organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,10,15,20-Tetra­kis(3,5-di­fluoro­phen­yl)porphyrin

aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, India, and bSophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai-600 036, India
*Correspondence e-mail: pbhyrappa@hotmail.com

(Received 18 November 2007; accepted 24 November 2007; online 6 December 2007)

The crystal structure of the title compound, C44H22F8N4, shows an unusual non-planar geometry of the porphyrin ring although the mol­ecule is free of steric crowding around the periphery of the macrocycle. The mol­ecular packing exhibits weak inter­molecular hydrogen bonding (C—H⋯F) and C—H⋯π inter­actions. The molecular symmetry is [\overline 4].

Related literature

For the stereochemistry of porphyrins and metalloporphyrins, see: Senge (2000[Senge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 1, ch. 6. New York: Academic Press.]); Scheidt & Lee (1987[Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bonding (Berlin), 64, 1-73.]). For a related structure, see: Silvers & Tulinsky (1967[Silvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331-3336.]). For the preparation of the title compound, see: Tamiaki et al. (2000[Tamiaki, H., Matsumoto, N., Unno, S., Shinoda, S. & Tsukube, H. (2000). Inorg. Chim. Acta, 300-302, 243-249.]). For C—H⋯π and C—H⋯F inter­actions, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Thalladi et al. (1998[Thalladi, V. R., Weiss, H.-C., Blaser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.]).

[Scheme 1]

Experimental

Crystal data
  • C44H22F8N4

  • Mr = 758.66

  • Tetragonal, [I \overline 42d ]

  • a = 15.426 (5) Å

  • c = 13.991 (5) Å

  • V = 3329.3 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 233 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Brucker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.986

  • 20353 measured reflections

  • 1145 independent reflections

  • 1049 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.07

  • 1145 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯C1i 0.93 2.87 3.634 (2) 140
C3—H3⋯F1ii 0.93 2.66 3.484 (2) 148
Symmetry codes: (i) [y+1, x-{\script{1\over 2}}, z+{\script{1\over 4}}]; (ii) -x+2, -y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Free base porphyrin, H2T(3',5'-DFP)P was synthesised using literature method (Tamiaki et al. 2000). The compound (I) crystallizes in a tetragonal space group, I-4 2d with four molecules in the unit cell. ORTEP of the compound (I) is shown in Fig. 1. The observed bond lengths of the C20N4 core is similar to the related H2TPP structure (Silvers & Tulinsky, 1967). The molecule shows considerable nonplanar geometry (Fig. 1b) with the extent of distortion of the porphyrin ring atoms is as high as + - 0.343 (4) Å and the average displacement of the β-pyrrole carbon is + - ΔCβ = 0.129 (3) Å. Macrocyclic ring (24-atom core) shows ruffled geometry (Senge, 2000) while the related H2TPP shows nearly planar structure. The opposite nitrogens are situated at 4.082Å and it is shorter than that reported for H2TPP (4.20 Å)(Silvers & Tulinsky, 1967). The 3,5-difluorophenyl groups are nearly planar and oriented perpendicular to the porphyrin ring mean plane with an average dihedral angle of 72.7 (5) °. In adition, the meso<i/>-carbon to aryl carbon, C5-C6 distance is found to be 1.499 (2) Å indicating that the aryl group is not significantly conjugated with the porphyrin π-system. The core hydrogens are disordered and are fixed with 50% occupancy on each N atom of the N4H2 core.

Molecular packing diagram of the compound (I) is shown in Fig 2. Unit cell ab plane forms the 2-dimensional (C-H···F) hydrogen-bonded framework parallel to (001) plane. Each porphyrin in the layer is surrounded by four other nearest neighbours through weak hydrogen bonding (C3-H3···F1) interactions. A pair of such C-H···F hydrogen bonding is observed with each adjacent porphyrin with a shortest H3···F1 distance of 2.656 Å. Such a long hydrogen bonding distance is expected for weak C-H···F interactions (Thalladi et al., 1998). Furthermore, layers are interconnected via C-H···π interactions (Fig.3). On each face of the porphyrin, there is a pair of symmetry related C-H···π interactions for aryl(C7-H7)···C1(α-pyrrole) with H7···C1 distance of 2.869 Å between the two other adjacent porphyrins from the neighbouring layer. This H7···C1 distance indicates weak C-H···π interactions (Steiner, 2002). The title compound shows unusual nonplanar geometry of the macrocyclic ring.

Related literature top

For the stereochemistry of porphyrins and metalloporphyrins, see: Senge (2000); Scheidt & Lee (1987). For a related structure, see: Silvers & Tulinsky (1967). For the preparation of H2T(3',5'-DFP)P, see: Tamiaki et al. (2000). For C—H···π and C—H···F interactions, see: Steiner (2002); Thalladi et al. (1998).

Experimental top

5,10,15,20-tetrakis(3',5'-difluorophenyl)porphyrin, H2T(3',5'-DFP)P was prepared using literature method (Tamiaki et al., 2000). Crystals of H2T(3',5'-DFP)P were grown by vapor diffusion of hexane to the CHCl3 solution of the porphyrin over a period of five days.

Refinement top

H atoms were placed in constrained positions (C—H = 0.93 Å and N—H = 0.86 Å) and refined using riding model with Uiso(H) = 1.2 or 1.5 times Ueq(C). The Friedel pairs have been merged, because the Flack parameter could not be reliably determined. The structure mostly contains C, H, N atoms only and the data was collected with Mo Kα radiation, so no anomalous dispersion effects could be observed.

Structure description top

Free base porphyrin, H2T(3',5'-DFP)P was synthesised using literature method (Tamiaki et al. 2000). The compound (I) crystallizes in a tetragonal space group, I-4 2d with four molecules in the unit cell. ORTEP of the compound (I) is shown in Fig. 1. The observed bond lengths of the C20N4 core is similar to the related H2TPP structure (Silvers & Tulinsky, 1967). The molecule shows considerable nonplanar geometry (Fig. 1b) with the extent of distortion of the porphyrin ring atoms is as high as + - 0.343 (4) Å and the average displacement of the β-pyrrole carbon is + - ΔCβ = 0.129 (3) Å. Macrocyclic ring (24-atom core) shows ruffled geometry (Senge, 2000) while the related H2TPP shows nearly planar structure. The opposite nitrogens are situated at 4.082Å and it is shorter than that reported for H2TPP (4.20 Å)(Silvers & Tulinsky, 1967). The 3,5-difluorophenyl groups are nearly planar and oriented perpendicular to the porphyrin ring mean plane with an average dihedral angle of 72.7 (5) °. In adition, the meso<i/>-carbon to aryl carbon, C5-C6 distance is found to be 1.499 (2) Å indicating that the aryl group is not significantly conjugated with the porphyrin π-system. The core hydrogens are disordered and are fixed with 50% occupancy on each N atom of the N4H2 core.

Molecular packing diagram of the compound (I) is shown in Fig 2. Unit cell ab plane forms the 2-dimensional (C-H···F) hydrogen-bonded framework parallel to (001) plane. Each porphyrin in the layer is surrounded by four other nearest neighbours through weak hydrogen bonding (C3-H3···F1) interactions. A pair of such C-H···F hydrogen bonding is observed with each adjacent porphyrin with a shortest H3···F1 distance of 2.656 Å. Such a long hydrogen bonding distance is expected for weak C-H···F interactions (Thalladi et al., 1998). Furthermore, layers are interconnected via C-H···π interactions (Fig.3). On each face of the porphyrin, there is a pair of symmetry related C-H···π interactions for aryl(C7-H7)···C1(α-pyrrole) with H7···C1 distance of 2.869 Å between the two other adjacent porphyrins from the neighbouring layer. This H7···C1 distance indicates weak C-H···π interactions (Steiner, 2002). The title compound shows unusual nonplanar geometry of the macrocyclic ring.

For the stereochemistry of porphyrins and metalloporphyrins, see: Senge (2000); Scheidt & Lee (1987). For a related structure, see: Silvers & Tulinsky (1967). For the preparation of H2T(3',5'-DFP)P, see: Tamiaki et al. (2000). For C—H···π and C—H···F interactions, see: Steiner (2002); Thalladi et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. (a) The structure of (I) with the atom numbering scheme. Side view of the compound is shown in (b). Thermal ellipsoids shown at 50% probability level.
[Figure 2] Fig. 2. Molecular packing diagram of the compound, (I). The two-dimensional framework shows the C—H···F interactions parallel to ab plane.
[Figure 3] Fig. 3. Shows the bridging of two layers by interporphyrin (C—H···π) interactions (viewed along unit cell 'b' axis). The short contacts are shown in dotted red lines. The flourine atoms are shown in green.
5,10,15,20-Tetrakis(3,5-difluorophenyl)porphyrin top
Crystal data top
C44H22F8N4Dx = 1.514 Mg m3
Mr = 758.66Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I42dCell parameters from 5676 reflections
Hall symbol: I -4 2bwθ = 2.7–27.4°
a = 15.426 (5) ŵ = 0.12 mm1
c = 13.991 (5) ÅT = 233 K
V = 3329.3 (19) Å3Plate, purple
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 1544
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1145 independent reflections
Radiation source: fine-focus sealed tube1049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and φ scanθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2020
Tmin = 0.965, Tmax = 0.986k = 1918
20353 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0579P)2 + 1.6388P]
where P = (Fo2 + 2Fc2)/3
1145 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C44H22F8N4Z = 4
Mr = 758.66Mo Kα radiation
Tetragonal, I42dµ = 0.12 mm1
a = 15.426 (5) ÅT = 233 K
c = 13.991 (5) Å0.30 × 0.20 × 0.20 mm
V = 3329.3 (19) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1049 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.986Rint = 0.041
20353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
1145 reflectionsΔρmin = 0.15 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.62343 (12)0.15392 (12)0.26244 (14)0.0234 (4)
C20.71372 (13)0.17616 (13)0.25131 (18)0.0289 (4)
H20.73750.23140.25610.035*
C30.75734 (13)0.10209 (12)0.23267 (16)0.0285 (4)
H30.81640.09700.22050.034*
C40.69521 (12)0.03261 (13)0.23514 (15)0.0233 (4)
C50.71381 (12)0.05575 (12)0.22542 (14)0.0225 (4)
C60.80391 (13)0.08176 (12)0.19734 (15)0.0240 (4)
C70.87363 (13)0.07798 (15)0.25940 (16)0.0310 (5)
H70.86650.05830.32170.037*
C80.95385 (14)0.10405 (16)0.22687 (18)0.0353 (5)
C90.96818 (14)0.13294 (16)0.1348 (2)0.0385 (6)
H91.02300.14960.11410.046*
C100.89782 (17)0.13583 (16)0.07556 (17)0.0380 (5)
C110.81595 (13)0.11143 (15)0.10383 (16)0.0299 (5)
H110.76950.11460.06160.036*
N10.61430 (10)0.06642 (10)0.25215 (12)0.0230 (4)
H10.56660.03770.25570.028*0.50
F11.02219 (8)0.10061 (13)0.28671 (12)0.0550 (5)
F20.90872 (12)0.16429 (14)0.01500 (13)0.0632 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0216 (9)0.0199 (8)0.0288 (10)0.0015 (7)0.0003 (8)0.0020 (7)
C20.0221 (9)0.0225 (9)0.0420 (11)0.0048 (7)0.0006 (9)0.0041 (9)
C30.0190 (9)0.0260 (9)0.0404 (11)0.0033 (7)0.0033 (8)0.0040 (9)
C40.0180 (8)0.0239 (9)0.0280 (9)0.0000 (7)0.0029 (8)0.0009 (7)
C50.0193 (8)0.0209 (9)0.0273 (9)0.0001 (7)0.0017 (7)0.0001 (7)
C60.0211 (9)0.0183 (8)0.0325 (9)0.0001 (7)0.0040 (8)0.0020 (8)
C70.0237 (10)0.0389 (11)0.0302 (10)0.0006 (8)0.0031 (8)0.0023 (9)
C80.0207 (9)0.0393 (12)0.0458 (12)0.0035 (9)0.0008 (9)0.0085 (11)
C90.0239 (10)0.0382 (12)0.0533 (14)0.0089 (9)0.0134 (10)0.0070 (11)
C100.0377 (12)0.0366 (12)0.0396 (12)0.0041 (10)0.0124 (10)0.0048 (10)
C110.0252 (9)0.0305 (10)0.0340 (10)0.0003 (9)0.0014 (8)0.0046 (9)
N10.0169 (7)0.0201 (8)0.0319 (9)0.0001 (6)0.0009 (7)0.0015 (6)
F10.0214 (7)0.0862 (13)0.0575 (9)0.0066 (7)0.0062 (6)0.0118 (10)
F20.0548 (10)0.0853 (13)0.0495 (9)0.0146 (9)0.0159 (8)0.0246 (9)
Geometric parameters (Å, º) top
C1—N11.365 (2)C6—C111.398 (3)
C1—C5i1.404 (3)C7—C81.378 (3)
C1—C21.443 (3)C7—H70.9300
C2—C31.351 (3)C8—F11.347 (3)
C2—H20.9300C8—C91.381 (4)
C3—C41.438 (3)C9—C101.366 (4)
C3—H30.9300C9—H90.9300
C4—N11.373 (3)C10—F21.351 (3)
C4—C51.400 (3)C10—C111.376 (3)
C5—C1ii1.404 (3)C11—H110.9300
C5—C61.499 (3)N1—H10.8600
C6—C71.383 (3)
N1—C1—C5i125.93 (17)C8—C7—C6118.6 (2)
N1—C1—C2108.87 (16)C8—C7—H7120.7
C5i—C1—C2125.04 (17)C6—C7—H7120.7
C3—C2—C1107.48 (17)F1—C8—C7119.1 (2)
C3—C2—H2126.3F1—C8—C9117.9 (2)
C1—C2—H2126.3C7—C8—C9123.1 (2)
C2—C3—C4107.07 (17)C10—C9—C8116.69 (19)
C2—C3—H3126.5C10—C9—H9121.7
C4—C3—H3126.5C8—C9—H9121.7
N1—C4—C5124.97 (17)F2—C10—C9118.7 (2)
N1—C4—C3109.07 (16)F2—C10—C11118.2 (2)
C5—C4—C3125.93 (18)C9—C10—C11123.1 (2)
C4—C5—C1ii125.26 (18)C10—C11—C6118.7 (2)
C4—C5—C6118.44 (16)C10—C11—H11120.6
C1ii—C5—C6116.28 (17)C6—C11—H11120.6
C7—C6—C11119.85 (18)C1—N1—C4107.47 (16)
C7—C6—C5123.03 (19)C1—N1—H1126.3
C11—C6—C5117.12 (18)C4—N1—H1126.3
N1—C1—C2—C31.2 (3)C6—C7—C8—F1179.98 (19)
C5i—C1—C2—C3174.4 (2)C6—C7—C8—C90.7 (4)
C1—C2—C3—C41.9 (3)F1—C8—C9—C10180.0 (2)
C2—C3—C4—N12.0 (3)C7—C8—C9—C100.7 (4)
C2—C3—C4—C5175.8 (2)C8—C9—C10—F2179.5 (2)
N1—C4—C5—C1ii4.3 (3)C8—C9—C10—C110.2 (4)
C3—C4—C5—C1ii173.2 (2)F2—C10—C11—C6179.9 (2)
N1—C4—C5—C6174.02 (18)C9—C10—C11—C60.4 (4)
C3—C4—C5—C68.5 (3)C7—C6—C11—C100.4 (3)
C4—C5—C6—C774.1 (3)C5—C6—C11—C10180.0 (2)
C1ii—C5—C6—C7107.5 (2)C5i—C1—N1—C4175.62 (19)
C4—C5—C6—C11106.3 (2)C2—C1—N1—C40.1 (2)
C1ii—C5—C6—C1172.1 (2)C5—C4—N1—C1176.6 (2)
C11—C6—C7—C80.1 (3)C3—C4—N1—C11.3 (2)
C5—C6—C7—C8179.5 (2)
Symmetry codes: (i) y+1/2, x+1/2, z+1/2; (ii) y+1/2, x1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···C1iii0.932.873.634 (2)140
C3—H3···F1iv0.932.663.484 (2)148
Symmetry codes: (iii) y+1, x1/2, z+1/4; (iv) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC44H22F8N4
Mr758.66
Crystal system, space groupTetragonal, I42d
Temperature (K)233
a, c (Å)15.426 (5), 13.991 (5)
V3)3329.3 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.965, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
20353, 1145, 1049
Rint0.041
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.07
No. of reflections1145
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-32 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···C1i0.932.873.634 (2)140.4
C3—H3···F1ii0.932.663.484 (2)148.4
Symmetry codes: (i) y+1, x1/2, z+1/4; (ii) x+2, y, z.
 

Acknowledgements

This work was supported by the Department of Science and Technology, Government of India (to PB). We thank Mr V. Ramkumar for assistance with the data collection and the Department of Chemistry, IIT Madras, Chennai, for the XRD facility.

References

First citationBruker (1999). SADABS. Brucker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheidt, W. R. & Lee, Y. J. (1987). Struct. Bonding (Berlin), 64, 1–73.  CrossRef CAS Google Scholar
First citationSenge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith & R. Guilard, Vol. 1, ch. 6. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSilvers, S. J. & Tulinsky, A. (1967). J. Am. Chem. Soc. 89, 3331–3336.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationTamiaki, H., Matsumoto, N., Unno, S., Shinoda, S. & Tsukube, H. (2000). Inorg. Chim. Acta, 300–302, 243–249.  Web of Science CrossRef CAS Google Scholar
First citationThalladi, V. R., Weiss, H.-C., Blaser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds