metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-Bromo-4-chloro-6-[2-(di­ethyl­amino)ethyl­imino­meth­yl]phenolato-κ3N,N′,O}(thio­cyanato-κN)copper(II)

aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China, and bDepartment of Chemistry and Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
*Correspondence e-mail: xianwenfz@163.com

(Received 17 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title compound, [Cu(C13H17BrClN2O)(NCS)], the Cu atom is in a slightly distorted square-planar geometry, coordinated by the three donor atoms of the ligand and the N atom of the isothio­cyanate group.

Related literature

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005[Panneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225-229.]); Shi et al. (2007[Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558-564.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.], 2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Zhong et al. (2006[Zhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090-1092.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H17BrClN2O)(NCS)]

  • Mr = 454.27

  • Monoclinic, P 21 /c

  • a = 8.651 (2) Å

  • b = 14.137 (2) Å

  • c = 14.145 (2) Å

  • β = 90.820 (2)°

  • V = 1729.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 293 (2) K

  • 0.17 × 0.13 × 0.13 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.561, Tmax = 0.634

  • 14228 measured reflections

  • 3745 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.04

  • 3745 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 1.22 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.902 (3)
Cu1—N1 1.940 (3)
Cu1—N3 1.945 (4)
Cu1—N2 2.073 (3)
O1—Cu1—N1 92.66 (14)
O1—Cu1—N3 87.45 (14)
N1—Cu1—N3 176.83 (16)
O1—Cu1—N2 168.15 (14)
N1—Cu1—N2 83.93 (14)
N3—Cu1—N2 95.33 (15)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds and metal complexes have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005, Singh et al., 2006, 2007; Zhong et al., 2006).

In the title compound the Cu atom is in a slightly distorted square planar geometry coordinated by the three donor atoms of the ligand and the N atom of the isothiocyanate group. (Fig. 1). The Cu atom is displaced out of the least-squares plane defined by the four donor atoms by 0.125 (2) Å. The coordination bond values (Table 1) are within normal ranges.

Related literature top

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006).

Experimental top

The title compound was obtained by the reaction of equimolar 3-bromo-5-chlorosalicylaldehyde, N,N-diethylethane-1,2-diamine, sodium thiocyanate, and copper acetate in an ethanol solution. Blue block-like single crystals were obtained by the slow evaporation of the filtrate in air.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Schiff base compounds and metal complexes have been reported to have excellent biological activity (Shi et al., 2007; Panneerselvam et al., 2005, Singh et al., 2006, 2007; Zhong et al., 2006).

In the title compound the Cu atom is in a slightly distorted square planar geometry coordinated by the three donor atoms of the ligand and the N atom of the isothiocyanate group. (Fig. 1). The Cu atom is displaced out of the least-squares plane defined by the four donor atoms by 0.125 (2) Å. The coordination bond values (Table 1) are within normal ranges.

For the biological activity of Schiff base compounds, see: Panneerselvam et al. (2005); Shi et al. (2007); Singh et al. (2006, 2007); Zhong et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
{2-Bromo-4-chloro-6-[2-(diethylamino)ethyliminomethyl]phenolato-\k3N,N',O}(thiocyanato-κN)copper(II) top
Crystal data top
[Cu(C13H17BrClN2O)(NCS)]F(000) = 908
Mr = 454.27Dx = 1.744 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.651 (2) ÅCell parameters from 3721 reflections
b = 14.137 (2) Åθ = 2.5–25.3°
c = 14.145 (2) ŵ = 3.85 mm1
β = 90.820 (2)°T = 293 K
V = 1729.7 (5) Å3Block, blue
Z = 40.17 × 0.13 × 0.13 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3745 independent reflections
Radiation source: fine-focus sealed tube2784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1110
Tmin = 0.561, Tmax = 0.634k = 1817
14228 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.7229P]
where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 1.22 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Cu(C13H17BrClN2O)(NCS)]V = 1729.7 (5) Å3
Mr = 454.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.651 (2) ŵ = 3.85 mm1
b = 14.137 (2) ÅT = 293 K
c = 14.145 (2) Å0.17 × 0.13 × 0.13 mm
β = 90.820 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3745 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2784 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.634Rint = 0.039
14228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 1.22 e Å3
3745 reflectionsΔρmin = 0.92 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13650 (6)0.16708 (3)0.07012 (3)0.03921 (16)
O10.0067 (4)0.2249 (2)0.0153 (2)0.0503 (8)
N10.1195 (4)0.2692 (3)0.1611 (2)0.0424 (8)
N20.3230 (4)0.1260 (3)0.1541 (2)0.0436 (8)
N30.1631 (4)0.0684 (3)0.0241 (3)0.0478 (9)
Br10.22122 (6)0.25006 (4)0.17829 (3)0.05842 (18)
Cl10.33341 (16)0.58720 (9)0.00426 (11)0.0698 (4)
S10.10508 (13)0.05745 (9)0.17046 (8)0.0502 (3)
C10.0783 (5)0.3037 (3)0.0054 (3)0.0410 (9)
C20.0611 (5)0.3662 (3)0.0729 (3)0.0422 (9)
C30.1405 (5)0.4526 (3)0.0746 (3)0.0518 (11)
H30.12690.49320.12580.062*
C40.2375 (5)0.4777 (3)0.0021 (3)0.0530 (11)
C50.2594 (5)0.4179 (4)0.0741 (3)0.0520 (11)
H50.32590.43520.12340.062*
C60.1840 (5)0.3339 (3)0.0770 (3)0.0423 (9)
C70.0380 (5)0.3446 (3)0.1520 (3)0.0481 (11)
H70.04370.38870.20070.058*
C80.2151 (6)0.2587 (4)0.2462 (3)0.0635 (15)
H8A0.29730.30530.24630.076*
H8B0.15280.26890.30180.076*
C90.2793 (9)0.1661 (4)0.2487 (4)0.087 (2)
H9A0.20510.12390.27740.104*
H9B0.37070.16710.28910.104*
C100.3261 (6)0.0234 (3)0.1647 (4)0.0616 (13)
H10A0.33990.00410.10260.074*
H10B0.22570.00340.18680.074*
C110.4495 (6)0.0183 (4)0.2313 (4)0.0676 (15)
H11A0.54910.00640.21510.101*
H11B0.45030.08590.22510.101*
H11C0.42650.00150.29530.101*
C120.4629 (7)0.1734 (6)0.1237 (5)0.098 (2)
H12A0.45000.24050.13540.118*
H12B0.54720.15190.16420.118*
C130.5091 (7)0.1627 (7)0.0301 (5)0.117 (3)
H13A0.52280.09680.01640.175*
H13B0.60490.19550.02110.175*
H13C0.43140.18850.01160.175*
C140.1359 (4)0.0175 (3)0.0848 (3)0.0380 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0451 (3)0.0384 (3)0.0339 (3)0.0012 (2)0.0085 (2)0.0047 (2)
O10.069 (2)0.0402 (17)0.0409 (17)0.0084 (15)0.0189 (14)0.0043 (13)
N10.045 (2)0.051 (2)0.0313 (17)0.0048 (17)0.0055 (15)0.0080 (15)
N20.044 (2)0.043 (2)0.0443 (19)0.0070 (16)0.0090 (15)0.0003 (15)
N30.051 (2)0.051 (2)0.0413 (19)0.0001 (17)0.0050 (16)0.0100 (17)
Br10.0689 (3)0.0642 (3)0.0418 (3)0.0017 (2)0.0130 (2)0.0037 (2)
Cl10.0715 (9)0.0532 (7)0.0852 (9)0.0218 (6)0.0219 (7)0.0123 (7)
S10.0508 (6)0.0547 (7)0.0451 (6)0.0034 (5)0.0002 (5)0.0178 (5)
C10.043 (2)0.040 (2)0.040 (2)0.0047 (18)0.0020 (17)0.0054 (18)
C20.042 (2)0.043 (2)0.042 (2)0.0003 (18)0.0053 (18)0.0017 (18)
C30.058 (3)0.043 (3)0.055 (3)0.001 (2)0.012 (2)0.003 (2)
C40.051 (3)0.048 (3)0.061 (3)0.011 (2)0.016 (2)0.010 (2)
C50.045 (3)0.059 (3)0.052 (3)0.006 (2)0.006 (2)0.016 (2)
C60.042 (2)0.047 (2)0.038 (2)0.0041 (19)0.0026 (17)0.0073 (18)
C70.051 (3)0.050 (3)0.043 (2)0.007 (2)0.0018 (19)0.013 (2)
C80.055 (3)0.096 (4)0.039 (2)0.008 (3)0.015 (2)0.013 (2)
C90.134 (6)0.071 (4)0.055 (3)0.032 (4)0.044 (3)0.016 (3)
C100.054 (3)0.043 (3)0.087 (4)0.008 (2)0.026 (3)0.004 (2)
C110.062 (3)0.058 (3)0.082 (4)0.014 (3)0.027 (3)0.001 (3)
C120.057 (4)0.145 (7)0.090 (5)0.029 (4)0.017 (3)0.032 (4)
C130.060 (4)0.196 (9)0.095 (5)0.015 (5)0.020 (4)0.066 (6)
C140.032 (2)0.040 (2)0.042 (2)0.0029 (17)0.0011 (16)0.0012 (18)
Geometric parameters (Å, º) top
Cu1—O11.902 (3)C5—C61.356 (6)
Cu1—N11.940 (3)C5—H50.9300
Cu1—N31.945 (4)C7—H70.9300
Cu1—N22.073 (3)C8—C91.422 (7)
O1—C11.283 (5)C8—H8A0.9700
N1—C71.284 (6)C8—H8B0.9700
N1—C81.458 (5)C9—H9A0.9700
N2—C121.454 (7)C9—H9B0.9700
N2—C101.457 (6)C10—C111.532 (6)
N2—C91.507 (7)C10—H10A0.9700
N3—C141.143 (5)C10—H10B0.9700
Br1—C61.884 (4)C11—H11A0.9600
Cl1—C41.757 (5)C11—H11B0.9600
S1—C141.628 (4)C11—H11C0.9600
C1—C61.421 (6)C12—C131.397 (9)
C1—C21.421 (6)C12—H12A0.9700
C2—C31.402 (6)C12—H12B0.9700
C2—C71.433 (6)C13—H13A0.9600
C3—C41.363 (6)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.381 (7)
O1—Cu1—N192.66 (14)C9—C8—N1109.3 (4)
O1—Cu1—N387.45 (14)C9—C8—H8A109.8
N1—Cu1—N3176.83 (16)N1—C8—H8A109.8
O1—Cu1—N2168.15 (14)C9—C8—H8B109.8
N1—Cu1—N283.93 (14)N1—C8—H8B109.8
N3—Cu1—N295.33 (15)H8A—C8—H8B108.3
C1—O1—Cu1127.9 (3)C8—C9—N2115.3 (5)
C7—N1—C8118.1 (4)C8—C9—H9A108.4
C7—N1—Cu1126.7 (3)N2—C9—H9A108.4
C8—N1—Cu1115.1 (3)C8—C9—H9B108.4
C12—N2—C10118.3 (5)N2—C9—H9B108.4
C12—N2—C9108.0 (5)H9A—C9—H9B107.5
C10—N2—C9106.7 (4)N2—C10—C11117.3 (4)
C12—N2—Cu1110.2 (3)N2—C10—H10A108.0
C10—N2—Cu1110.5 (3)C11—C10—H10A108.0
C9—N2—Cu1101.5 (3)N2—C10—H10B108.0
C14—N3—Cu1160.4 (3)C11—C10—H10B108.0
O1—C1—C6119.3 (4)H10A—C10—H10B107.2
O1—C1—C2125.4 (4)C10—C11—H11A109.5
C6—C1—C2115.3 (4)C10—C11—H11B109.5
C3—C2—C1120.6 (4)H11A—C11—H11B109.5
C3—C2—C7117.4 (4)C10—C11—H11C109.5
C1—C2—C7122.0 (4)H11A—C11—H11C109.5
C4—C3—C2120.7 (4)H11B—C11—H11C109.5
C4—C3—H3119.7C13—C12—N2118.8 (6)
C2—C3—H3119.7C13—C12—H12A107.6
C3—C4—C5120.3 (4)N2—C12—H12A107.6
C3—C4—Cl1120.1 (4)C13—C12—H12B107.6
C5—C4—Cl1119.6 (4)N2—C12—H12B107.6
C6—C5—C4119.9 (4)H12A—C12—H12B107.1
C6—C5—H5120.0C12—C13—H13A109.5
C4—C5—H5120.0C12—C13—H13B109.5
C5—C6—C1123.1 (4)H13A—C13—H13B109.5
C5—C6—Br1119.8 (3)C12—C13—H13C109.5
C1—C6—Br1117.1 (3)H13A—C13—H13C109.5
N1—C7—C2125.2 (4)H13B—C13—H13C109.5
N1—C7—H7117.4N3—C14—S1177.3 (4)
C2—C7—H7117.4

Experimental details

Crystal data
Chemical formula[Cu(C13H17BrClN2O)(NCS)]
Mr454.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.651 (2), 14.137 (2), 14.145 (2)
β (°) 90.820 (2)
V3)1729.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.85
Crystal size (mm)0.17 × 0.13 × 0.13
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.561, 0.634
No. of measured, independent and
observed [I > 2σ(I)] reflections
14228, 3745, 2784
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.04
No. of reflections3745
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.22, 0.92

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) top
Cu1—O11.902 (3)Cu1—N31.945 (4)
Cu1—N11.940 (3)Cu1—N22.073 (3)
O1—Cu1—N192.66 (14)O1—Cu1—N2168.15 (14)
O1—Cu1—N387.45 (14)N1—Cu1—N283.93 (14)
N1—Cu1—N3176.83 (16)N3—Cu1—N295.33 (15)
 

Acknowledgements

The authors thank Minjiang University for financial support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPanneerselvam, P., Nair, R. R., Vijayalakshmi, G., Subramanian, E. H. & Krishnan, S. (2005). Eur. J. Med. Chem. 40, 225–229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationShi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhong, X., Yi, J., Sun, J., Wei, H.-L., Liu, W.-S. & Yu, K.-B. (2006). Eur. J. Med. Chem. 41, 1090–1092.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds