metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-hy­droxy­benzoato-κ3O,O′:O)bis­­[aqua­(3-hy­droxy­benzoato-κ2O,O′)(1,10-phenanthroline-κ2N,N′)lead(II)] monohydrate

aDepartment of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China
*Correspondence e-mail: xpxuan@henannu.edu.cn

(Received 2 November 2007; accepted 2 December 2007; online 12 December 2007)

In the centrosymmetric binuclear title complex, [Pb2(C7H5O3)4(C12H8N2)2(H2O)2]·H2O, each Pb atom is eight-coordinated in a PbO6N2 environment by two N atoms from the 1,10-phenanthroline (phen) ligand, five carboxylate O atoms from four 3-hydroxy­benzoate anions and one O atom from the coordinated water mol­ecule in a distorted bicapped trigonal-prismatic geometry. The benzoate groups coordinate each PbII atom in two different ways. Two benzoate ions behave as bidentate ligands to the Pb atom, and another benzoate ion bridges the Pb atoms, forming a binuclear structure. The dimeric units are packed via O—H⋯O hydrogen bonds and ππ inter­actions between the aromatic rings of neighboring mol­ecules, with centroid–centroid distances of 3.552 (2) and 3.641 (2) Å.

Related literature

For related structures, see: Li & Yang (2004[Li, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.]); Mahjoub & Morsali (2002[Mahjoub, A. R. & Morsali, A. (2002). Polyhedron, 21, 1223-1227.]); Xuan et al. (2007[Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.]); Zhu et al. (2004[Zhu, N.-W., An, P. & Wang, X.-Z. (2004). Z. Kristallogr. New Cryst. Struct. 219, 271-272.]); For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C7H5O3)4(C12H8N2)2(H2O)2]·H2O

  • Mr = 1377.30

  • Triclinic, [P \overline 1]

  • a = 8.5639 (16) Å

  • b = 12.152 (2) Å

  • c = 12.979 (3) Å

  • α = 62.652 (1)°

  • β = 82.762 (2)°

  • γ = 84.701 (2)°

  • V = 1189.2 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.15 mm−1

  • T = 293 (2) K

  • 0.17 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.369, Tmax = 0.512 (expected range = 0.328–0.456)

  • 8820 measured reflections

  • 4352 independent reflections

  • 4009 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.04

  • 4352 reflections

  • 333 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.472 (2)
Pb1—N1 2.551 (2)
Pb1—N2 2.585 (3)
Pb1—O2 2.630 (2)
Pb1—O5 2.720 (2)
Pb1—O6 2.815 (2)
Pb1—O6i 2.880 (2)
Pb1—O7 2.914 (4)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5ii 0.82 1.84 2.658 (3) 176
O4—H4⋯O1iii 0.82 1.93 2.738 (3) 167
O7—H2W⋯O8iv 0.83 2.24 2.932 (6) 141
O7—H1W⋯O3v 0.83 2.18 2.911 (5) 146
O8—H3W⋯O2vi 0.83 2.06 2.840 (4) 157
O8—H4W⋯O2vii 0.83 2.04 2.788 (4) 150
C15—H15⋯O8vi 0.93 2.42 3.339 (5) 169
Symmetry codes: (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) x-1, y-1, z; (v) -x, -y, -z; (vi) -x+1, -y+1, -z; (vii) x+1, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lead(II) is capable of exhibiting a variable coordination number and geometry with or without a stereochemically active lone pair of electrons (Shimoni-Livny et al.1998). Among such compounds, a number of centrosymmetric dinuclear lead(II) compounds with 1,10-phenanthroline (phen) and oxygen donor ligands have been structurally characterized (Li & Yang, 2004, Mahjoub & Morsali 2002, Zhu et al. 2004). Recently, we obtained the title lead(II) complex, by reaction of lead acetate, 3-hydroxybenzoate acid, sodium hydroxide and in ethanol/water mixtures. The resulting complex is different to the polymeric chain-structure we previously reported using 2-hydroxybenzoate acid instead of 3-hydroxybenzoate acid (Xuan et al. 2007).

The crystal structure of the title compound consists of dimeric units of [Pb(C7H5O3)2(C12H8N2)(H2O)], related by a crystallographic inversion centre (Fig. 1), and an uncoordinated (disordered) water molecule. Each lead atom is chelated by the two N atoms of 1,10-phenanthroline (phen) with Pb—N distances of 2.551 (2), and 2.583 (3) Å, and five carbonyl O atoms of 3-hydroxyl-benzoate anions, and is coordinated by the O atom of one water molecule. The shortest Pb—O distance is 2.472 (2) Å, and the longest is 2.914 (4) Å. The weak Pb—O bridging interactions form a four-membered Pb2O2 quadrilateral with a Pb—Pb separation of 4.1712 (8) Å. The uncoordinated water molecule is disordered over two sites close to a crystallographic inversion centre.

In the presented structure, the crystal is stabilized by intermolecular O—H···O and C—H···O hydrogen bonding contacts (Table 1 and Figure 2) and by two kinds of π-π stacking interactions in the sequence of benzoate - phen - phen - benzoate. The centroid-centroid distances between Cg1(N1/C1—C4/C12) and Cg2 (C21—C26)[symmetry code: -x, -y, 1 - z] and between Cg1 and Cg3 (N1/C1—C4/C12) [symmetry code: -x, 1 - y, -z] are 3.552 (2) and 3.641 (2) Å, respectively.

Related literature top

For related structures, see: Li & Yang (2004); Mahjoub & Morsali (2002); Xuan et al. (2007); Zhu et al. (2004); For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998).

Experimental top

To a solution of 1,10-phenanthroline (0.0906 g, 0.5 mmol), 3-hydroxybenzoate acid(0.1394 g, 1 mmol) and sodium hydroxide (0.0185 g,0.5 mmol) in ethanol/water (v:v=1:1,20 ml) was added a solution of Pb(CH3COO)2.3H2O (0.1903 g, 0.5 mmol) in distilled water (5 ml). The resulting solution was stirred for 5 h at 323 K and then a white precipitate was filtered. Block single crystals were obtained by slow evaporation of the filtrate after 2 d, one of which was selected for the X-ray experiment.

Refinement top

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C aromatic). The hydroxyl H atoms were placed in calculated positions (O—H = 0.82 Å) and refined with free torsion angles to fit the electron density, with Uiso(H) = 1.5 Ueq(O). The solvent water is disordered over two sites close to a crystallographic inversion centre, thus the site occupation factors for O8 and H3W, H4W were set 1/2. The water H atoms were restraint at distances O—H = 0.83 Å with Uiso(H) = 1.5Ueq(O), for both, the coordinated and uncoordinated water molecules.

Structure description top

Lead(II) is capable of exhibiting a variable coordination number and geometry with or without a stereochemically active lone pair of electrons (Shimoni-Livny et al.1998). Among such compounds, a number of centrosymmetric dinuclear lead(II) compounds with 1,10-phenanthroline (phen) and oxygen donor ligands have been structurally characterized (Li & Yang, 2004, Mahjoub & Morsali 2002, Zhu et al. 2004). Recently, we obtained the title lead(II) complex, by reaction of lead acetate, 3-hydroxybenzoate acid, sodium hydroxide and in ethanol/water mixtures. The resulting complex is different to the polymeric chain-structure we previously reported using 2-hydroxybenzoate acid instead of 3-hydroxybenzoate acid (Xuan et al. 2007).

The crystal structure of the title compound consists of dimeric units of [Pb(C7H5O3)2(C12H8N2)(H2O)], related by a crystallographic inversion centre (Fig. 1), and an uncoordinated (disordered) water molecule. Each lead atom is chelated by the two N atoms of 1,10-phenanthroline (phen) with Pb—N distances of 2.551 (2), and 2.583 (3) Å, and five carbonyl O atoms of 3-hydroxyl-benzoate anions, and is coordinated by the O atom of one water molecule. The shortest Pb—O distance is 2.472 (2) Å, and the longest is 2.914 (4) Å. The weak Pb—O bridging interactions form a four-membered Pb2O2 quadrilateral with a Pb—Pb separation of 4.1712 (8) Å. The uncoordinated water molecule is disordered over two sites close to a crystallographic inversion centre.

In the presented structure, the crystal is stabilized by intermolecular O—H···O and C—H···O hydrogen bonding contacts (Table 1 and Figure 2) and by two kinds of π-π stacking interactions in the sequence of benzoate - phen - phen - benzoate. The centroid-centroid distances between Cg1(N1/C1—C4/C12) and Cg2 (C21—C26)[symmetry code: -x, -y, 1 - z] and between Cg1 and Cg3 (N1/C1—C4/C12) [symmetry code: -x, 1 - y, -z] are 3.552 (2) and 3.641 (2) Å, respectively.

For related structures, see: Li & Yang (2004); Mahjoub & Morsali (2002); Xuan et al. (2007); Zhu et al. (2004); For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. [Symmetry codes for atoms labelled a: -x, -y, 1 - z].
[Figure 2] Fig. 2. The π-π interactions between the aromatic rings of the title compound.
Bis(µ-3-hydroxybenzoato-κ3O,O':O)bis[aqua(3-hydroxybenzoato- κ2O,O')(1,10-phenanthroline-κ2N,N')lead(II)] monohydrate top
Crystal data top
[Pb2(C7H5O3)4(C12H8N2)2(H2O)2]·H2OZ = 1
Mr = 1377.30F(000) = 666
Triclinic, P1Dx = 1.923 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5639 (16) ÅCell parameters from 5362 reflections
b = 12.152 (2) Åθ = 2.4–27.5°
c = 12.979 (3) ŵ = 7.15 mm1
α = 62.652 (1)°T = 293 K
β = 82.762 (2)°Block, yellow
γ = 84.701 (2)°0.17 × 0.15 × 0.11 mm
V = 1189.2 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4352 independent reflections
Radiation source: fine-focus sealed tube4009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.369, Tmax = 0.512k = 1414
8820 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 1.06 e Å3
12 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Pb2(C7H5O3)4(C12H8N2)2(H2O)2]·H2Oγ = 84.701 (2)°
Mr = 1377.30V = 1189.2 (4) Å3
Triclinic, P1Z = 1
a = 8.5639 (16) ÅMo Kα radiation
b = 12.152 (2) ŵ = 7.15 mm1
c = 12.979 (3) ÅT = 293 K
α = 62.652 (1)°0.17 × 0.15 × 0.11 mm
β = 82.762 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4009 reflections with I > 2σ(I)
Tmin = 0.369, Tmax = 0.512Rint = 0.022
8820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02212 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.04Δρmax = 1.06 e Å3
4352 reflectionsΔρmin = 0.72 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.062168 (13)0.070072 (10)0.321211 (9)0.02816 (4)
O10.3051 (3)0.1587 (2)0.19470 (18)0.0387 (6)
O20.1526 (3)0.0939 (2)0.1109 (2)0.0450 (6)
O30.4628 (3)0.1416 (3)0.2612 (2)0.0520 (7)
H30.54420.14020.30150.078*
O40.5876 (3)0.3747 (2)0.8277 (2)0.0480 (7)
H40.60850.30470.81460.072*
O50.2736 (3)0.1258 (2)0.38683 (19)0.0522 (7)
O60.2135 (3)0.0679 (2)0.5260 (2)0.0434 (6)
O70.1913 (5)0.0008 (4)0.2362 (4)0.1267 (16)
H2W0.13810.04980.21580.190*
H1W0.28710.01330.24300.190*
N10.0483 (3)0.2875 (2)0.1953 (2)0.0306 (6)
N20.1144 (3)0.2374 (2)0.3819 (2)0.0307 (6)
C10.1321 (4)0.3108 (3)0.1076 (3)0.0361 (8)
H10.14180.24700.08840.043*
C20.2063 (4)0.4251 (3)0.0427 (3)0.0441 (9)
H20.26490.43710.01750.053*
C30.1904 (4)0.5195 (3)0.0703 (3)0.0459 (10)
H3A0.23860.59680.02830.055*
C40.1018 (4)0.5004 (3)0.1615 (3)0.0374 (8)
C50.0782 (5)0.5954 (3)0.1930 (3)0.0483 (10)
H50.12120.67470.15080.058*
C60.0051 (5)0.5725 (3)0.2824 (3)0.0478 (9)
H60.02030.63660.29990.057*
C70.0717 (4)0.4497 (3)0.3521 (3)0.0378 (8)
C80.1538 (4)0.4193 (3)0.4492 (3)0.0441 (9)
H8A0.16770.47990.47180.053*
C90.2131 (4)0.3020 (3)0.5105 (3)0.0448 (9)
H90.26580.28130.57580.054*
C100.1931 (4)0.2129 (3)0.4735 (3)0.0380 (8)
H100.23640.13340.51430.046*
C110.0534 (4)0.3546 (3)0.3214 (3)0.0289 (7)
C120.0336 (4)0.3809 (3)0.2236 (3)0.0295 (7)
C130.2813 (4)0.1357 (3)0.1119 (3)0.0308 (7)
C140.4093 (4)0.1573 (3)0.0144 (2)0.0280 (7)
C150.3806 (4)0.1410 (3)0.0805 (3)0.0334 (7)
H150.28140.11870.08450.040*
C160.4984 (4)0.1575 (3)0.1691 (3)0.0327 (8)
C170.6472 (4)0.1886 (3)0.1626 (3)0.0358 (8)
H170.72730.19900.22150.043*
C180.6748 (4)0.2039 (3)0.0677 (3)0.0418 (9)
H180.77470.22450.06300.050*
C190.5578 (4)0.1895 (3)0.0204 (3)0.0377 (8)
H190.57840.20130.08330.045*
C200.2779 (4)0.1430 (3)0.4891 (3)0.0322 (7)
C210.3627 (4)0.2582 (3)0.5717 (3)0.0287 (7)
C220.3647 (4)0.3663 (3)0.5590 (3)0.0362 (8)
H220.31890.36530.49720.043*
C230.4342 (4)0.4746 (3)0.6377 (3)0.0407 (9)
H230.43340.54670.62970.049*
C240.5050 (4)0.4762 (3)0.7280 (3)0.0380 (8)
H240.54930.55000.78190.046*
C250.5104 (4)0.3681 (3)0.7388 (3)0.0328 (7)
C260.4352 (3)0.2600 (3)0.6630 (2)0.0314 (7)
H260.43320.18880.67290.038*
O80.9880 (3)0.9421 (3)0.0575 (2)0.103 (2)0.50
H4W1.03841.00240.04670.154*0.50
H3W0.95740.95100.00410.154*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03033 (7)0.03078 (6)0.02384 (6)0.00001 (5)0.00074 (4)0.01346 (4)
O10.0418 (13)0.0503 (12)0.0318 (11)0.0092 (11)0.0047 (10)0.0258 (10)
O20.0358 (13)0.0690 (15)0.0427 (12)0.0154 (12)0.0085 (10)0.0365 (11)
O30.0463 (14)0.0861 (17)0.0366 (12)0.0002 (14)0.0001 (11)0.0404 (12)
O40.0576 (15)0.0449 (13)0.0401 (13)0.0025 (12)0.0190 (12)0.0144 (11)
O50.0574 (16)0.0655 (16)0.0298 (12)0.0260 (13)0.0087 (11)0.0221 (11)
O60.0515 (14)0.0408 (12)0.0395 (12)0.0126 (11)0.0056 (11)0.0218 (10)
O70.131 (3)0.131 (3)0.103 (3)0.056 (3)0.046 (2)0.022 (2)
N10.0349 (14)0.0329 (13)0.0244 (12)0.0006 (11)0.0032 (11)0.0134 (10)
N20.0330 (14)0.0342 (13)0.0273 (12)0.0009 (11)0.0040 (11)0.0159 (11)
C10.0363 (18)0.0417 (17)0.0321 (16)0.0016 (15)0.0064 (14)0.0174 (14)
C20.0355 (18)0.056 (2)0.0338 (17)0.0024 (16)0.0093 (15)0.0136 (16)
C30.042 (2)0.0385 (19)0.0391 (19)0.0104 (16)0.0059 (16)0.0042 (16)
C40.0339 (17)0.0318 (16)0.0377 (18)0.0040 (14)0.0045 (14)0.0110 (14)
C50.053 (2)0.0311 (17)0.056 (2)0.0018 (16)0.0011 (18)0.0178 (16)
C60.053 (2)0.0379 (17)0.062 (2)0.0040 (16)0.0052 (19)0.0321 (16)
C70.0340 (18)0.0421 (17)0.0423 (18)0.0092 (14)0.0076 (14)0.0248 (15)
C80.044 (2)0.0540 (19)0.0528 (19)0.0092 (16)0.0033 (16)0.0403 (16)
C90.0399 (19)0.066 (2)0.0413 (18)0.0040 (17)0.0087 (15)0.0332 (17)
C100.0393 (18)0.0449 (18)0.0315 (16)0.0023 (15)0.0077 (14)0.0175 (14)
C110.0262 (15)0.0340 (15)0.0259 (14)0.0047 (13)0.0056 (12)0.0143 (12)
C120.0252 (15)0.0335 (15)0.0272 (14)0.0019 (13)0.0043 (12)0.0132 (13)
C130.0339 (17)0.0332 (15)0.0280 (15)0.0006 (13)0.0014 (13)0.0169 (13)
C140.0308 (16)0.0264 (14)0.0255 (14)0.0002 (12)0.0007 (12)0.0116 (12)
C150.0303 (16)0.0347 (16)0.0356 (16)0.0043 (13)0.0066 (13)0.0164 (13)
C160.0411 (18)0.0348 (16)0.0232 (14)0.0035 (14)0.0013 (13)0.0153 (13)
C170.0363 (18)0.0410 (17)0.0296 (15)0.0027 (14)0.0079 (14)0.0180 (14)
C180.0264 (16)0.058 (2)0.0475 (19)0.0090 (15)0.0015 (15)0.0297 (16)
C190.0385 (18)0.0504 (18)0.0347 (16)0.0089 (15)0.0001 (14)0.0278 (14)
C200.0292 (16)0.0397 (17)0.0277 (15)0.0002 (14)0.0016 (13)0.0166 (13)
C210.0268 (15)0.0351 (15)0.0258 (14)0.0024 (13)0.0055 (12)0.0171 (12)
C220.0376 (18)0.0427 (17)0.0359 (16)0.0009 (15)0.0046 (14)0.0242 (14)
C230.049 (2)0.0305 (16)0.0469 (19)0.0009 (15)0.0002 (16)0.0221 (14)
C240.0401 (19)0.0307 (16)0.0395 (18)0.0051 (14)0.0032 (15)0.0141 (14)
C250.0321 (16)0.0363 (16)0.0290 (15)0.0035 (14)0.0029 (13)0.0136 (13)
C260.0384 (18)0.0300 (15)0.0278 (15)0.0020 (13)0.0008 (13)0.0154 (12)
O80.086 (4)0.127 (5)0.137 (5)0.018 (4)0.024 (4)0.089 (4)
Geometric parameters (Å, º) top
Pb1—O12.472 (2)C5—H50.9300
Pb1—N12.551 (2)C6—C71.450 (5)
Pb1—N22.585 (3)C6—H60.9300
Pb1—O22.630 (2)C7—C81.402 (5)
Pb1—O52.720 (2)C7—C111.411 (5)
Pb1—O62.815 (2)C8—C91.360 (5)
Pb1—O6i2.880 (2)C8—H8A0.9300
Pb1—O72.914 (4)C9—C101.402 (5)
Pb1—C132.922 (3)C9—H90.9300
Pb1—C203.133 (3)C10—H100.9300
Pb1—Pb1i4.1712 (8)C11—C121.445 (4)
O1—C131.272 (4)C13—C141.507 (4)
O2—C131.258 (4)C14—C191.387 (4)
O3—C161.369 (4)C14—C151.388 (5)
O3—H30.82C15—C161.383 (4)
O4—C251.368 (4)C15—H150.9300
O4—H40.82C16—C171.386 (5)
O5—C201.250 (4)C17—C181.378 (5)
O6—C201.268 (4)C17—H170.9300
O6—Pb1i2.880 (2)C18—C191.379 (5)
O7—H2W0.83C18—H180.9300
O7—H1W0.83C19—H190.9300
N1—C11.327 (4)C20—C211.505 (4)
N1—C121.365 (4)C21—C221.396 (5)
N2—C101.341 (4)C21—C261.396 (4)
N2—C111.362 (4)C22—C231.380 (4)
C1—C21.393 (5)C22—H220.9300
C1—H10.9300C23—C241.377 (5)
C2—C31.372 (6)C23—H230.9300
C2—H20.9300C24—C251.390 (5)
C3—C41.405 (5)C24—H240.9300
C3—H3A0.9300C25—C261.387 (4)
C4—C121.409 (4)C26—H260.9300
C4—C51.427 (5)O8—H4W0.83
C5—C61.344 (6)O8—H3W0.83
O1—Pb1—N181.43 (8)C2—C3—H3A119.7
O1—Pb1—N278.87 (8)C4—C3—H3A119.7
N1—Pb1—N264.53 (8)C3—C4—C12117.3 (3)
O1—Pb1—O250.98 (7)C3—C4—C5123.2 (3)
N1—Pb1—O278.90 (8)C12—C4—C5119.4 (3)
N2—Pb1—O2121.76 (8)C6—C5—C4121.3 (3)
O1—Pb1—O576.29 (8)C6—C5—H5119.4
N1—Pb1—O5157.21 (8)C4—C5—H5119.4
N2—Pb1—O5114.84 (8)C5—C6—C7121.3 (4)
O2—Pb1—O583.37 (7)C5—C6—H6119.3
O1—Pb1—O695.43 (7)C7—C6—H6119.3
N1—Pb1—O6141.71 (8)C8—C7—C11117.6 (3)
N2—Pb1—O677.37 (7)C8—C7—C6123.7 (3)
O2—Pb1—O6127.92 (7)C11—C7—C6118.7 (3)
O5—Pb1—O647.03 (7)C9—C8—C7120.5 (3)
O1—Pb1—O6i154.52 (8)C9—C8—H8A119.8
N1—Pb1—O6i81.97 (7)C7—C8—H8A119.8
N2—Pb1—O6i76.57 (8)C8—C9—C10118.7 (3)
O2—Pb1—O6i142.57 (7)C8—C9—H9120.6
O5—Pb1—O6i120.61 (7)C10—C9—H9120.6
O6—Pb1—O6i85.82 (7)N2—C10—C9122.8 (3)
O1—Pb1—O7121.36 (10)N2—C10—H10118.6
N1—Pb1—O782.17 (10)C9—C10—H10118.6
N2—Pb1—O7138.64 (12)N2—C11—C7122.0 (3)
O2—Pb1—O770.71 (11)N2—C11—C12118.5 (3)
O5—Pb1—O7105.38 (11)C7—C11—C12119.5 (3)
O6—Pb1—O7129.11 (9)N1—C12—C4122.0 (3)
O6i—Pb1—O775.04 (11)N1—C12—C11118.3 (3)
O1—Pb1—C1325.58 (8)C4—C12—C11119.7 (3)
N1—Pb1—C1380.73 (8)O2—C13—O1120.8 (3)
N2—Pb1—C13101.53 (9)O2—C13—C14119.6 (3)
O2—Pb1—C1325.51 (8)O1—C13—C14119.6 (3)
O5—Pb1—C1377.12 (8)O2—C13—Pb164.14 (16)
O6—Pb1—C13111.91 (8)O1—C13—Pb157.02 (15)
O6i—Pb1—C13161.54 (8)C14—C13—Pb1172.4 (2)
O7—Pb1—C1396.18 (11)C19—C14—C15119.5 (3)
O1—Pb1—C2087.16 (8)C19—C14—C13120.5 (3)
N1—Pb1—C20160.33 (9)C15—C14—C13120.0 (3)
N2—Pb1—C2097.64 (8)C16—C15—C14120.6 (3)
O2—Pb1—C20106.12 (8)C16—C15—H15119.7
O5—Pb1—C2023.32 (8)C14—C15—H15119.7
O6—Pb1—C2023.85 (8)O3—C16—C15118.0 (3)
O6i—Pb1—C20102.71 (7)O3—C16—C17122.0 (3)
O7—Pb1—C20117.50 (11)C15—C16—C17120.0 (3)
C13—Pb1—C2095.75 (8)C18—C17—C16119.0 (3)
O1—Pb1—Pb1i133.40 (5)C18—C17—H17120.5
N1—Pb1—Pb1i115.68 (6)C16—C17—H17120.5
N2—Pb1—Pb1i72.07 (5)C17—C18—C19121.6 (3)
O2—Pb1—Pb1i164.35 (5)C17—C18—H18119.2
O5—Pb1—Pb1i83.78 (5)C19—C18—H18119.2
O6—Pb1—Pb1i43.51 (5)C18—C19—C14119.3 (3)
O6i—Pb1—Pb1i42.31 (4)C18—C19—H19120.3
O7—Pb1—Pb1i104.33 (9)C14—C19—H19120.3
C13—Pb1—Pb1i155.04 (6)O5—C20—O6122.8 (3)
C20—Pb1—Pb1i62.27 (6)O5—C20—C21118.3 (3)
C13—O1—Pb197.40 (19)O6—C20—C21118.9 (3)
C13—O2—Pb190.36 (19)O5—C20—Pb159.49 (17)
C16—O3—H3109.5O6—C20—Pb163.89 (16)
C25—O4—H4109.5C21—C20—Pb1171.4 (2)
C20—O5—Pb197.2 (2)C22—C21—C26119.4 (3)
C20—O6—Pb192.26 (18)C22—C21—C20119.4 (3)
C20—O6—Pb1i134.9 (2)C26—C21—C20121.2 (3)
Pb1—O6—Pb1i94.18 (7)C23—C22—C21120.2 (3)
Pb1—O7—H2W97.5C23—C22—H22119.9
Pb1—O7—H1W147.1C21—C22—H22119.9
H2W—O7—H1W110.3C24—C23—C22120.3 (3)
C1—N1—C12118.2 (3)C24—C23—H23119.9
C1—N1—Pb1121.6 (2)C22—C23—H23119.9
C12—N1—Pb1119.89 (19)C23—C24—C25120.2 (3)
C10—N2—C11118.3 (3)C23—C24—H24119.9
C10—N2—Pb1122.9 (2)C25—C24—H24119.9
C11—N2—Pb1118.7 (2)O4—C25—C26122.7 (3)
N1—C1—C2123.9 (3)O4—C25—C24117.5 (3)
N1—C1—H1118.1C26—C25—C24119.9 (3)
C2—C1—H1118.1C25—C26—C21119.9 (3)
C3—C2—C1118.0 (3)C25—C26—H26120.0
C3—C2—H2121.0C21—C26—H26120.0
C1—C2—H2121.0H4W—O8—H3W111.2
C2—C3—C4120.6 (3)
O2—Pb1—O1—C133.8 (2)O5—Pb1—O6i—Pb1i33.16 (11)
O5—Pb1—O1—C1388.8 (2)O5—Pb1—O6i—C20i130.5 (3)
O6—Pb1—O1—C13132.1 (2)O6—Pb1—O6i—Pb1i0.00 (8)
O7—Pb1—O1—C1311.1 (3)O6—Pb1—O6i—C20i97.3 (3)
N1—Pb1—O1—C1386.4 (2)O7—Pb1—O6i—Pb1i132.41 (12)
N2—Pb1—O1—C13152.0 (2)O7—Pb1—O6i—C20i130.3 (3)
O6i—Pb1—O1—C13136.3 (2)N1—Pb1—O6i—Pb1i143.59 (9)
O1—Pb1—O2—C133.8 (2)N1—Pb1—O6i—C20i46.3 (3)
O5—Pb1—O2—C1373.9 (2)N2—Pb1—O6i—Pb1i77.99 (8)
O6—Pb1—O2—C1357.7 (2)N2—Pb1—O6i—C20i19.3 (3)
O7—Pb1—O2—C13177.2 (2)Pb1—O1—C13—O27.2 (4)
N1—Pb1—O2—C1391.7 (2)Pb1—O1—C13—C14172.1 (3)
N2—Pb1—O2—C1341.3 (2)Pb1—O2—C13—O16.7 (4)
O6i—Pb1—O2—C13152.4 (2)Pb1—O2—C13—C14172.6 (3)
O1—Pb1—O5—C20115.9 (2)Pb1—O5—C20—O69.3 (4)
O2—Pb1—O5—C20167.3 (2)Pb1—O5—C20—C21170.4 (3)
O6—Pb1—O5—C204.8 (2)Pb1—O6—C20—O58.9 (4)
O7—Pb1—O5—C20124.9 (2)Pb1—O6—C20—C21170.8 (3)
N1—Pb1—O5—C20128.3 (2)Pb1i—O6—C20—O5107.1 (4)
N2—Pb1—O5—C2045.3 (2)Pb1i—O6—C20—C2172.7 (4)
C13—Pb1—O5—C20142.2 (2)Pb1—N1—C1—C2174.3 (3)
O6i—Pb1—O5—C2043.4 (2)C12—N1—C1—C20.1 (5)
O1—Pb1—O6—C2070.3 (2)Pb1—N1—C12—C4175.6 (2)
O1—Pb1—O6—Pb1i154.47 (8)Pb1—N1—C12—C113.6 (4)
O2—Pb1—O6—C2027.0 (2)C1—N1—C12—C41.2 (5)
O2—Pb1—O6—Pb1i162.22 (8)C1—N1—C12—C11178.1 (3)
O5—Pb1—O6—C204.69 (19)Pb1—N2—C10—C9176.0 (2)
O5—Pb1—O6—Pb1i139.97 (12)C11—N2—C10—C91.0 (5)
O7—Pb1—O6—C2068.4 (2)Pb1—N2—C11—C7177.5 (2)
O7—Pb1—O6—Pb1i66.84 (15)Pb1—N2—C11—C121.9 (4)
N1—Pb1—O6—C20153.3 (2)C10—N2—C11—C70.4 (5)
N1—Pb1—O6—Pb1i71.43 (13)C10—N2—C11—C12179.1 (3)
N2—Pb1—O6—C20147.6 (2)N1—C1—C2—C30.7 (5)
N2—Pb1—O6—Pb1i77.17 (8)C1—C2—C3—C40.1 (5)
C13—Pb1—O6—C2050.1 (2)C2—C3—C4—C5178.7 (3)
C13—Pb1—O6—Pb1i174.66 (9)C2—C3—C4—C121.1 (5)
O6i—Pb1—O6—C20135.3 (2)C3—C4—C5—C6178.7 (4)
O6i—Pb1—O6—Pb1i0.00 (8)C12—C4—C5—C61.4 (6)
O1—Pb1—N1—C1100.8 (2)C3—C4—C12—N11.8 (5)
O1—Pb1—N1—C1284.9 (2)C3—C4—C12—C11177.5 (3)
O2—Pb1—N1—C149.1 (2)C5—C4—C12—N1178.1 (3)
O2—Pb1—N1—C12136.6 (2)C5—C4—C12—C112.7 (5)
O5—Pb1—N1—C188.7 (3)C4—C5—C6—C71.3 (6)
O5—Pb1—N1—C1297.1 (3)C5—C6—C7—C8177.2 (4)
O6—Pb1—N1—C1171.3 (2)C5—C6—C7—C112.7 (6)
O6—Pb1—N1—C123.0 (3)C6—C7—C8—C9180.0 (3)
O7—Pb1—N1—C122.7 (3)C11—C7—C8—C90.1 (5)
O7—Pb1—N1—C12151.6 (2)C6—C7—C11—N2179.2 (3)
N2—Pb1—N1—C1177.5 (3)C6—C7—C11—C121.4 (5)
N2—Pb1—N1—C123.2 (2)C8—C7—C11—N20.9 (5)
C13—Pb1—N1—C175.0 (2)C8—C7—C11—C12178.6 (3)
C13—Pb1—N1—C12110.8 (2)C7—C8—C9—C101.2 (5)
O6i—Pb1—N1—C198.6 (2)C8—C9—C10—N21.8 (5)
O6i—Pb1—N1—C1275.7 (2)N2—C11—C12—N11.1 (5)
O1—Pb1—N2—C1094.7 (2)N2—C11—C12—C4178.2 (3)
O1—Pb1—N2—C1188.3 (2)C7—C11—C12—N1179.5 (3)
O2—Pb1—N2—C10123.5 (2)C7—C11—C12—C41.3 (5)
O2—Pb1—N2—C1159.5 (2)O1—C13—C14—C15175.4 (3)
O5—Pb1—N2—C1025.6 (3)O1—C13—C14—C196.8 (5)
O5—Pb1—N2—C11157.4 (2)O2—C13—C14—C155.3 (5)
O6—Pb1—N2—C103.5 (2)O2—C13—C14—C19172.5 (3)
O6—Pb1—N2—C11173.5 (2)C13—C14—C15—C16178.4 (3)
O7—Pb1—N2—C10139.9 (3)C19—C14—C15—C160.5 (6)
O7—Pb1—N2—C1137.1 (3)C13—C14—C19—C18177.4 (3)
N1—Pb1—N2—C10179.6 (3)C15—C14—C19—C180.5 (6)
N1—Pb1—N2—C112.6 (2)C14—C15—C16—O3179.2 (4)
C13—Pb1—N2—C10106.6 (2)C14—C15—C16—C171.1 (6)
C13—Pb1—N2—C1176.4 (2)O3—C16—C17—C18179.6 (4)
O6i—Pb1—N2—C1092.2 (2)C15—C16—C17—C180.7 (6)
O6i—Pb1—N2—C1184.8 (2)C16—C17—C18—C190.3 (6)
O1—Pb1—C13—O2173.1 (4)C17—C18—C19—C140.9 (6)
O2—Pb1—C13—O1173.1 (4)O5—C20—C21—C2231.7 (5)
O5—Pb1—C13—O185.1 (2)O5—C20—C21—C26150.3 (3)
O5—Pb1—C13—O2101.8 (2)O6—C20—C21—C22148.0 (3)
O6—Pb1—C13—O152.8 (2)O6—C20—C21—C2630.0 (5)
O6—Pb1—C13—O2134.1 (2)C20—C21—C22—C23176.4 (3)
O7—Pb1—C13—O1170.5 (2)C26—C21—C22—C231.6 (5)
O7—Pb1—C13—O22.6 (2)C20—C21—C26—C25179.0 (3)
N1—Pb1—C13—O189.5 (2)C22—C21—C26—C251.0 (5)
N1—Pb1—C13—O283.6 (2)C21—C22—C23—C241.4 (5)
N2—Pb1—C13—O128.1 (2)C22—C23—C24—C251.6 (5)
N2—Pb1—C13—O2145.1 (2)C23—C24—C25—O4177.6 (3)
O1—Pb1—O6i—Pb1i93.85 (17)C23—C24—C25—C264.3 (5)
O1—Pb1—O6i—C20i3.5 (4)O4—C25—C26—C21178.0 (3)
O2—Pb1—O6i—Pb1i156.67 (10)C24—C25—C26—C214.0 (5)
O2—Pb1—O6i—C20i106.0 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5ii0.821.842.658 (3)176
O4—H4···O1iii0.821.932.738 (3)167
O7—H2W···O8iv0.832.242.932 (6)141
O7—H1W···O3v0.832.182.911 (5)146
O8—H3W···O2vi0.832.062.840 (4)157
O8—H4W···O2vii0.832.042.788 (4)150
C15—H15···O8vi0.932.423.339 (5)169
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x1, y1, z; (v) x, y, z; (vi) x+1, y+1, z; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Pb2(C7H5O3)4(C12H8N2)2(H2O)2]·H2O
Mr1377.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5639 (16), 12.152 (2), 12.979 (3)
α, β, γ (°)62.652 (1), 82.762 (2), 84.701 (2)
V3)1189.2 (4)
Z1
Radiation typeMo Kα
µ (mm1)7.15
Crystal size (mm)0.17 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.369, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
8820, 4352, 4009
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.04
No. of reflections4352
No. of parameters333
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.06, 0.72

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected bond lengths (Å) top
Pb1—O12.472 (2)Pb1—O52.720 (2)
Pb1—N12.551 (2)Pb1—O62.815 (2)
Pb1—N22.585 (3)Pb1—O6i2.880 (2)
Pb1—O22.630 (2)Pb1—O72.914 (4)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5ii0.821.842.658 (3)176
O4—H4···O1iii0.821.932.738 (3)167
O7—H2W···O8iv0.832.242.932 (6)141
O7—H1W···O3v0.832.182.911 (5)146
O8—H3W···O2vi0.832.062.840 (4)157
O8—H4W···O2vii0.832.042.788 (4)150
C15—H15···O8vi0.932.423.339 (5)169
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x1, y1, z; (v) x, y, z; (vi) x+1, y+1, z; (vii) x+1, y+1, z.
 

Acknowledgements

Financial support by the Science Fund of Henan Province for Distinguished Young Scholars (No. 074100510005) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423–m425.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahjoub, A. R. & Morsali, A. (2002). Polyhedron, 21, 1223–1227.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar
First citationXuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, N.-W., An, P. & Wang, X.-Z. (2004). Z. Kristallogr. New Cryst. Struct. 219, 271–272.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds