)0.0630 (19)
C121.6836 (12)0.2758 (8)0.1487 (7)0.108 (3)
C131.4015 (13)0.4276 (8)0.2093 (10)0.129 (4)
C141.6964 (11)0.4200 (7)0.3820 (7)0.093 (3)
O210.5614 (6)0.1756 (4)0.4839 (4)0.0800 (16)
O220.3389 (6)0.0513 (4)0.3675 (4)0.0866 (16)
O290.7503 (6)0.1196 (4)0.0326 (4)0.0771 (17)
O300.5507 (5)0.2205 (4)0.2453 (3)0.0622 (16)
N280.8048 (6)0.0325 (4)0.1694 (4)0.0567 (17)
C220.5175 (10)0.0792 (7)0.3759 (6)0.066 (3)
C230.7590 (8)0.0328 (6)0.2933 (6)0.052 (2)
C240.7917 (9)0.1606 (6)0.4128 (6)0.071 (2)
C250.8812 (9)0.0973 (5)0.2828 (6)0.058 (2)
C260.8569 (10)0.2326 (6)0.1764 (6)0.067 (2)
C270.6166 (11)0.2527 (7)0.1836 (7)0.091 (3)
C281.0010 (13)0.3476 (7)0.1818 (8)0.104 (3)
C290.7063 (9)0.1247 (6)0.1397 (6)0.055 (2)
C310.3953 (9)0.3211 (6)0.2350 (6)0.063 (2)
C320.2568 (11)0.2483 (9)0.1438 (8)0.107 (3)
C330.5216 (11)0.4104 (8)0.1981 (9)0.108 (3)
C340.2499 (10)0.3999 (7)0.3762 (6)0.091 (3)
H4A1.508800.013800.385400.0960*
H4B1.574100.083800.324900.0960*
H5A1.109600.083500.376400.0780*
H5B0.911900.065600.284000.0780*
H60.993700.224500.099100.0850*
H7A1.361200.253100.260800.1260*
H7B1.381400.191700.164900.1260*
H7C1.276500.345400.108600.1260*
H81.059000.023200.113600.0730*
H8A0.904900.415000.131100.1740*
H8B0.759600.307100.192500.1740*
H8C0.966300.321000.283300.1740*
H12A1.743900.206900.164600.1610*
H12B1.804900.343000.159200.1610*
H12C1.589600.235800.060800.1610*
H13A1.309200.374300.121300.1930*
H13B1.496900.503300.214100.1930*
H13C1.307200.459800.268800.1930*
H14A1.609600.433500.445500.1400*
H14B1.766700.506200.394100.1400*
H14C1.809900.370300.393600.1400*
H24A0.905300.141100.453100.0860*
H24B0.816100.235100.394000.0860*
H25A0.831200.096500.366900.0700*
H25B1.040400.094700.270000.0700*
H260.917200.235900.091200.0800*
H27A0.554900.253700.264700.1370*
H27B0.613500.337200.111100.1370*
H27C0.528700.179900.179400.1370*
H280.905600.033200.106700.0680*
H28A0.949800.344500.265900.1560*
H28B1.155400.337700.169100.1560*
H28C0.988500.432800.113800.1560*
H32A0.144900.313100.142600.1600*
H32B0.184300.191100.173500.1600*
H32C0.352300.194000.056900.1600*
H33A0.638200.431200.243900.1630*
H33B0.420800.492700.221300.1630*
H33C0.587800.365200.105100.1630*
H34A0.341000.446000.433500.1370*
H34B0.186400.338200.402800.1370*
H34C0.130900.464900.380800.1370*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.150 (5)0.095 (4)0.059 (3)0.023 (3)0.016 (3)0.040 (3)
O20.215 (6)0.089 (3)0.128 (4)0.045 (4)0.085 (4)0.038 (3)
O90.078 (2)0.077 (3)0.055 (3)0.016 (2)0.014 (2)0.040 (2)
O100.064 (2)0.063 (2)0.052 (2)0.014 (2)0.005 (2)0.030 (2)
N80.066 (3)0.060 (3)0.055 (3)0.011 (2)0.008 (2)0.039 (3)
C20.149 (8)0.068 (5)0.081 (6)0.021 (5)0.033 (5)0.048 (4)
C30.070 (4)0.058 (4)0.037 (3)0.007 (3)0.006 (3)0.024 (3)
C40.091 (5)0.077 (4)0.071 (4)0.000 (4)0.007 (3)0.048 (4)
C50.077 (4)0.070 (4)0.066 (4)0.014 (3)0.023 (3)0.046 (4)
C60.080 (4)0.064 (4)0.071 (4)0.006 (3)0.005 (3)0.040 (4)
C70.112 (5)0.079 (4)0.073 (4)0.032 (4)0.028 (4)0.042 (4)
C80.125 (6)0.072 (4)0.158 (8)0.008 (4)0.036 (5)0.064 (5)
C90.050 (3)0.068 (4)0.048 (4)0.001 (3)0.006 (3)0.033 (4)
C110.062 (3)0.049 (3)0.071 (4)0.006 (3)0.004 (3)0.030 (3)
C120.097 (5)0.123 (6)0.097 (6)0.009 (5)0.037 (4)0.046 (5)
C130.108 (6)0.082 (5)0.203 (10)0.003 (5)0.002 (6)0.091 (6)
C140.095 (5)0.075 (4)0.080 (5)0.023 (4)0.001 (4)0.027 (4)
O210.087 (3)0.089 (3)0.041 (2)0.005 (2)0.007 (2)0.016 (2)
O220.063 (2)0.100 (3)0.093 (3)0.014 (2)0.004 (2)0.048 (2)
O290.086 (3)0.082 (3)0.061 (3)0.016 (2)0.014 (2)0.050 (3)
O300.063 (2)0.063 (3)0.053 (3)0.010 (2)0.002 (2)0.031 (2)
N280.060 (3)0.053 (3)0.050 (3)0.008 (2)0.006 (2)0.029 (2)
C220.056 (4)0.089 (5)0.065 (4)0.012 (3)0.008 (3)0.050 (4)
C230.042 (3)0.061 (4)0.058 (4)0.002 (3)0.006 (3)0.035 (3)
C240.060 (3)0.082 (4)0.054 (4)0.007 (3)0.011 (3)0.019 (3)
C250.059 (3)0.064 (4)0.055 (4)0.008 (3)0.013 (3)0.032 (3)
C260.077 (4)0.064 (4)0.070 (4)0.011 (3)0.014 (3)0.043 (3)
C270.094 (5)0.094 (5)0.077 (5)0.032 (4)0.018 (3)0.031 (4)
C280.123 (6)0.074 (5)0.112 (6)0.001 (4)0.029 (4)0.044 (4)
C290.056 (4)0.047 (4)0.055 (4)0.001 (3)0.002 (3)0.027 (4)
C310.047 (3)0.072 (4)0.067 (4)0.003 (3)0.008 (3)0.035 (4)
C320.078 (5)0.151 (7)0.086 (5)0.010 (5)0.029 (4)0.050 (5)
C330.084 (4)0.090 (5)0.157 (7)0.000 (4)0.012 (5)0.082 (5)
C340.066 (4)0.085 (5)0.083 (5)0.013 (4)0.002 (4)0.017 (4)
Geometric parameters (Å, º) top
O1—C21.333 (11)C12—H12A0.96
O1—C41.461 (9)C12—H12B0.96
O2—C21.189 (12)C12—H12C0.96
O9—C91.228 (8)C13—H13B0.96
O10—C91.319 (7)C13—H13A0.96
O10—C111.465 (8)C13—H13C0.96
O21—C221.350 (8)C14—H14B0.96
O21—C241.460 (7)C14—H14C0.96
O22—C221.182 (8)C14—H14A0.96
O29—C291.206 (8)C22—C231.518 (8)
O30—C311.470 (8)C23—C241.565 (9)
O30—C291.345 (7)C23—C251.520 (10)
N8—C31.443 (7)C25—C261.526 (9)
N8—C91.336 (9)C26—C271.512 (9)
N8—H80.8600C26—C281.527 (11)
N28—C231.422 (8)C31—C331.481 (12)
N28—C291.353 (9)C31—C341.530 (9)
N28—H280.8600C31—C321.495 (10)
C2—C31.499 (10)C24—H24A0.97
C3—C51.531 (10)C24—H24B0.97
C3—C41.560 (8)C25—H25A0.97
C5—C61.530 (9)C25—H25B0.97
C6—C81.524 (11)C26—H260.98
C6—C71.504 (10)C27—H27A0.96
C11—C141.497 (9)C27—H27B0.96
C11—C131.508 (12)C27—H27C0.96
C11—C121.525 (10)C28—H28A0.96
C4—H4B0.97C28—H28B0.96
C4—H4A0.97C28—H28C0.96
C5—H5B0.97C32—H32A0.96
C5—H5A0.97C32—H32B0.96
C6—H60.98C32—H32C0.96
C7—H7A0.96C33—H33A0.96
C7—H7C0.96C33—H33B0.96
C7—H7B0.96C33—H33C0.96
C8—H8B0.96C34—H34A0.96
C8—H8C0.96C34—H34B0.96
C8—H8A0.96C34—H34C0.96
C2—O1—C492.1 (5)H14A—C14—H14B109
C9—O10—C11122.9 (5)C11—C14—H14A109
C22—O21—C2491.9 (4)H14B—C14—H14C110
C29—O30—C31121.5 (4)C11—C14—H14B110
C3—N8—C9125.5 (5)C11—C14—H14C109
C3—N8—H8117O21—C22—O22125.3 (6)
C9—N8—H8117O22—C22—C23139.1 (6)
C23—N28—C29126.8 (5)O21—C22—C2395.6 (5)
C23—N28—H28117N28—C23—C24116.9 (6)
C29—N28—H28117N28—C23—C22118.4 (5)
O1—C2—C396.4 (7)C22—C23—C25114.2 (6)
O1—C2—O2126.8 (7)N28—C23—C25111.0 (5)
O2—C2—C3136.8 (8)C22—C23—C2481.9 (5)
N8—C3—C4119.1 (5)C24—C23—C25111.6 (5)
C2—C3—C5110.7 (5)O21—C24—C2389.3 (4)
N8—C3—C5109.9 (5)C23—C25—C26118.8 (5)
N8—C3—C2117.4 (6)C25—C26—C28109.3 (5)
C4—C3—C5115.0 (6)C25—C26—C27114.1 (5)
C2—C3—C482.3 (5)C27—C26—C28110.6 (6)
O1—C4—C388.8 (5)O29—C29—N28124.3 (6)
C3—C5—C6116.7 (5)O29—C29—O30125.2 (6)
C5—C6—C8107.9 (6)O30—C29—N28110.5 (5)
C7—C6—C8111.0 (6)O30—C31—C33110.2 (5)
C5—C6—C7113.8 (5)O30—C31—C34101.3 (5)
O9—C9—O10124.5 (6)C32—C31—C34110.5 (5)
O9—C9—N8122.8 (6)C33—C31—C34110.5 (6)
O10—C9—N8112.8 (5)C32—C31—C33114.9 (7)
C12—C11—C14109.6 (5)O30—C31—C32108.6 (6)
O10—C11—C14103.5 (5)O21—C24—H24A114
C12—C11—C13112.7 (6)O21—C24—H24B114
C13—C11—C14112.1 (7)C23—C24—H24A114
O10—C11—C13110.6 (5)C23—C24—H24B114
O10—C11—C12107.8 (6)H24A—C24—H24B111
C3—C4—H4A114C23—C25—H25A108
C3—C4—H4B114C23—C25—H25B108
O1—C4—H4B114C26—C25—H25A108
O1—C4—H4A114C26—C25—H25B108
H4A—C4—H4B111H25A—C25—H25B107
H5A—C5—H5B107C25—C26—H26107
C6—C5—H5B108C27—C26—H26108
C3—C5—H5A108C28—C26—H26108
C6—C5—H5A108C26—C27—H27A110
C3—C5—H5B108C26—C27—H27B109
C7—C6—H6108C26—C27—H27C109
C8—C6—H6108H27A—C27—H27B110
C5—C6—H6108H27A—C27—H27C109
C6—C7—H7C109H27B—C27—H27C109
C6—C7—H7A110C26—C28—H28A109
H7A—C7—H7B109C26—C28—H28B109
H7B—C7—H7C109C26—C28—H28C109
H7A—C7—H7C110H28A—C28—H28B109
C6—C7—H7B109H28A—C28—H28C110
C6—C8—H8A109H28B—C28—H28C109
C6—C8—H8B109C31—C32—H32A109
H8B—C8—H8C110C31—C32—H32B109
H8A—C8—H8B109C31—C32—H32C109
C6—C8—H8C109H32A—C32—H32B110
H8A—C8—H8C109H32A—C32—H32C110
C11—C12—H12B110H32B—C32—H32C109
C11—C12—H12C110C31—C33—H33A110
C11—C12—H12A109C31—C33—H33B109
H12A—C12—H12B109C31—C33—H33C109
H12A—C12—H12C109H33A—C33—H33B109
H12B—C12—H12C109H33A—C33—H33C109
C11—C13—H13C109H33B—C33—H33C109
H13A—C13—H13B109C31—C34—H34A110
H13A—C13—H13C109C31—C34—H34B109
C11—C13—H13B109C31—C34—H34C109
H13B—C13—H13C109H34A—C34—H34B109
C11—C13—H13A109H34A—C34—H34C109
H14A—C14—H14C109H34B—C34—H34C109
C4—O1—C2—O2176.6 (9)O1—C2—C3—C5109.5 (6)
C4—O1—C2—C34.7 (6)O2—C2—C3—C569.0 (12)
C2—O1—C4—C34.5 (6)O1—C2—C3—N8123.3 (6)
C11—O10—C9—O98.8 (9)O2—C2—C3—C4177.1 (11)
C11—O10—C9—N8172.5 (5)O2—C2—C3—N858.2 (13)
C9—O10—C11—C1262.4 (7)N8—C3—C5—C656.6 (7)
C9—O10—C11—C1361.2 (8)C4—C3—C5—C681.1 (7)
C9—O10—C11—C14178.5 (5)C2—C3—C5—C6172.2 (6)
C22—O21—C24—C238.8 (5)N8—C3—C4—O1121.1 (6)
C24—O21—C22—O22172.7 (8)C2—C3—C4—O14.0 (5)
C24—O21—C22—C239.1 (6)C5—C3—C4—O1105.3 (6)
C31—O30—C29—O298.2 (9)C3—C5—C6—C8177.1 (6)
C31—O30—C29—N28170.7 (5)C3—C5—C6—C753.4 (8)
C29—O30—C31—C3261.1 (7)O22—C22—C23—C24173.7 (11)
C29—O30—C31—C3365.5 (7)O22—C22—C23—C2576.2 (12)
C29—O30—C31—C34177.5 (5)O21—C22—C23—N28124.8 (6)
C9—N8—C3—C247.2 (8)O21—C22—C23—C248.6 (5)
C3—N8—C9—O9177.5 (5)O21—C22—C23—C25101.5 (6)
C3—N8—C9—O101.3 (8)O22—C22—C23—N2857.4 (14)
C9—N8—C3—C449.5 (9)N28—C23—C24—O21125.8 (5)
C9—N8—C3—C5174.8 (5)N28—C23—C25—C2651.2 (7)
C29—N28—C23—C25172.4 (5)C22—C23—C25—C2685.9 (7)
C23—N28—C29—O300.8 (8)C24—C23—C25—C26176.6 (5)
C29—N28—C23—C2458.1 (7)C25—C23—C24—O21105.0 (5)
C23—N28—C29—O29179.6 (6)C22—C23—C24—O217.9 (5)
C29—N28—C23—C2237.4 (9)C23—C25—C26—C28177.8 (6)
O1—C2—C3—C44.4 (6)C23—C25—C26—C2757.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O290.862.122.937 (6)158
N28—H28···O90.862.062.890 (6)162
C12—H12C···O90.962.553.049 (9)112
C13—H13A···O90.962.362.941 (11)118
C27—H27C···O220.962.533.209 (9)127
C32—H32C···O290.962.443.018 (9)119

Experimental details

Crystal data
Chemical formulaC12H21NO4
Mr243.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1642 (7), 11.2018 (16), 11.6915 (14)
α, β, γ (°)115.936 (14), 100.621 (10), 95.362 (11)
V3)699.58 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerKUMA KM4CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7367, 2451, 1367
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 0.96
No. of reflections2451
No. of parameters317
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXTL (Bruker, 2000) and POV-RAY (Persistence of Vision, 2004), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···O290.862.122.937 (6)158
N28—H28···O90.862.062.890 (6)162
C12—H12C···O90.962.553.049 (9)112
C13—H13A···O90.962.362.941 (11)118
C27—H27C···O220.962.533.209 (9)127
C32—H32C···O290.962.443.018 (9)119
 

Acknowledgements

This work was supported partly by the Ministry of Scientific Research and Information Technology (grant No. T09A 167 22).

References

First citationBruker (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOlma, A. (2004). Pol. J. Chem. 78, 8312–8315.  Google Scholar
First citationOlma, A. & Kudaj, A. (2005). Tetrahedron Lett. 46, 6239–6241.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPansare, S. V., Hunter, G., Arnold, L. D. & Vaderas, C. J. (1991). Org. Synth. 70, 1–9.  Google Scholar
First citationPersistence of Vision (2004). POV-RAY. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationSmith, N. D. & Goodman, M. (2003). Org. Lett. 5, 1035–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H. W. & Romo, D. (1999). Tetrahedron, 55, 6403–6434.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds