metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinato]manganese(II) trihydrate

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 16 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title complex, [Mn(C11H10N3O2)2]·3H2O, the MnII atom is coordinated by four N atoms and two O atoms in a distorted octa­hedral geometry. The mol­ecules are linked together via hydrogen bonds involving the water molecules. One of these is disordered equally over two positions.

Related literature

For related literature, see: Zhao et al. (2007[Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.]); Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H10N3O2)2]·3H2O

  • Mr = 541.43

  • Triclinic, [P \overline 1]

  • a = 9.7950 (10) Å

  • b = 10.9030 (12) Å

  • c = 12.8070 (15) Å

  • α = 70.162 (2)°

  • β = 74.825 (2)°

  • γ = 83.760 (3)°

  • V = 1241.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 (2) K

  • 0.53 × 0.49 × 0.47 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.770

  • 6455 measured reflections

  • 4308 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.150

  • S = 1.07

  • 4308 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.85 1.98 2.830 (4) 178
O5—H5B⋯O4ii 0.85 1.97 2.819 (5) 178
O6—H6A⋯O5 0.85 1.89 2.740 (6) 176
O6—H6B⋯O7iii 0.85 2.00 2.843 (8) 175
O7—H7D⋯O6 0.85 1.87 2.715 (8) 173
O7—H7E⋯O8iii 0.85 1.65 2.497 (12) 172
O8—H8A⋯O4ii 0.85 2.00 2.829 (8) 167
O8—H8B⋯O4iii 0.85 2.00 2.829 (9) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, we report in this paper the crystal structure of Bis(6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinato)manganese(II)trihydrate.

The structure consists of the manganese(II) complex and three uncoordinated water molecules. The Mn atom is six-coordinated by four N atoms and two O atoms derived from the tridentate ligands, 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate (DPP), that define a distorted octahedral environment; the Mn—O bond lengths are 2.143 (3) and 2.154 (3) Å, The Mn—N distances range from 2.199 (3) to 2.277 (3) Å, i.e. normal values, The C1—C2 bond length is 1.522 (5) Å, being in the normal C—C ranges in manganese carboxylate complexes.

In the crystal structure, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving the solvate water molecules; three water molecules and two DDP O atoms via intermolecular H—O···H hydrogen bonds. A great number of hydrogen contacts link the complex into a three-dimensional network. (Fig. 2; for symmetry codes see Table 1).

Related literature top

For related literature, see: Zhao et al. (2007); Yin et al. (2007).

Experimental top

6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid, and MnCl2. 6H2O were available commercially and were used without further purification. Equimolar 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (1 mmol, 217 mg) was dissolved in anhydrous ethyl alcohol (AR,99.9%) (15 ml). The mixture was stirred to give a clear solution, To this solution was added MnCl2.6H2O (0.5 mmol, 119 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, yellow blocks of the title compound were formed. The crystals were isolated, washed with alcohol three times(Yield75%). Elemental analysis: found: C, 48.65; H, 5.01; O, 20.87; calc. for C22H26MnN6O7: C, 48.80; H, 4.84; O, 20.69.

Refinement top

H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and the O—H distances were constrained 0.85 Å, with Uiso(H) = 1.2Ueq(O).

Structure description top

Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, we report in this paper the crystal structure of Bis(6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinato)manganese(II)trihydrate.

The structure consists of the manganese(II) complex and three uncoordinated water molecules. The Mn atom is six-coordinated by four N atoms and two O atoms derived from the tridentate ligands, 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate (DPP), that define a distorted octahedral environment; the Mn—O bond lengths are 2.143 (3) and 2.154 (3) Å, The Mn—N distances range from 2.199 (3) to 2.277 (3) Å, i.e. normal values, The C1—C2 bond length is 1.522 (5) Å, being in the normal C—C ranges in manganese carboxylate complexes.

In the crystal structure, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving the solvate water molecules; three water molecules and two DDP O atoms via intermolecular H—O···H hydrogen bonds. A great number of hydrogen contacts link the complex into a three-dimensional network. (Fig. 2; for symmetry codes see Table 1).

For related literature, see: Zhao et al. (2007); Yin et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.
Bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]manganese(II) trihydrate top
Crystal data top
[Mn(C11H10N3O2)2]·3(H2O)Z = 2
Mr = 541.43F(000) = 562
Triclinic, P1Dx = 1.448 Mg m3
a = 9.795 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9030 (12) ÅCell parameters from 2622 reflections
c = 12.8070 (15) Åθ = 2.2–24.3°
α = 70.162 (2)°µ = 0.59 mm1
β = 74.825 (2)°T = 293 K
γ = 83.760 (3)°Block, yellow
V = 1241.4 (2) Å30.53 × 0.49 × 0.47 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4308 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.747, Tmax = 0.770k = 1212
6455 measured reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.3474P]
where P = (Fo2 + 2Fc2)/3
4308 reflections(Δ/σ)max < 0.001
338 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Mn(C11H10N3O2)2]·3(H2O)γ = 83.760 (3)°
Mr = 541.43V = 1241.4 (2) Å3
Triclinic, P1Z = 2
a = 9.795 (1) ÅMo Kα radiation
b = 10.9030 (12) ŵ = 0.59 mm1
c = 12.8070 (15) ÅT = 293 K
α = 70.162 (2)°0.53 × 0.49 × 0.47 mm
β = 74.825 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4308 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3050 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.770Rint = 0.024
6455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.57 e Å3
4308 reflectionsΔρmin = 0.25 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.71418 (5)0.77632 (5)0.27494 (5)0.0466 (2)
N10.8241 (3)0.9608 (2)0.2282 (2)0.0393 (6)
N20.7833 (3)1.0148 (3)0.0499 (2)0.0446 (7)
N30.7221 (3)0.8947 (3)0.0899 (3)0.0497 (7)
N40.6120 (3)0.5904 (2)0.3154 (2)0.0392 (6)
N50.3986 (3)0.6848 (3)0.3745 (2)0.0420 (7)
N60.4768 (3)0.7939 (3)0.3460 (2)0.0444 (7)
O10.7731 (3)0.7770 (3)0.4245 (2)0.0640 (8)
O20.8860 (3)0.8766 (3)0.5015 (2)0.0624 (7)
O30.8791 (3)0.6429 (3)0.2293 (3)0.0763 (9)
O40.9341 (3)0.4450 (3)0.2160 (3)0.0884 (10)
O50.1776 (4)0.3403 (4)0.2963 (3)0.1229 (15)
H5A0.15590.27550.35710.147*
H5B0.10270.37020.27380.147*
O60.4031 (5)0.4792 (5)0.1413 (4)0.1482 (18)
H6A0.33080.43740.18660.178*
H6B0.38200.52370.07870.178*
O70.6528 (7)0.3620 (7)0.0713 (5)0.091 (2)0.50
H7D0.57870.40470.09170.109*0.50
H7E0.72370.41080.04980.109*0.50
O80.1259 (9)0.5103 (8)0.0015 (6)0.126 (3)0.50
H8A0.05800.49120.05790.151*0.50
H8B0.09360.52130.05960.151*0.50
C10.8435 (4)0.8683 (3)0.4221 (3)0.0473 (9)
C20.8803 (3)0.9762 (3)0.3073 (3)0.0411 (8)
C30.9641 (4)1.0799 (3)0.2834 (3)0.0519 (9)
H31.00081.09110.33950.062*
C40.9924 (4)1.1670 (3)0.1738 (4)0.0594 (11)
H41.05021.23720.15550.071*
C50.9367 (4)1.1518 (3)0.0912 (4)0.0552 (10)
H50.95651.20980.01690.066*
C60.8496 (3)1.0464 (3)0.1233 (3)0.0405 (8)
C70.8161 (5)1.2156 (4)0.1267 (4)0.0803 (14)
H7A0.78241.27230.08160.120*
H7B0.77911.24560.19370.120*
H7C0.91761.21610.14900.120*
C80.7683 (4)1.0808 (4)0.0581 (3)0.0549 (10)
C90.6970 (5)1.0015 (4)0.0857 (4)0.0656 (11)
H90.67031.01980.15410.079*
C100.6709 (4)0.8872 (4)0.0073 (3)0.0559 (10)
C110.6005 (5)0.7670 (4)0.0192 (4)0.0819 (14)
H11A0.67080.70550.00190.123*
H11B0.53630.78890.02990.123*
H11C0.54920.72910.09710.123*
C120.8506 (4)0.5290 (4)0.2427 (4)0.0606 (10)
C130.6970 (4)0.4915 (3)0.2970 (3)0.0460 (8)
C140.6473 (5)0.3689 (3)0.3275 (4)0.0582 (10)
H140.70750.30090.31420.070*
C150.5062 (5)0.3488 (4)0.3784 (4)0.0665 (12)
H150.47060.26550.40160.080*
C160.4175 (4)0.4493 (3)0.3953 (3)0.0568 (10)
H160.32140.43660.42830.068*
C170.4754 (3)0.5708 (3)0.3617 (3)0.0402 (8)
C180.1427 (4)0.6136 (4)0.4516 (4)0.0638 (11)
H18A0.05280.65600.46990.096*
H18B0.15540.54230.51760.096*
H18C0.14580.58120.39010.096*
C190.2586 (4)0.7093 (4)0.4162 (3)0.0477 (9)
C200.2486 (4)0.8342 (4)0.4157 (3)0.0524 (9)
H200.16640.87840.44020.063*
C210.3839 (4)0.8842 (3)0.3718 (3)0.0479 (9)
C220.4326 (5)1.0165 (4)0.3515 (4)0.0681 (12)
H22A0.41851.03140.42340.102*
H22B0.37941.08060.30450.102*
H22C0.53131.02310.31360.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0390 (3)0.0378 (3)0.0600 (4)0.0121 (2)0.0096 (3)0.0103 (2)
N10.0341 (15)0.0344 (14)0.0472 (17)0.0064 (11)0.0079 (13)0.0103 (13)
N20.0423 (16)0.0408 (15)0.0466 (18)0.0084 (12)0.0089 (13)0.0081 (13)
N30.0523 (18)0.0414 (16)0.0567 (19)0.0142 (13)0.0139 (15)0.0131 (14)
N40.0398 (16)0.0349 (14)0.0423 (16)0.0043 (12)0.0094 (13)0.0111 (12)
N50.0324 (15)0.0432 (15)0.0502 (17)0.0079 (12)0.0081 (13)0.0142 (13)
N60.0424 (16)0.0361 (14)0.0558 (18)0.0077 (12)0.0109 (14)0.0149 (13)
O10.0644 (18)0.0632 (16)0.0582 (17)0.0303 (13)0.0210 (14)0.0016 (13)
O20.0605 (17)0.0727 (18)0.0581 (17)0.0093 (13)0.0234 (14)0.0170 (14)
O30.0387 (15)0.0537 (17)0.120 (3)0.0087 (12)0.0034 (16)0.0222 (17)
O40.071 (2)0.070 (2)0.108 (3)0.0221 (17)0.0015 (18)0.0313 (19)
O50.084 (3)0.144 (3)0.108 (3)0.040 (2)0.045 (2)0.028 (2)
O60.126 (4)0.177 (5)0.114 (3)0.021 (3)0.015 (3)0.017 (3)
O70.081 (4)0.142 (6)0.066 (4)0.037 (4)0.023 (3)0.062 (4)
O80.145 (7)0.129 (7)0.061 (4)0.021 (6)0.007 (5)0.010 (4)
C10.0324 (18)0.054 (2)0.054 (2)0.0042 (15)0.0106 (17)0.0144 (18)
C20.0322 (17)0.0385 (17)0.055 (2)0.0022 (13)0.0122 (16)0.0177 (16)
C30.050 (2)0.0410 (19)0.074 (3)0.0029 (16)0.023 (2)0.0244 (19)
C40.063 (3)0.0334 (18)0.083 (3)0.0141 (17)0.024 (2)0.0111 (19)
C50.056 (2)0.0367 (19)0.067 (3)0.0109 (16)0.017 (2)0.0050 (18)
C60.0348 (18)0.0354 (17)0.049 (2)0.0029 (13)0.0084 (15)0.0116 (15)
C70.092 (4)0.076 (3)0.058 (3)0.033 (3)0.023 (3)0.010 (2)
C80.052 (2)0.057 (2)0.048 (2)0.0097 (18)0.0058 (18)0.0100 (18)
C90.071 (3)0.079 (3)0.050 (2)0.011 (2)0.019 (2)0.017 (2)
C100.055 (2)0.059 (2)0.059 (2)0.0113 (18)0.017 (2)0.021 (2)
C110.097 (4)0.075 (3)0.089 (3)0.025 (3)0.037 (3)0.027 (3)
C120.055 (2)0.053 (2)0.061 (3)0.0065 (19)0.005 (2)0.011 (2)
C130.050 (2)0.0394 (18)0.045 (2)0.0019 (16)0.0124 (17)0.0092 (15)
C140.073 (3)0.0379 (19)0.070 (3)0.0035 (18)0.023 (2)0.0216 (18)
C150.080 (3)0.040 (2)0.083 (3)0.019 (2)0.021 (2)0.018 (2)
C160.054 (2)0.048 (2)0.068 (3)0.0198 (18)0.012 (2)0.0146 (19)
C170.0403 (19)0.0407 (18)0.0412 (19)0.0100 (14)0.0101 (15)0.0123 (15)
C180.036 (2)0.072 (3)0.071 (3)0.0153 (18)0.0052 (19)0.010 (2)
C190.037 (2)0.059 (2)0.043 (2)0.0054 (16)0.0095 (16)0.0101 (17)
C200.041 (2)0.059 (2)0.053 (2)0.0059 (17)0.0089 (17)0.0160 (18)
C210.047 (2)0.0443 (19)0.053 (2)0.0033 (16)0.0162 (17)0.0159 (17)
C220.067 (3)0.048 (2)0.096 (3)0.0025 (19)0.021 (2)0.032 (2)
Geometric parameters (Å, º) top
Mn1—O12.143 (3)C4—C51.373 (5)
Mn1—O32.154 (3)C4—H40.9300
Mn1—N42.199 (3)C5—C61.388 (4)
Mn1—N12.209 (2)C5—H50.9300
Mn1—N32.267 (3)C7—C81.486 (5)
Mn1—N62.277 (3)C7—H7A0.9600
N1—C61.327 (4)C7—H7B0.9600
N1—C21.336 (4)C7—H7C0.9600
N2—C81.364 (5)C8—C91.353 (5)
N2—N31.375 (4)C9—C101.393 (6)
N2—C61.419 (4)C9—H90.9300
N3—C101.311 (5)C10—C111.491 (5)
N4—C171.322 (4)C11—H11A0.9600
N4—C131.336 (4)C11—H11B0.9600
N5—C191.368 (4)C11—H11C0.9600
N5—N61.375 (3)C12—C131.519 (5)
N5—C171.416 (4)C13—C141.365 (5)
N6—C211.332 (4)C14—C151.371 (6)
O1—C11.259 (4)C14—H140.9300
O2—C11.227 (4)C15—C161.364 (5)
O3—C121.247 (5)C15—H150.9300
O4—C121.235 (5)C16—C171.382 (4)
O5—H5A0.8500C16—H160.9300
O5—H5B0.8500C18—C191.500 (5)
O6—H6A0.8500C18—H18A0.9600
O6—H6B0.8500C18—H18B0.9600
O7—H7D0.8499C18—H18C0.9600
O7—H7E0.8500C19—C201.353 (5)
O8—H8A0.8500C20—C211.389 (5)
O8—H8B0.8500C20—H200.9300
C1—C21.522 (5)C21—C221.486 (5)
C2—C31.372 (5)C22—H22A0.9600
C3—C41.377 (5)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
O1—Mn1—O396.39 (13)H7A—C7—H7B109.5
O1—Mn1—N4108.16 (10)C8—C7—H7C109.5
O3—Mn1—N473.44 (10)H7A—C7—H7C109.5
O1—Mn1—N173.16 (10)H7B—C7—H7C109.5
O3—Mn1—N1104.29 (10)C9—C8—N2106.2 (3)
N4—Mn1—N1177.41 (10)C9—C8—C7128.3 (4)
O1—Mn1—N3143.23 (10)N2—C8—C7125.5 (4)
O3—Mn1—N392.96 (12)C8—C9—C10107.2 (4)
N4—Mn1—N3108.59 (10)C8—C9—H9126.4
N1—Mn1—N370.08 (10)C10—C9—H9126.4
O1—Mn1—N695.74 (11)N3—C10—C9110.2 (3)
O3—Mn1—N6142.92 (10)N3—C10—C11121.0 (4)
N4—Mn1—N669.49 (10)C9—C10—C11128.8 (4)
N1—Mn1—N6112.76 (9)C10—C11—H11A109.5
N3—Mn1—N697.89 (11)C10—C11—H11B109.5
C6—N1—C2120.1 (3)H11A—C11—H11B109.5
C6—N1—Mn1122.8 (2)C10—C11—H11C109.5
C2—N1—Mn1116.5 (2)H11A—C11—H11C109.5
C8—N2—N3110.3 (3)H11B—C11—H11C109.5
C8—N2—C6132.4 (3)O4—C12—O3126.6 (4)
N3—N2—C6117.2 (3)O4—C12—C13117.5 (4)
C10—N3—N2106.0 (3)O3—C12—C13115.9 (3)
C10—N3—Mn1137.2 (2)N4—C13—C14121.7 (3)
N2—N3—Mn1116.4 (2)N4—C13—C12113.6 (3)
C17—N4—C13119.7 (3)C14—C13—C12124.6 (3)
C17—N4—Mn1123.7 (2)C13—C14—C15118.2 (4)
C13—N4—Mn1116.5 (2)C13—C14—H14120.9
C19—N5—N6110.6 (3)C15—C14—H14120.9
C19—N5—C17133.0 (3)C16—C15—C14120.8 (3)
N6—N5—C17116.4 (2)C16—C15—H15119.6
C21—N6—N5105.3 (3)C14—C15—H15119.6
C21—N6—Mn1137.7 (2)C15—C16—C17117.7 (4)
N5—N6—Mn1116.96 (19)C15—C16—H16121.1
C1—O1—Mn1121.2 (2)C17—C16—H16121.1
C12—O3—Mn1120.3 (2)N4—C17—C16121.9 (3)
H5A—O5—H5B108.4N4—C17—N5113.3 (3)
H6A—O6—H6B108.5C16—C17—N5124.8 (3)
H7D—O7—H7E108.6C19—C18—H18A109.5
H8A—O8—H8B108.7C19—C18—H18B109.5
O2—C1—O1126.6 (3)H18A—C18—H18B109.5
O2—C1—C2118.3 (3)C19—C18—H18C109.5
O1—C1—C2115.1 (3)H18A—C18—H18C109.5
N1—C2—C3121.5 (3)H18B—C18—H18C109.5
N1—C2—C1113.6 (3)C20—C19—N5106.5 (3)
C3—C2—C1124.9 (3)C20—C19—C18128.6 (3)
C2—C3—C4118.1 (3)N5—C19—C18124.9 (3)
C2—C3—H3121.0C19—C20—C21107.2 (3)
C4—C3—H3121.0C19—C20—H20126.4
C5—C4—C3121.1 (3)C21—C20—H20126.4
C5—C4—H4119.4N6—C21—C20110.4 (3)
C3—C4—H4119.4N6—C21—C22119.9 (3)
C4—C5—C6117.2 (3)C20—C21—C22129.6 (3)
C4—C5—H5121.4C21—C22—H22A109.5
C6—C5—H5121.4C21—C22—H22B109.5
N1—C6—C5121.9 (3)H22A—C22—H22B109.5
N1—C6—N2112.8 (3)C21—C22—H22C109.5
C5—C6—N2125.2 (3)H22A—C22—H22C109.5
C8—C7—H7A109.5H22B—C22—H22C109.5
C8—C7—H7B109.5
O1—Mn1—N1—C6177.3 (3)O1—C1—C2—N13.9 (4)
O3—Mn1—N1—C684.8 (3)O2—C1—C2—C33.5 (5)
N4—Mn1—N1—C656 (2)O1—C1—C2—C3175.3 (3)
N3—Mn1—N1—C63.1 (2)N1—C2—C3—C41.7 (5)
N6—Mn1—N1—C693.5 (3)C1—C2—C3—C4177.4 (3)
O1—Mn1—N1—C25.3 (2)C2—C3—C4—C51.0 (6)
O3—Mn1—N1—C287.1 (2)C3—C4—C5—C60.8 (6)
N4—Mn1—N1—C2116 (2)C2—N1—C6—C51.5 (5)
N3—Mn1—N1—C2175.1 (3)Mn1—N1—C6—C5170.2 (3)
N6—Mn1—N1—C294.5 (2)C2—N1—C6—N2179.3 (3)
C8—N2—N3—C100.3 (4)Mn1—N1—C6—N27.6 (4)
C6—N2—N3—C10178.9 (3)C4—C5—C6—N12.1 (5)
C8—N2—N3—Mn1173.8 (2)C4—C5—C6—N2179.7 (3)
C6—N2—N3—Mn17.0 (4)C8—N2—C6—N1171.8 (3)
O1—Mn1—N3—C10173.2 (3)N3—N2—C6—N19.3 (4)
O3—Mn1—N3—C1082.0 (4)C8—N2—C6—C510.5 (6)
N4—Mn1—N3—C108.5 (4)N3—N2—C6—C5168.5 (3)
N1—Mn1—N3—C10173.9 (4)N3—N2—C8—C90.1 (4)
N6—Mn1—N3—C1062.5 (4)C6—N2—C8—C9179.1 (3)
O1—Mn1—N3—N21.6 (3)N3—N2—C8—C7177.4 (4)
O3—Mn1—N3—N2106.4 (2)C6—N2—C8—C73.6 (6)
N4—Mn1—N3—N2179.9 (2)N2—C8—C9—C100.4 (5)
N1—Mn1—N3—N22.3 (2)C7—C8—C9—C10177.6 (4)
N6—Mn1—N3—N2109.2 (2)N2—N3—C10—C90.5 (4)
O1—Mn1—N4—C1787.0 (3)Mn1—N3—C10—C9171.7 (3)
O3—Mn1—N4—C17178.4 (3)N2—N3—C10—C11177.8 (4)
N1—Mn1—N4—C17153 (2)Mn1—N3—C10—C1110.0 (6)
N3—Mn1—N4—C1794.1 (3)C8—C9—C10—N30.6 (5)
N6—Mn1—N4—C172.5 (2)C8—C9—C10—C11177.6 (4)
O1—Mn1—N4—C1389.2 (2)Mn1—O3—C12—O4177.1 (4)
O3—Mn1—N4—C132.2 (2)Mn1—O3—C12—C132.7 (5)
N1—Mn1—N4—C1331 (2)C17—N4—C13—C141.8 (5)
N3—Mn1—N4—C1389.7 (2)Mn1—N4—C13—C14174.6 (3)
N6—Mn1—N4—C13178.6 (3)C17—N4—C13—C12179.6 (3)
C19—N5—N6—C210.7 (4)Mn1—N4—C13—C124.1 (4)
C17—N5—N6—C21176.2 (3)O4—C12—C13—N4175.3 (4)
C19—N5—N6—Mn1179.8 (2)O3—C12—C13—N44.5 (5)
C17—N5—N6—Mn12.9 (3)O4—C12—C13—C146.1 (6)
O1—Mn1—N6—C2171.0 (4)O3—C12—C13—C14174.1 (4)
O3—Mn1—N6—C21179.6 (3)N4—C13—C14—C150.0 (6)
N4—Mn1—N6—C21178.2 (4)C12—C13—C14—C15178.4 (4)
N1—Mn1—N6—C213.1 (4)C13—C14—C15—C161.6 (6)
N3—Mn1—N6—C2174.8 (4)C14—C15—C16—C171.3 (6)
O1—Mn1—N6—N5107.7 (2)C13—N4—C17—C162.1 (5)
O3—Mn1—N6—N50.9 (3)Mn1—N4—C17—C16174.0 (3)
N4—Mn1—N6—N50.4 (2)C13—N4—C17—N5179.2 (3)
N1—Mn1—N6—N5178.2 (2)Mn1—N4—C17—N54.7 (4)
N3—Mn1—N6—N5106.6 (2)C15—C16—C17—N40.5 (6)
O3—Mn1—O1—C199.9 (3)C15—C16—C17—N5179.1 (3)
N4—Mn1—O1—C1174.5 (3)C19—N5—C17—N4179.2 (3)
N1—Mn1—O1—C13.2 (3)N6—N5—C17—N44.7 (4)
N3—Mn1—O1—C13.8 (4)C19—N5—C17—C162.1 (6)
N6—Mn1—O1—C1115.3 (3)N6—N5—C17—C16173.9 (3)
O1—Mn1—O3—C12107.5 (3)N6—N5—C19—C201.0 (4)
N4—Mn1—O3—C120.5 (3)C17—N5—C19—C20175.2 (3)
N1—Mn1—O3—C12178.3 (3)N6—N5—C19—C18177.7 (3)
N3—Mn1—O3—C12108.1 (3)C17—N5—C19—C186.1 (6)
N6—Mn1—O3—C120.8 (5)N5—C19—C20—C210.8 (4)
Mn1—O1—C1—O2177.9 (3)C18—C19—C20—C21177.8 (4)
Mn1—O1—C1—C20.8 (4)N5—N6—C21—C200.2 (4)
C6—N1—C2—C30.5 (5)Mn1—N6—C21—C20179.0 (3)
Mn1—N1—C2—C3172.7 (2)N5—N6—C21—C22179.9 (3)
C6—N1—C2—C1178.8 (3)Mn1—N6—C21—C221.4 (6)
Mn1—N1—C2—C16.6 (3)C19—C20—C21—N60.4 (4)
O2—C1—C2—N1177.3 (3)C19—C20—C21—C22179.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.851.982.830 (4)178
O5—H5B···O4ii0.851.972.819 (5)178
O6—H6A···O50.851.892.740 (6)176
O6—H6B···O7iii0.852.002.843 (8)175
O7—H7D···O60.851.872.715 (8)173
O7—H7E···O8iii0.851.652.497 (12)172
O8—H8A···O4ii0.852.002.829 (8)167
O8—H8B···O4iii0.852.002.829 (9)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C11H10N3O2)2]·3(H2O)
Mr541.43
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.795 (1), 10.9030 (12), 12.8070 (15)
α, β, γ (°)70.162 (2), 74.825 (2), 83.760 (3)
V3)1241.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.53 × 0.49 × 0.47
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
6455, 4308, 3050
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.150, 1.07
No. of reflections4308
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.851.982.830 (4)177.6
O5—H5B···O4ii0.851.972.819 (5)177.6
O6—H6A···O50.851.892.740 (6)175.5
O6—H6B···O7iii0.852.002.843 (8)174.8
O7—H7D···O60.851.872.715 (8)172.6
O7—H7E···O8iii0.851.652.497 (12)172.0
O8—H8A···O4ii0.852.002.829 (8)166.5
O8—H8B···O4iii0.852.002.829 (9)166.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012,0509ZD047).

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds