metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Azido-κN)[6-meth­­oxy-2-(2-pyridylmethyl­imino­meth­yl)phenolato-κ3N,N′,O1]copper(II)

aSchool of Chemistry and Chemical Technology, Shandong University, Jinan 250100, People's Republic of China.
*Correspondence e-mail: sunxuan@sdu.edu.cn

(Received 11 September 2007; accepted 20 September 2007; online 6 December 2007)

The title compound, [Cu(C14H13N2O2)(N3)], is a monomeric neutral complex with one unsymmetrical 6-meth­oxy-2-(2-pyridylmethyl­imino­meth­yl)phenolate Schiff base ligand and one azide ligand. The mol­ecules are connected by a combination of two ππ inter­actions [centroid–centroid distances 3.359 (3) and 3.378 (2) Å] and one C—H⋯N hydrogen bond into a two-dimensional supra­molecular network structure.

Related literature

For related literature, see: Kannappan et al. (2005[Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383-388.]); Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); Ni & Wang (2007[Ni, Z.-H. & Wang, H.-L. (2007). Acta Cryst. E63, o3799.]); Sun (2005[Sun, Y.-X. (2005). Acta Cryst. E61, m338-m340.]); Yang (2005[Yang, D.-S. (2005). Acta Cryst. E61, m247-m248.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H13N2O2)(N3)]

  • Mr = 346.83

  • Triclinic, [P \overline 1]

  • a = 6.7197 (2) Å

  • b = 10.2820 (2) Å

  • c = 10.5549 (5) Å

  • α = 86.130 (2)°

  • β = 81.155 (2)°

  • γ = 76.289 (3)°

  • V = 699.69 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 (2) K

  • 0.10 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.941

  • 11804 measured reflections

  • 3207 independent reflections

  • 2815 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.090

  • S = 0.99

  • 3207 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N3i 0.93 2.49 3.189 (2) 132
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97 and XP.

Supporting information


Comment top

Some Schiff bases can be potential employed as in-plane ligands which usually exhibit beautiful supramolecular structures via π-π interactions (Kannappan et al., 2005; Li & Zhang, 2004; Yang, 2005). In addtion, the complexes based on these Schiff base ligands can form various hydrogen bonds through reasonable design and the introduction of suitable assistant groups (Sun, 2005).

The geometry and labelling scheme for the crystal structure of the title complex are depicted in Figure 1. The title compound is a monomeric neutral complex with one tridentate unsymmetric Schiff base 6-Methoxy-2-(2-pyridylmethyliminomethyl)phenol and one azide group, which are similar to its derivatives [Cu(C14H13N2O2)(Cl)] and [Cu(C14H13N2O2)(Br)] (Kannappan et al., 2005). The Cu(II) center of the title complex is coordinated by one pyridine and one imide nitrogen atoms and one phenoxo oxygen atom from Schiff base ligand and one terminal nitrogen atom from azide group, yielding a distorted square-planar coordinaton environment. All atoms in the title complex except N2 and N3 form a plane with the largest deviation value of 0.0514 (16) Å from the mean plane.

The Cu1—O1 bond distance is 1.9062 (14) Å. The Cu—Npyridine, Cu—Nimine and Cu—Nazide bond lengths are 2.0106 (16), 1.9315 (16) and 1.9504 (19) Å, which are similar to those in complexes [Cu(C14H13N2O2)(Cl)] and [Cu(C14H13N2O2)(Br)]. The bond angles O1—Cu1—N4 (175.78 (5) Å) and N1—Cu1—N5 (175.35 (7) Å) are nearly linear. The chelate bite angles for the five and six-membered rings formed by the Schiff base are 82.20 (7) ° and 93.59 (6) °, which are also similar to those in the Cl and Br complexes reported by Kannappan et al., (2005). The imide bond length (1.290 (3) Å for C7—N5) is slightly longer than that in ligand 6-Methoxy-2-(2-pyridylmethyliminomethyl)phenol (1.278 (2) Å) (Ni et al., 2007). The N—N bond distances are 1.181 (3) Å for N1—N2 and 1.147 (3) Å for N2—N3. The N1—N2—N3 bond angle is 176.4 (2) ° and the Cu1—N1—N2 bond angle is 122.36 (17) °.

The title compound shows various non-covalent intermolecular interactions and forms a very interesting two-dimensional supramolecular network structure (Figure 2). The units of the title complexes connect each other by two different π-π interactions with inter-unit distances 3.359 (3) Å and 3.378 (2) Å, resulting in one-dimensional supramolecular substructures. These substructures are linked by the C—H···N hydrogen bonds between the pyridine carbon atom and uncoordinated terminal azide nitrogen atom into a beautiful two-dimensional supramolecular structure.

Related literature top

For related literature, see: Kannappan et al. (2005); Li & Zhang (2004); Ni & Wang (2007); Sun (2005); Yang (2005).

Experimental top

The Schiff base 6-Methoxy-2-(2-pyridylmethyliminomethyl)phenol (HL) was synthesized according to literature (Ni et al., 2007). The title complex was prepared as following: aquaous and methanol solution (6 ml, MeOH/H2O = 2:1 v/v) of NaN3 (52 mg, 0.8 mmol) was added into a MeOH and aquaous solution (20 ml, MeOH/H2O = 4:1 v/v) containing the HL ligand (48 mg, 0.2 mmol) and CuCl2.2H2O (34 mg, 0.2 mmol). The mixture was rapidly filtered and the resulting solution was kept at room temperature for about six hours, giving rise a to brown product. Yield: 60%. Elemental analysis [found (calculated)] for CuC14H13N5O2: C 48.35 (48.48), H 3.70 (3.78), N 20.12% (20.19%).

Refinement top

H atoms bound to C were placed using the HFIX commands in SHELXL-97. All H atoms were allowed for as riding atoms (C—H 0.97 Å, or 0.93 Å) with the constraint Uiso(H) = 1.5Ueq(methyl carrier) and 1.2Ueq(carrier) for all other H atoms.

Structure description top

Some Schiff bases can be potential employed as in-plane ligands which usually exhibit beautiful supramolecular structures via π-π interactions (Kannappan et al., 2005; Li & Zhang, 2004; Yang, 2005). In addtion, the complexes based on these Schiff base ligands can form various hydrogen bonds through reasonable design and the introduction of suitable assistant groups (Sun, 2005).

The geometry and labelling scheme for the crystal structure of the title complex are depicted in Figure 1. The title compound is a monomeric neutral complex with one tridentate unsymmetric Schiff base 6-Methoxy-2-(2-pyridylmethyliminomethyl)phenol and one azide group, which are similar to its derivatives [Cu(C14H13N2O2)(Cl)] and [Cu(C14H13N2O2)(Br)] (Kannappan et al., 2005). The Cu(II) center of the title complex is coordinated by one pyridine and one imide nitrogen atoms and one phenoxo oxygen atom from Schiff base ligand and one terminal nitrogen atom from azide group, yielding a distorted square-planar coordinaton environment. All atoms in the title complex except N2 and N3 form a plane with the largest deviation value of 0.0514 (16) Å from the mean plane.

The Cu1—O1 bond distance is 1.9062 (14) Å. The Cu—Npyridine, Cu—Nimine and Cu—Nazide bond lengths are 2.0106 (16), 1.9315 (16) and 1.9504 (19) Å, which are similar to those in complexes [Cu(C14H13N2O2)(Cl)] and [Cu(C14H13N2O2)(Br)]. The bond angles O1—Cu1—N4 (175.78 (5) Å) and N1—Cu1—N5 (175.35 (7) Å) are nearly linear. The chelate bite angles for the five and six-membered rings formed by the Schiff base are 82.20 (7) ° and 93.59 (6) °, which are also similar to those in the Cl and Br complexes reported by Kannappan et al., (2005). The imide bond length (1.290 (3) Å for C7—N5) is slightly longer than that in ligand 6-Methoxy-2-(2-pyridylmethyliminomethyl)phenol (1.278 (2) Å) (Ni et al., 2007). The N—N bond distances are 1.181 (3) Å for N1—N2 and 1.147 (3) Å for N2—N3. The N1—N2—N3 bond angle is 176.4 (2) ° and the Cu1—N1—N2 bond angle is 122.36 (17) °.

The title compound shows various non-covalent intermolecular interactions and forms a very interesting two-dimensional supramolecular network structure (Figure 2). The units of the title complexes connect each other by two different π-π interactions with inter-unit distances 3.359 (3) Å and 3.378 (2) Å, resulting in one-dimensional supramolecular substructures. These substructures are linked by the C—H···N hydrogen bonds between the pyridine carbon atom and uncoordinated terminal azide nitrogen atom into a beautiful two-dimensional supramolecular structure.

For related literature, see: Kannappan et al. (2005); Li & Zhang (2004); Ni & Wang (2007); Sun (2005); Yang (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, solvate water molecules and all H atoms bonded to C atoms are omitted.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the two-dimensional supramolecular structure. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (-x + 2, -y, -z + 1), (-x + 1, -y, -z + 1), (x, y + 1, z) and (x, y + 1, z), respectively.
(Azido-κN)[6-methoxy-2-(2-pyridylmethyliminomethyl)phenolato- κ3N,N',O1]copper(II) top
Crystal data top
[Cu(C14H13N2O2)(N3)]Z = 2
Mr = 346.83F(000) = 354
Triclinic, P1Dx = 1.646 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7197 (2) ÅCell parameters from 3207 reflections
b = 10.2820 (2) Åθ = 2.0–27.5°
c = 10.5549 (5) ŵ = 1.58 mm1
α = 86.130 (2)°T = 293 K
β = 81.155 (2)°Tiny block, brown
γ = 76.289 (3)°0.10 × 0.06 × 0.04 mm
V = 699.69 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3207 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.892, Tmax = 0.941k = 1313
11804 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.066P)2 + 0.0216P]
where P = (Fo2 + 2Fc2)/3
3207 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C14H13N2O2)(N3)]γ = 76.289 (3)°
Mr = 346.83V = 699.69 (4) Å3
Triclinic, P1Z = 2
a = 6.7197 (2) ÅMo Kα radiation
b = 10.2820 (2) ŵ = 1.58 mm1
c = 10.5549 (5) ÅT = 293 K
α = 86.130 (2)°0.10 × 0.06 × 0.04 mm
β = 81.155 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3207 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2815 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.941Rint = 0.020
11804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.99Δρmax = 0.35 e Å3
3207 reflectionsΔρmin = 0.29 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.71363 (3)0.01027 (2)0.64642 (2)0.03501 (10)
O10.6949 (2)0.15473 (13)0.52246 (13)0.0419 (3)
O20.6515 (3)0.38174 (15)0.38914 (16)0.0527 (4)
N10.6386 (4)0.1355 (2)0.78607 (19)0.0566 (5)
N20.7302 (3)0.21856 (17)0.79457 (17)0.0483 (4)
N30.8155 (4)0.2994 (2)0.8096 (3)0.0735 (7)
N40.7379 (2)0.15134 (16)0.76640 (16)0.0373 (3)
N50.7842 (2)0.12500 (16)0.51834 (16)0.0357 (3)
C50.7893 (3)0.26937 (19)0.7095 (2)0.0380 (4)
C80.7789 (3)0.0241 (2)0.33149 (19)0.0381 (4)
C120.7057 (3)0.2671 (2)0.3210 (2)0.0411 (4)
C130.7266 (3)0.14646 (19)0.39683 (19)0.0369 (4)
C10.7074 (3)0.1514 (2)0.8959 (2)0.0459 (5)
H10.67070.06970.93630.055*
C20.7285 (4)0.2665 (3)0.9697 (2)0.0553 (6)
H20.70770.26301.05870.066*
C30.7806 (4)0.3881 (2)0.9112 (2)0.0530 (6)
H30.79400.46780.95990.064*
C40.8128 (3)0.3895 (2)0.7786 (2)0.0472 (5)
H40.84980.47030.73660.057*
C70.8033 (3)0.1038 (2)0.3957 (2)0.0399 (4)
H70.83570.17840.34480.048*
C90.8117 (3)0.0253 (2)0.1950 (2)0.0467 (5)
H90.84700.05530.15280.056*
C100.7921 (3)0.1424 (2)0.1258 (2)0.0511 (5)
H100.81440.14180.03670.061*
C110.7386 (3)0.2640 (2)0.1881 (2)0.0460 (5)
H110.72480.34390.13990.055*
C60.8206 (3)0.26431 (19)0.5655 (2)0.0426 (4)
H6A0.96070.31100.53350.051*
H6B0.72570.30850.53470.051*
C140.6187 (4)0.5071 (2)0.3204 (3)0.0576 (6)
H14A0.58200.57840.37990.086*
H14B0.50870.51370.27030.086*
H14C0.74310.51380.26460.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03917 (16)0.03307 (14)0.03272 (15)0.00818 (10)0.00430 (10)0.00288 (9)
O10.0541 (8)0.0374 (7)0.0338 (7)0.0092 (6)0.0065 (6)0.0025 (5)
O20.0669 (10)0.0411 (8)0.0486 (9)0.0096 (7)0.0097 (8)0.0030 (7)
N10.0808 (14)0.0462 (10)0.0410 (11)0.0179 (10)0.0068 (10)0.0107 (8)
N20.0719 (12)0.0295 (8)0.0380 (10)0.0006 (8)0.0104 (8)0.0000 (7)
N30.1041 (19)0.0387 (11)0.0809 (17)0.0149 (11)0.0245 (14)0.0045 (10)
N40.0354 (8)0.0380 (8)0.0394 (9)0.0103 (6)0.0063 (7)0.0002 (7)
N50.0347 (8)0.0356 (8)0.0373 (9)0.0081 (6)0.0056 (7)0.0028 (6)
C50.0308 (9)0.0383 (9)0.0460 (11)0.0102 (7)0.0071 (8)0.0020 (8)
C80.0348 (9)0.0458 (10)0.0343 (10)0.0103 (8)0.0047 (8)0.0024 (8)
C120.0353 (10)0.0441 (11)0.0444 (11)0.0095 (8)0.0083 (8)0.0021 (8)
C130.0306 (9)0.0443 (10)0.0364 (11)0.0092 (7)0.0063 (7)0.0007 (8)
C10.0487 (12)0.0496 (12)0.0393 (12)0.0124 (9)0.0057 (9)0.0013 (9)
C20.0554 (13)0.0672 (15)0.0434 (13)0.0178 (11)0.0073 (10)0.0111 (11)
C30.0510 (12)0.0501 (12)0.0586 (15)0.0169 (10)0.0101 (10)0.0175 (10)
C40.0432 (11)0.0391 (10)0.0608 (14)0.0130 (8)0.0094 (10)0.0055 (9)
C70.0393 (10)0.0425 (10)0.0387 (11)0.0090 (8)0.0040 (8)0.0108 (8)
C90.0495 (12)0.0569 (12)0.0345 (11)0.0123 (9)0.0060 (9)0.0072 (9)
C100.0501 (12)0.0724 (15)0.0308 (11)0.0144 (11)0.0072 (9)0.0029 (10)
C110.0412 (11)0.0548 (12)0.0432 (12)0.0140 (9)0.0107 (9)0.0108 (9)
C60.0483 (11)0.0344 (9)0.0454 (12)0.0087 (8)0.0068 (9)0.0056 (8)
C140.0596 (14)0.0430 (12)0.0701 (16)0.0115 (10)0.0144 (12)0.0093 (11)
Geometric parameters (Å, º) top
Cu1—O11.9062 (14)C7—C81.423 (3)
Cu1—N11.9504 (19)C7—H70.93
Cu1—N42.0106 (16)C13—C81.419 (3)
Cu1—N51.9315 (16)C13—C121.420 (3)
N1—N21.181 (3)C5—C61.500 (3)
N2—N31.147 (3)C1—C21.364 (3)
O1—C131.316 (2)C1—H10.93
O2—C121.368 (3)C3—C21.377 (4)
O2—C141.423 (3)C3—H30.93
C11—C121.387 (3)C9—C101.355 (3)
C11—C101.397 (3)C9—C81.423 (3)
C11—H110.93C9—H90.93
N5—C71.290 (3)C6—H6A0.97
N5—C61.461 (2)C6—H6B0.97
N4—C51.338 (3)C14—H14A0.96
N4—C11.351 (3)C14—H14B0.96
C4—C31.384 (3)C14—H14C0.96
C4—C51.380 (3)C2—H20.93
C4—H40.93C10—H100.93
O1—Cu1—N190.95 (7)C4—C5—C6121.54 (18)
O1—Cu1—N593.59 (6)N4—C1—C2122.5 (2)
N1—Cu1—N5175.35 (7)N4—C1—H1118.8
O1—Cu1—N4175.78 (5)C2—C1—H1118.8
N4—Cu1—N582.20 (7)C4—C3—C2118.7 (2)
N1—Cu1—N493.26 (8)C4—C3—H3120.6
N1—N2—N3176.4 (2)C2—C3—H3120.6
C13—O1—Cu1127.21 (13)C10—C9—C8120.8 (2)
C12—O2—C14118.41 (18)C10—C9—H9119.6
C12—C11—C10120.8 (2)C8—C9—H9119.6
C12—C11—H11119.6N2—N1—Cu1122.36 (17)
C10—C11—H11119.6N5—C6—C5109.75 (16)
C7—N5—C6117.27 (17)N5—C6—H6A109.7
C7—N5—Cu1126.15 (14)C5—C6—H6A109.7
C6—N5—Cu1116.57 (13)N5—C6—H6B109.7
C5—N4—C1118.20 (18)C5—C6—H6B109.7
C5—N4—Cu1115.20 (14)H6A—C6—H6B108.2
C1—N4—Cu1126.61 (14)C9—C8—C13120.07 (19)
C3—C4—C5119.0 (2)C9—C8—C7116.64 (19)
C3—C4—H4120.5C13—C8—C7123.29 (19)
C5—C4—H4120.5O2—C14—H14A109.5
N5—C7—C8125.60 (18)O2—C14—H14B109.5
N5—C7—H7117.2H14A—C14—H14B109.5
C8—C7—H7117.2O2—C14—H14C109.5
O1—C13—C8124.15 (18)H14A—C14—H14C109.5
O1—C13—C12118.36 (17)H14B—C14—H14C109.5
C8—C13—C12117.49 (18)C1—C2—C3119.4 (2)
O2—C12—C11124.42 (19)C1—C2—H2120.3
O2—C12—C13114.87 (18)C3—C2—H2120.3
C11—C12—C13120.70 (19)C9—C10—C11120.1 (2)
N4—C5—C4122.2 (2)C9—C10—H10119.9
N4—C5—C6116.27 (17)C11—C10—H10119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.932.493.189 (2)132
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C14H13N2O2)(N3)]
Mr346.83
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7197 (2), 10.2820 (2), 10.5549 (5)
α, β, γ (°)86.130 (2), 81.155 (2), 76.289 (3)
V3)699.69 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.10 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.892, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
11804, 3207, 2815
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.090, 0.99
No. of reflections3207
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) and XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N3i0.9302.4923.189 (2)131.92
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationBruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNi, Z.-H. & Wang, H.-L. (2007). Acta Cryst. E63, o3799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1998). XP. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSun, Y.-X. (2005). Acta Cryst. E61, m338–m340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2005). Acta Cryst. E61, m247–m248.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds