organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[4-tert-Butyl-5-(2,4,5-tri­meth­oxy­benz­yl)thia­zol-2-ylimino­meth­yl]phenol

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China, and bSchool of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: axhu0731@yahoo.com.cn

(Received 22 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title compound, C24H28N2O4S, the dihedral angle between the phenol ring and the thia­zole ring system is 10.6 (1)°, and the trimethoxy­phenyl group is approximately perpendicular to the thia­zole ring, the dihedral angle being 84.7 (2)°. There is a strong intra­molecular hydrogen-bonding inter­action between the Schiff base and the hydr­oxy group.

Related literature

For general background, see: Modi et al. (1971[Modi, J. D., Sabnis, S. S. & Deliwala, C. V. (1971). J. Med. Chem. 14, 450-451.]); More et al. (2001[More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N2O4S

  • Mr = 440.54

  • Triclinic, [P \overline 1]

  • a = 10.9137 (6) Å

  • b = 11.0904 (6) Å

  • c = 11.1260 (6) Å

  • α = 64.933 (1)°

  • β = 72.383 (1)°

  • γ = 83.202 (1)°

  • V = 1162.54 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • 0.48 × 0.44 × 0.42 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.932

  • 9103 measured reflections

  • 4524 independent reflections

  • 3450 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.131

  • S = 1.05

  • 4524 reflections

  • 287 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.89 2.612 (2) 147

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2005[Bruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazoles exhibit a wide range of biological activities and Schiff bases play an important role in many biological processes (More et al., 2001). Schiff bases from benzaldehyde nitrogen mustards and p-aminophenylthiazole were reported to have significant anticancer activity (Modi et al., 1971). As part of our research program concerning the anticancer behaviour of thiazole Schiff bases, the title compound (I) has been synthesized and characterized (Fig. 1).

Geometric parameters are in the normal ranges. The length of C=N double bond is 1.280 (3) Å. The dihedral angle between the phenol group and the thiazole ring system is 10.6 (1)°, and the 2,4,5-trimethoxybenzyl group is approximately perpendicular to the thiazole ring with a dihedral angle of 84.7 (2)°. There is a strong intramolecular hydrogen bond between the nitrogen atom of Schiff base and the hydroxy group (Table 1). Packing diagram of (I) in a unit cell is shown in Fig. 2.

Related literature top

For genaral background, see: Modi et al. (1971); More et al. (2001).

Experimental top

A solution of thiourea (0.03 mol) and 2-bromo-4,4-dimethyl-1-(2,4,5-trimethoxyphenyl)pentan-3-one (0.03 mol) in ethanol (70 ml) was refluxed for 8 h (monitoring by TLC). Then excess of the solvent was evaporated, the residue was made alkaline by ammonia, filtered and the solid recrystallized from ethanol, dried to give 4-tert-butyl-5-(2,4,5-trimethoxybenzyl)thiazol-2-amine. Then a mixture of appropriate aminothiazole (10 mmol), appropriate salicylaldehyde (10 mmol) in ethanol (50 ml) and piperidine (3–4 drops) was refluxed in a water-bath at 353 K for about 6.5 h. After the reaction was over, the reaction mixture was cooled and the crystals separated were filtered and recrystallized from ethanol to give (I). Yield: 87.3%. m.p. 425–426 K.

Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The hydroxy H atom was positioned geometrically (O—H = 0.82 Å) and refined as riding [Uiso(H) = 1.5 Ueq(O)]. Methyl H atoms were positioned geometrically (C—H = 0.96 Å) and torsion angles refined to fit the electron density [Uiso(H) = 1.5 Ueq(C)]. Other H atoms were placed in calculated positions (methylene C—H = 0.97 Å, C4—H4 = 0.93 Å and aromatic C—H = 0.93 Å) and refined as riding [Uiso(H) = 1.2 Ueq(C)].

Structure description top

Thiazoles exhibit a wide range of biological activities and Schiff bases play an important role in many biological processes (More et al., 2001). Schiff bases from benzaldehyde nitrogen mustards and p-aminophenylthiazole were reported to have significant anticancer activity (Modi et al., 1971). As part of our research program concerning the anticancer behaviour of thiazole Schiff bases, the title compound (I) has been synthesized and characterized (Fig. 1).

Geometric parameters are in the normal ranges. The length of C=N double bond is 1.280 (3) Å. The dihedral angle between the phenol group and the thiazole ring system is 10.6 (1)°, and the 2,4,5-trimethoxybenzyl group is approximately perpendicular to the thiazole ring with a dihedral angle of 84.7 (2)°. There is a strong intramolecular hydrogen bond between the nitrogen atom of Schiff base and the hydroxy group (Table 1). Packing diagram of (I) in a unit cell is shown in Fig. 2.

For genaral background, see: Modi et al. (1971); More et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram for (I). H atoms bonded to C atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.
(E)-2-[4-tert-Butyl-5-(2,4,5-trimethoxybenzyl)thiazol-2- yliminomethyl]phenol top
Crystal data top
C24H28N2O4SZ = 2
Mr = 440.54F(000) = 468
Triclinic, P1Dx = 1.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9137 (6) ÅCell parameters from 4266 reflections
b = 11.0904 (6) Åθ = 2.3–26.9°
c = 11.1260 (6) ŵ = 0.17 mm1
α = 64.933 (1)°T = 293 K
β = 72.383 (1)°Block, yellow
γ = 83.202 (1)°0.48 × 0.44 × 0.42 mm
V = 1162.54 (11) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
4524 independent reflections
Radiation source: fine-focus sealed tube3450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1313
Tmin = 0.922, Tmax = 0.932k = 1313
9103 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.4082P]
where P = (Fo2 + 2Fc2)/3
4524 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.24 e Å3
24 restraintsΔρmin = 0.16 e Å3
Crystal data top
C24H28N2O4Sγ = 83.202 (1)°
Mr = 440.54V = 1162.54 (11) Å3
Triclinic, P1Z = 2
a = 10.9137 (6) ÅMo Kα radiation
b = 11.0904 (6) ŵ = 0.17 mm1
c = 11.1260 (6) ÅT = 293 K
α = 64.933 (1)°0.48 × 0.44 × 0.42 mm
β = 72.383 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4524 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3450 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.932Rint = 0.019
9103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04524 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
4524 reflectionsΔρmin = 0.16 e Å3
287 parameters
Special details top

Experimental. Spectroscopic analysis: 1H-NMR (CDCl3, 400 MHz) (p.p.m.): 1.48(s, 9H, (CH3)3), 3.80, 3.82, 3.91(3×s, 9H, 3×CH3O), 4.19(s, 2H, CH2), 6.55, 6.69(2×s, 2H, 2,4,5-(OCH3)3C6H2), 6.93(dd, J = 8.0 Hz, J= 8.0 Hz, 1H, 2-HOC6H45-H), 6.99(d, J= 8.0 Hz, 1H, 2-HOC6H43-H), 7.39(ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.6 Hz, 1H, 2-HOC6H44-H), 7.42(dd, J = 8.0 Hz, J = 1.6 Hz, 1H, 2-HOC6H46-H), 9.02(s, 1H, N=CH), 12.32(s, 1H, OH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63017 (5)0.60302 (5)0.32907 (5)0.05115 (17)
C10.52224 (18)0.72677 (19)0.33490 (19)0.0465 (4)
C20.59138 (19)0.6896 (2)0.5140 (2)0.0488 (5)
C30.66530 (17)0.59963 (19)0.47095 (18)0.0445 (4)
C40.39884 (19)0.8906 (2)0.2148 (2)0.0511 (5)
H40.39680.93150.27310.061*
C50.33379 (19)0.9527 (2)0.1080 (2)0.0502 (5)
C60.3394 (2)0.9001 (2)0.0126 (2)0.0556 (5)
C70.2783 (2)0.9653 (3)0.0905 (2)0.0715 (7)
H70.28320.93160.15540.086*
C80.2110 (2)1.0789 (3)0.0969 (3)0.0781 (7)
H80.17041.12150.16630.094*
C90.2023 (3)1.1309 (3)0.0031 (3)0.0786 (7)
H90.15521.20750.00770.094*
C100.2638 (2)1.0689 (2)0.0975 (3)0.0677 (6)
H100.25891.10500.16050.081*
C110.5924 (3)0.7197 (3)0.6354 (2)0.0701 (6)
C120.4742 (4)0.7988 (4)0.6703 (3)0.1338 (15)
H12A0.47410.88080.59140.201*
H12B0.47550.81770.74650.201*
H12C0.39830.74790.69510.201*
C130.7146 (4)0.7995 (4)0.5940 (4)0.1271 (13)
H13A0.78840.74900.57030.191*
H13B0.71810.81760.67000.191*
H13C0.71400.88190.51570.191*
C140.5886 (3)0.5915 (3)0.7651 (2)0.0854 (8)
H14A0.51590.53800.78540.128*
H14B0.58140.61330.84170.128*
H14C0.66620.54270.74950.128*
C150.76608 (18)0.5036 (2)0.5243 (2)0.0509 (5)
H15A0.80730.53960.56810.061*
H15B0.72460.42020.59390.061*
C160.86707 (18)0.4771 (2)0.4116 (2)0.0496 (5)
C170.95846 (18)0.5741 (2)0.3172 (2)0.0519 (5)
C181.0483 (2)0.5553 (3)0.2080 (2)0.0637 (6)
H181.10780.62210.14390.076*
C191.0488 (2)0.4373 (3)0.1951 (3)0.0732 (7)
C200.9608 (3)0.3373 (3)0.2909 (3)0.0752 (7)
C210.8698 (2)0.3587 (2)0.3973 (2)0.0625 (6)
H210.80940.29240.46030.075*
C221.0551 (2)0.7806 (2)0.2629 (3)0.0811 (8)
H22A1.13360.73610.27750.122*
H22B1.04110.85100.29410.122*
H22C1.06080.81730.16620.122*
C231.2105 (3)0.5148 (4)0.0208 (3)0.1211 (13)
H23A1.15690.58580.06230.182*
H23B1.26170.48320.08830.182*
H23C1.26580.54690.01210.182*
C240.8942 (5)0.1181 (4)0.3630 (6)0.1547 (19)
H24A0.91500.08460.44940.232*
H24B0.90700.04960.32940.232*
H24C0.80610.14530.37640.232*
N10.51002 (16)0.76202 (17)0.43512 (16)0.0512 (4)
N20.45913 (15)0.78106 (17)0.23124 (16)0.0501 (4)
O10.40160 (19)0.78624 (19)0.01767 (18)0.0806 (5)
H10.43650.75900.08000.121*
O20.95144 (14)0.68869 (15)0.33783 (16)0.0659 (4)
O31.1324 (2)0.4094 (3)0.0912 (2)0.1084 (7)
O40.9706 (3)0.2228 (3)0.2707 (3)0.1280 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0522 (3)0.0601 (3)0.0439 (3)0.0063 (2)0.0152 (2)0.0243 (2)
C10.0443 (10)0.0521 (11)0.0390 (10)0.0018 (8)0.0105 (8)0.0152 (8)
C20.0509 (11)0.0518 (11)0.0431 (10)0.0017 (9)0.0144 (9)0.0184 (9)
C30.0404 (9)0.0503 (10)0.0389 (9)0.0028 (8)0.0095 (8)0.0150 (8)
C40.0526 (11)0.0547 (12)0.0458 (11)0.0039 (9)0.0146 (9)0.0187 (9)
C50.0462 (10)0.0526 (11)0.0457 (10)0.0030 (9)0.0130 (8)0.0135 (9)
C60.0506 (11)0.0651 (13)0.0473 (11)0.0059 (10)0.0158 (9)0.0195 (10)
C70.0700 (15)0.0908 (18)0.0557 (13)0.0123 (13)0.0288 (12)0.0274 (13)
C80.0658 (15)0.0885 (19)0.0678 (15)0.0092 (14)0.0341 (13)0.0122 (14)
C90.0777 (17)0.0661 (15)0.0836 (18)0.0169 (13)0.0337 (14)0.0194 (14)
C100.0745 (15)0.0587 (13)0.0707 (15)0.0070 (11)0.0277 (12)0.0240 (12)
C110.0889 (17)0.0793 (16)0.0610 (14)0.0212 (13)0.0340 (12)0.0425 (12)
C120.185 (3)0.166 (3)0.097 (2)0.108 (3)0.078 (2)0.098 (2)
C130.174 (3)0.130 (3)0.116 (3)0.041 (3)0.054 (3)0.067 (2)
C140.100 (2)0.112 (2)0.0506 (13)0.0261 (16)0.0310 (13)0.0392 (14)
C150.0459 (10)0.0548 (11)0.0438 (10)0.0023 (9)0.0125 (8)0.0130 (9)
C160.0422 (10)0.0548 (11)0.0469 (11)0.0054 (9)0.0157 (8)0.0153 (9)
C170.0420 (10)0.0581 (12)0.0516 (11)0.0053 (9)0.0159 (9)0.0181 (10)
C180.0456 (11)0.0832 (16)0.0547 (13)0.0020 (11)0.0095 (10)0.0245 (12)
C190.0590 (14)0.104 (2)0.0664 (15)0.0146 (14)0.0160 (12)0.0484 (15)
C200.0733 (16)0.0789 (17)0.0897 (18)0.0105 (13)0.0240 (14)0.0513 (15)
C210.0590 (13)0.0573 (13)0.0682 (14)0.0010 (10)0.0163 (11)0.0241 (11)
C220.0606 (14)0.0619 (15)0.099 (2)0.0083 (12)0.0180 (14)0.0138 (14)
C230.084 (2)0.209 (4)0.074 (2)0.005 (2)0.0011 (17)0.077 (3)
C240.153 (4)0.088 (3)0.252 (6)0.015 (3)0.062 (4)0.097 (3)
N10.0518 (9)0.0570 (10)0.0465 (9)0.0069 (8)0.0162 (7)0.0228 (8)
N20.0473 (9)0.0575 (10)0.0437 (9)0.0004 (8)0.0152 (7)0.0173 (8)
O10.0993 (13)0.0948 (13)0.0727 (11)0.0399 (10)0.0488 (10)0.0505 (10)
O20.0539 (9)0.0601 (9)0.0748 (10)0.0058 (7)0.0072 (7)0.0250 (8)
O30.0873 (14)0.157 (2)0.0968 (15)0.0142 (14)0.0022 (12)0.0863 (16)
O40.133 (2)0.1112 (18)0.165 (2)0.0027 (15)0.0126 (17)0.1002 (19)
Geometric parameters (Å, º) top
S1—C11.709 (2)C14—H14A0.9600
S1—C31.7184 (19)C14—H14B0.9600
C1—N11.297 (2)C14—H14C0.9600
C1—N21.400 (2)C15—C161.507 (3)
C2—C31.363 (3)C15—H15A0.9700
C2—N11.382 (2)C15—H15B0.9700
C2—C111.525 (3)C16—C211.384 (3)
C3—C151.509 (3)C16—C171.385 (3)
C4—N21.280 (3)C17—O21.373 (3)
C4—C51.446 (3)C17—C181.388 (3)
C4—H40.9300C18—C191.375 (3)
C5—C61.396 (3)C18—H180.9300
C5—C101.397 (3)C19—O31.365 (3)
C6—O11.349 (3)C19—C201.386 (4)
C6—C71.389 (3)C20—O41.367 (3)
C7—C81.367 (3)C20—C211.384 (3)
C7—H70.9300C21—H210.9300
C8—C91.367 (4)C22—O21.413 (3)
C8—H80.9300C22—H22A0.9600
C9—C101.367 (3)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C10—H100.9300C23—O31.416 (4)
C11—C121.517 (4)C23—H23A0.9600
C11—C131.529 (4)C23—H23B0.9600
C11—C141.532 (4)C23—H23C0.9600
C12—H12A0.9600C24—O41.341 (5)
C12—H12B0.9600C24—H24A0.9600
C12—H12C0.9600C24—H24B0.9600
C13—H13A0.9600C24—H24C0.9600
C13—H13B0.9600O1—H10.8200
C13—H13C0.9600
C1—S1—C389.45 (9)C11—C14—H14C109.5
N1—C1—N2127.00 (18)H14A—C14—H14C109.5
N1—C1—S1115.35 (14)H14B—C14—H14C109.5
N2—C1—S1117.64 (14)C16—C15—C3112.66 (16)
C3—C2—N1114.89 (17)C16—C15—H15A109.1
C3—C2—C11127.01 (18)C3—C15—H15A109.1
N1—C2—C11118.08 (18)C16—C15—H15B109.1
C2—C3—C15132.31 (18)C3—C15—H15B109.1
C2—C3—S1109.68 (14)H15A—C15—H15B107.8
C15—C3—S1118.01 (14)C21—C16—C17118.45 (19)
N2—C4—C5121.83 (19)C21—C16—C15121.81 (19)
N2—C4—H4119.1C17—C16—C15119.72 (19)
C5—C4—H4119.1O2—C17—C16115.65 (18)
C6—C5—C10118.15 (19)O2—C17—C18123.3 (2)
C6—C5—C4121.68 (19)C16—C17—C18121.0 (2)
C10—C5—C4120.2 (2)C19—C18—C17119.6 (2)
O1—C6—C7118.3 (2)C19—C18—H18120.2
O1—C6—C5122.07 (18)C17—C18—H18120.2
C7—C6—C5119.6 (2)O3—C19—C18124.1 (3)
C8—C7—C6120.2 (2)O3—C19—C20115.6 (3)
C8—C7—H7119.9C18—C19—C20120.3 (2)
C6—C7—H7119.9O4—C20—C21124.6 (3)
C9—C8—C7121.2 (2)O4—C20—C19115.9 (2)
C9—C8—H8119.4C21—C20—C19119.4 (2)
C7—C8—H8119.4C20—C21—C16121.2 (2)
C8—C9—C10119.1 (2)C20—C21—H21119.4
C8—C9—H9120.4C16—C21—H21119.4
C10—C9—H9120.4O2—C22—H22A109.5
C9—C10—C5121.7 (2)O2—C22—H22B109.5
C9—C10—H10119.2H22A—C22—H22B109.5
C5—C10—H10119.2O2—C22—H22C109.5
C12—C11—C2109.8 (2)H22A—C22—H22C109.5
C12—C11—C13110.4 (3)H22B—C22—H22C109.5
C2—C11—C13108.1 (2)O3—C23—H23A109.5
C12—C11—C14107.2 (2)O3—C23—H23B109.5
C2—C11—C14111.3 (2)H23A—C23—H23B109.5
C13—C11—C14110.0 (2)O3—C23—H23C109.5
C11—C12—H12A109.5H23A—C23—H23C109.5
C11—C12—H12B109.5H23B—C23—H23C109.5
H12A—C12—H12B109.5O4—C24—H24A109.5
C11—C12—H12C109.5O4—C24—H24B109.5
H12A—C12—H12C109.5H24A—C24—H24B109.5
H12B—C12—H12C109.5O4—C24—H24C109.5
C11—C13—H13A109.5H24A—C24—H24C109.5
C11—C13—H13B109.5H24B—C24—H24C109.5
H13A—C13—H13B109.5C1—N1—C2110.61 (17)
C11—C13—H13C109.5C4—N2—C1119.30 (17)
H13A—C13—H13C109.5C6—O1—H1109.5
H13B—C13—H13C109.5C17—O2—C22118.54 (18)
C11—C14—H14A109.5C19—O3—C23117.8 (3)
C11—C14—H14B109.5C24—O4—C20119.8 (3)
H14A—C14—H14B109.5
C3—S1—C1—N11.29 (16)C3—C15—C16—C1773.2 (2)
C3—S1—C1—N2177.33 (15)C21—C16—C17—O2179.37 (18)
N1—C2—C3—C15179.01 (18)C15—C16—C17—O22.1 (3)
C11—C2—C3—C150.7 (4)C21—C16—C17—C182.1 (3)
N1—C2—C3—S11.1 (2)C15—C16—C17—C18176.49 (18)
C11—C2—C3—S1179.50 (18)O2—C17—C18—C19179.9 (2)
C1—S1—C3—C21.31 (15)C16—C17—C18—C191.7 (3)
C1—S1—C3—C15178.82 (15)C17—C18—C19—O3179.6 (2)
N2—C4—C5—C63.6 (3)C17—C18—C19—C200.4 (4)
N2—C4—C5—C10176.90 (19)O3—C19—C20—O41.3 (4)
C10—C5—C6—O1178.0 (2)C18—C19—C20—O4178.8 (2)
C4—C5—C6—O12.4 (3)O3—C19—C20—C21178.0 (2)
C10—C5—C6—C71.3 (3)C18—C19—C20—C212.0 (4)
C4—C5—C6—C7178.2 (2)O4—C20—C21—C16179.3 (3)
O1—C6—C7—C8178.1 (2)C19—C20—C21—C161.6 (4)
C5—C6—C7—C81.3 (4)C17—C16—C21—C200.4 (3)
C6—C7—C8—C90.1 (4)C15—C16—C21—C20178.1 (2)
C7—C8—C9—C101.0 (4)N2—C1—N1—C2177.61 (18)
C8—C9—C10—C50.9 (4)S1—C1—N1—C20.9 (2)
C6—C5—C10—C90.2 (3)C3—C2—N1—C10.2 (2)
C4—C5—C10—C9179.3 (2)C11—C2—N1—C1178.72 (19)
C3—C2—C11—C12165.6 (3)C5—C4—N2—C1178.90 (17)
N1—C2—C11—C1216.0 (3)N1—C1—N2—C412.8 (3)
C3—C2—C11—C1373.8 (3)S1—C1—N2—C4165.62 (15)
N1—C2—C11—C13104.5 (3)C16—C17—O2—C22168.02 (19)
C3—C2—C11—C1447.1 (3)C18—C17—O2—C2213.5 (3)
N1—C2—C11—C14134.6 (2)C18—C19—O3—C239.7 (4)
C2—C3—C15—C16150.2 (2)C20—C19—O3—C23170.2 (3)
S1—C3—C15—C1630.0 (2)C21—C20—O4—C244.7 (5)
C3—C15—C16—C21105.3 (2)C19—C20—O4—C24176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.892.612 (2)147

Experimental details

Crystal data
Chemical formulaC24H28N2O4S
Mr440.54
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.9137 (6), 11.0904 (6), 11.1260 (6)
α, β, γ (°)64.933 (1), 72.383 (1), 83.202 (1)
V3)1162.54 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.48 × 0.44 × 0.42
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.922, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
9103, 4524, 3450
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.131, 1.05
No. of reflections4524
No. of parameters287
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.892.612 (2)146.5
 

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationModi, J. D., Sabnis, S. S. & Deliwala, C. V. (1971). J. Med. Chem. 14, 450–451.  CAS PubMed Web of Science Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds