metal-organic compounds
Hexaaquacadmium(II) bis{[N-(2-oxidobenzylidene)glycyl-L-leucinato]cuprate(II)} dihydrate
aCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou, 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn
The title compound, [Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O, has a chiral structure. Copper has a square-planar coordination with two N and two O atoms of the quadridentate chiral Schiff base ligand. The Cd2+ ion is coordinated by six aqua ligands with a slightly distorted octahedral configuration. Ions are linked by O—H⋯O hydrogen bonds, and the [Cd(H2O)6]2+ cations and [CuL]− anions (L = Schiff base derived from glycyl-L-leucine and salicylaldehyde) occupy a stacking structure within well separated columns along the a axis. The two crystallographically independent copper–Schiff base anions each have a chiral carbon centre with an S configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [010] direction.
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807063635/si2059sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807063635/si2059Isup2.hkl
Glycyl-L-leucine (5 mmol), salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to the pH 9–11 by using 5 mol.L-1 NaOH solution. After stirring at room temperature (25 °C) for 1 hr, CdCl2.6H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for 30 min and then filtered, the precipitate was recrystallized in water. The violet crystals suitable for X-ray diffraction were obtained after 1 week.
The water H atoms were located in a difference Fourier map and refined in riding mode, with a distance restraint of O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.98 Å and Uiso(H) set to 1.2 or 1.5eq(C) of the parent atom. The
of the structure was performed using 361 least-squares restraints by applying SIMU and DFIX instructions of SHELXTL.We are making a systematic investigation of chiral complexes of Schiff base derived from chiral dipeptides to which little attention has been given, and recently reported a chiral Cu(II)—Sr(II)—Na(I) complex of a Schiff base ligand resulting from the condensation of glycyl-L-tyrosine with N-5-bromosalicylaldehyde (Liu et al., 2004). Herein, we report the synthesis and structure of a Cu(II)—Cd(II) chiral Schiff base complex derived from glycyl-L-leucine and salicylaldehyde.
The
consists of two [CuL]- anions ([Cu1L]- and [Cu2L]-)(L is a Schiff base derived from glycyl-L-leucine and salicylaldehyde), one cation [CdII, O9, O10, O11, O12, O13 and O14]2+, and two uncoordinated water molecules (O15 and O16) (Fig. 1). [CuL]- has an approximate square-planar structure. The two crystallographically independent copper-Schiff base anions each have a chiral carbon centre (C10 and C25) with S-configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [0 1 0] direction (Fig. 2). The deprotonated Schiff base ligand is a triple negatively charged quadridentate ONNO chelant, coordinating to the CuII ion via one phenolic oxygen, one deprotonated amide nitrogen atom, one imino nitrogen atom and one carboxylate oxygen. The Cu—O and Cu—N bond distances are in the range of 1.878 (2)–1.954 (2) Å and 1.895 (3)–1.927 (3) Å, respectively (Table 1). The best-fit least-squares plane through the four basal and Cu atoms shows these atoms to be nearly coplanar. The CdII is coordinated by six aqua ligands with a slightly distorted octahedral geometry. The six Cd—O bonds in the structure are in the range of 2.228 (2)–2.373 (2) Å.The anions and cations linked by O—H···O hydrogen bonds (Table 2) form well separated columns along the a-axis in the stacking structure of (Fig. 3). The intermolecular and intramolecular hydrogen bonds in the title compound play an important role in the stabilization of the whole structure.
For related literature, see: Liu et al. (2004).
Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. | |
Fig. 2. View of the title structure in ac projection showing the non-crystallographic twofold rotation symmetry between the [CuL]- anions. | |
Fig. 3. The packing of the title compound, viewed down the a axis, showing a separated columns stacking structure connected by O—H···O hydrogen bonds, indicated by dashed lines. |
[Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O | F(000) = 984 |
Mr = 962.22 | Dx = 1.654 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 7167 reflections |
a = 7.0569 (6) Å | θ = 2.3–26.6° |
b = 17.4745 (14) Å | µ = 1.71 mm−1 |
c = 15.9430 (13) Å | T = 296 K |
β = 100.680 (1)° | Block, violet |
V = 1932.0 (3) Å3 | 0.30 × 0.28 × 0.23 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 6936 independent reflections |
Radiation source: sealed tube | 6430 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 26.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −8→8 |
Tmin = 0.602, Tmax = 0.678 | k = −19→21 |
15044 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0201P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.002 |
6936 reflections | Δρmax = 0.33 e Å−3 |
494 parameters | Δρmin = −0.28 e Å−3 |
361 restraints | Absolute structure: Flack (1983), 3005 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.008 (9) |
[Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O | V = 1932.0 (3) Å3 |
Mr = 962.22 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.0569 (6) Å | µ = 1.71 mm−1 |
b = 17.4745 (14) Å | T = 296 K |
c = 15.9430 (13) Å | 0.30 × 0.28 × 0.23 mm |
β = 100.680 (1)° |
Bruker SMART APEX CCD diffractometer | 6936 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 6430 reflections with I > 2σ(I) |
Tmin = 0.602, Tmax = 0.678 | Rint = 0.024 |
15044 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | Δρmax = 0.33 e Å−3 |
S = 1.01 | Δρmin = −0.28 e Å−3 |
6936 reflections | Absolute structure: Flack (1983), 3005 Friedel pairs |
494 parameters | Absolute structure parameter: 0.008 (9) |
361 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.05438 (3) | 0.678849 (13) | 0.730726 (13) | 0.03116 (6) | |
Cu1 | 0.14923 (5) | 0.41364 (2) | 0.89059 (2) | 0.03101 (9) | |
Cu2 | 0.60569 (6) | 0.40862 (2) | 0.62847 (2) | 0.03172 (10) | |
C1 | 0.0796 (5) | 0.3718 (2) | 0.6304 (2) | 0.0395 (8) | |
H1 | 0.0698 | 0.4219 | 0.6102 | 0.047* | |
C2 | 0.0601 (5) | 0.3127 (2) | 0.5729 (2) | 0.0424 (9) | |
H2 | 0.0361 | 0.3235 | 0.5148 | 0.051* | |
C3 | 0.0753 (5) | 0.2376 (2) | 0.5997 (2) | 0.0448 (9) | |
H3 | 0.0632 | 0.1978 | 0.5603 | 0.054* | |
C4 | 0.1088 (5) | 0.2223 (2) | 0.6863 (2) | 0.0394 (8) | |
H4 | 0.1167 | 0.1717 | 0.7047 | 0.047* | |
C5 | 0.1315 (5) | 0.2817 (2) | 0.7474 (2) | 0.0342 (7) | |
C6 | 0.1140 (4) | 0.3592 (2) | 0.7193 (2) | 0.0318 (7) | |
C7 | 0.1665 (4) | 0.25880 (19) | 0.8363 (2) | 0.0336 (7) | |
H7 | 0.1742 | 0.2067 | 0.8483 | 0.040* | |
C8 | 0.2178 (5) | 0.27673 (18) | 0.9874 (2) | 0.0326 (7) | |
H8A | 0.3478 | 0.2569 | 1.0036 | 0.039* | |
H8B | 0.1283 | 0.2355 | 0.9921 | 0.039* | |
C9 | 0.1871 (4) | 0.34199 (18) | 1.0471 (2) | 0.0290 (7) | |
C10 | 0.1302 (5) | 0.47934 (18) | 1.0534 (2) | 0.0309 (7) | |
H10 | 0.0151 | 0.4695 | 1.0780 | 0.037* | |
C11 | 0.2893 (5) | 0.5061 (2) | 1.1262 (2) | 0.0360 (8) | |
H11A | 0.2568 | 0.5572 | 1.1426 | 0.043* | |
H11B | 0.2880 | 0.4729 | 1.1748 | 0.043* | |
C12 | 0.4951 (5) | 0.5080 (2) | 1.1086 (2) | 0.0398 (8) | |
H12 | 0.5295 | 0.4556 | 1.0954 | 0.048* | |
C13 | 0.5223 (5) | 0.5579 (2) | 1.0346 (2) | 0.0514 (10) | |
H13A | 0.6571 | 0.5612 | 1.0325 | 0.077* | |
H13B | 0.4730 | 0.6082 | 1.0418 | 0.077* | |
H13C | 0.4542 | 0.5360 | 0.9824 | 0.077* | |
C14 | 0.6328 (6) | 0.5326 (3) | 1.1889 (3) | 0.0626 (11) | |
H14A | 0.5961 | 0.5821 | 1.2063 | 0.094* | |
H14B | 0.7617 | 0.5348 | 1.1776 | 0.094* | |
H14C | 0.6278 | 0.4962 | 1.2336 | 0.094* | |
C15 | 0.0748 (4) | 0.54010 (18) | 0.9829 (2) | 0.0315 (7) | |
C16 | 0.6727 (5) | 0.3991 (2) | 0.8915 (2) | 0.0422 (8) | |
H16 | 0.6679 | 0.4511 | 0.9035 | 0.051* | |
C17 | 0.7038 (5) | 0.3480 (2) | 0.9577 (2) | 0.0431 (8) | |
H17 | 0.7222 | 0.3661 | 1.0135 | 0.052* | |
C18 | 0.7085 (5) | 0.2701 (2) | 0.9435 (2) | 0.0432 (9) | |
H18 | 0.7309 | 0.2356 | 0.9888 | 0.052* | |
C19 | 0.6789 (5) | 0.2451 (2) | 0.8600 (2) | 0.0394 (8) | |
H19 | 0.6805 | 0.1928 | 0.8495 | 0.047* | |
C20 | 0.6466 (5) | 0.29517 (19) | 0.7907 (2) | 0.0324 (7) | |
C21 | 0.6478 (4) | 0.37532 (19) | 0.8058 (2) | 0.0325 (7) | |
C22 | 0.6117 (5) | 0.26192 (19) | 0.7058 (2) | 0.0337 (7) | |
H22 | 0.6095 | 0.2088 | 0.7019 | 0.040* | |
C23 | 0.5484 (5) | 0.26228 (18) | 0.5525 (2) | 0.0333 (7) | |
H23A | 0.4279 | 0.2342 | 0.5451 | 0.040* | |
H23B | 0.6512 | 0.2262 | 0.5493 | 0.040* | |
C24 | 0.5385 (4) | 0.32158 (19) | 0.4817 (2) | 0.0296 (7) | |
C25 | 0.5794 (5) | 0.45912 (18) | 0.4560 (2) | 0.0308 (7) | |
H25 | 0.6829 | 0.4480 | 0.4244 | 0.037* | |
C26 | 0.3991 (5) | 0.4801 (2) | 0.3906 (2) | 0.0364 (8) | |
H26A | 0.4222 | 0.5293 | 0.3662 | 0.044* | |
H26B | 0.3856 | 0.4428 | 0.3448 | 0.044* | |
C27 | 0.2086 (5) | 0.4847 (2) | 0.4204 (2) | 0.0429 (8) | |
H27 | 0.1841 | 0.4347 | 0.4442 | 0.052* | |
C28 | 0.2036 (6) | 0.5437 (3) | 0.4880 (3) | 0.0611 (11) | |
H28A | 0.2386 | 0.5926 | 0.4681 | 0.092* | |
H28B | 0.2930 | 0.5299 | 0.5387 | 0.092* | |
H28C | 0.0758 | 0.5465 | 0.5005 | 0.092* | |
C29 | 0.0475 (6) | 0.5000 (3) | 0.3436 (3) | 0.0704 (13) | |
H29A | 0.0448 | 0.4595 | 0.3027 | 0.106* | |
H29B | 0.0710 | 0.5478 | 0.3177 | 0.106* | |
H29C | −0.0741 | 0.5022 | 0.3622 | 0.106* | |
C30 | 0.6475 (4) | 0.52643 (19) | 0.5175 (2) | 0.0342 (8) | |
N1 | 0.1872 (4) | 0.30447 (16) | 0.89864 (17) | 0.0316 (7) | |
N2 | 0.1733 (3) | 0.40911 (15) | 1.01137 (15) | 0.0289 (5) | |
N3 | 0.5838 (4) | 0.29972 (16) | 0.63589 (16) | 0.0311 (6) | |
N4 | 0.5587 (4) | 0.39243 (14) | 0.50891 (16) | 0.0287 (6) | |
O1 | 0.1267 (3) | 0.41864 (13) | 0.77098 (13) | 0.0369 (5) | |
O2 | 0.0898 (3) | 0.52136 (12) | 0.90607 (14) | 0.0374 (6) | |
O3 | 0.0209 (4) | 0.60371 (13) | 1.00130 (16) | 0.0443 (6) | |
O4 | 0.1794 (3) | 0.32572 (13) | 1.12385 (15) | 0.0391 (6) | |
O5 | 0.6277 (3) | 0.42809 (12) | 0.74572 (13) | 0.0382 (6) | |
O6 | 0.6665 (4) | 0.51242 (13) | 0.59822 (15) | 0.0405 (6) | |
O7 | 0.6854 (3) | 0.58814 (13) | 0.48932 (15) | 0.0427 (6) | |
O8 | 0.5149 (3) | 0.29840 (13) | 0.40516 (14) | 0.0399 (6) | |
O9 | 0.2842 (4) | 0.64352 (15) | 0.84431 (15) | 0.0493 (7) | |
H9A | 0.3804 | 0.6232 | 0.8274 | 0.074* | |
H9B | 0.2295 | 0.6115 | 0.8707 | 0.074* | |
O10 | −0.0061 (4) | 0.55560 (14) | 0.70150 (17) | 0.0501 (7) | |
H10B | 0.0342 | 0.5289 | 0.7458 | 0.075* | |
H10A | −0.1269 | 0.5493 | 0.6860 | 0.075* | |
O11 | 0.2908 (3) | 0.67554 (17) | 0.65034 (14) | 0.0486 (6) | |
H11D | 0.3784 | 0.7078 | 0.6694 | 0.073* | |
H11C | 0.3389 | 0.6308 | 0.6530 | 0.073* | |
O12 | −0.1939 (3) | 0.69629 (14) | 0.61856 (15) | 0.0494 (7) | |
H12A | −0.1492 | 0.6987 | 0.5726 | 0.074* | |
H12B | −0.2501 | 0.7381 | 0.6260 | 0.074* | |
O13 | 0.0777 (4) | 0.80624 (15) | 0.75778 (18) | 0.0505 (7) | |
H13E | −0.0350 | 0.8253 | 0.7486 | 0.076* | |
H13D | 0.1301 | 0.8135 | 0.8096 | 0.076* | |
O14 | −0.1360 (3) | 0.67596 (16) | 0.83875 (14) | 0.0382 (5) | |
H14D | −0.147 (5) | 0.7248 (10) | 0.845 (2) | 0.057* | |
H14E | −0.092 (5) | 0.6565 (17) | 0.8865 (15) | 0.057* | |
O15 | 0.5499 (4) | 0.58134 (15) | 0.7677 (2) | 0.0545 (7) | |
H15A | 0.656 (4) | 0.605 (2) | 0.788 (3) | 0.082* | |
H15B | 0.590 (6) | 0.5359 (14) | 0.755 (3) | 0.082* | |
O16 | 0.4485 (4) | 0.84117 (19) | 0.75926 (18) | 0.0655 (9) | |
H16A | 0.5562 | 0.8284 | 0.7892 | 0.098* | |
H16B | 0.4512 | 0.8324 | 0.7072 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.03613 (11) | 0.02655 (12) | 0.03007 (12) | −0.00048 (11) | 0.00428 (8) | −0.00025 (12) |
Cu1 | 0.0439 (2) | 0.0219 (2) | 0.02635 (19) | −0.00039 (18) | 0.00396 (16) | 0.00266 (17) |
Cu2 | 0.0432 (2) | 0.0210 (2) | 0.0280 (2) | −0.00213 (18) | −0.00093 (16) | −0.00087 (18) |
C1 | 0.0453 (18) | 0.0391 (19) | 0.0342 (18) | 0.0029 (15) | 0.0074 (15) | −0.0012 (15) |
C2 | 0.049 (2) | 0.049 (2) | 0.0300 (18) | 0.0006 (17) | 0.0085 (15) | −0.0053 (17) |
C3 | 0.0473 (19) | 0.049 (2) | 0.0378 (19) | −0.0040 (17) | 0.0073 (15) | −0.0172 (17) |
C4 | 0.0461 (18) | 0.0306 (18) | 0.0408 (19) | −0.0014 (14) | 0.0061 (15) | −0.0062 (15) |
C5 | 0.0352 (16) | 0.0338 (18) | 0.0332 (17) | 0.0010 (14) | 0.0051 (13) | −0.0029 (14) |
C6 | 0.0308 (15) | 0.0348 (18) | 0.0302 (16) | 0.0016 (13) | 0.0062 (12) | −0.0012 (14) |
C7 | 0.0373 (17) | 0.0234 (16) | 0.0398 (18) | 0.0017 (13) | 0.0062 (14) | −0.0008 (15) |
C8 | 0.0425 (18) | 0.0225 (16) | 0.0324 (17) | 0.0029 (14) | 0.0064 (14) | 0.0056 (14) |
C9 | 0.0311 (16) | 0.0281 (17) | 0.0275 (17) | −0.0029 (13) | 0.0048 (13) | 0.0025 (14) |
C10 | 0.0349 (17) | 0.0264 (16) | 0.0326 (17) | 0.0002 (13) | 0.0096 (13) | 0.0034 (14) |
C11 | 0.0474 (18) | 0.0290 (17) | 0.0310 (17) | −0.0012 (15) | 0.0058 (14) | −0.0031 (14) |
C12 | 0.0408 (18) | 0.0351 (18) | 0.0406 (19) | 0.0030 (15) | 0.0004 (15) | −0.0030 (16) |
C13 | 0.044 (2) | 0.059 (2) | 0.050 (2) | 0.0036 (18) | 0.0076 (17) | 0.004 (2) |
C14 | 0.056 (2) | 0.072 (3) | 0.052 (2) | −0.009 (2) | −0.0109 (19) | −0.001 (2) |
C15 | 0.0314 (16) | 0.0235 (17) | 0.0387 (19) | −0.0016 (13) | 0.0041 (14) | 0.0008 (14) |
C16 | 0.0477 (18) | 0.040 (2) | 0.0380 (18) | −0.0031 (16) | 0.0052 (15) | −0.0022 (16) |
C17 | 0.0427 (18) | 0.057 (2) | 0.0298 (18) | −0.0022 (17) | 0.0056 (14) | 0.0035 (17) |
C18 | 0.0435 (19) | 0.050 (2) | 0.0364 (19) | 0.0010 (16) | 0.0079 (15) | 0.0096 (17) |
C19 | 0.0427 (17) | 0.0344 (18) | 0.0408 (19) | −0.0006 (15) | 0.0071 (15) | 0.0078 (15) |
C20 | 0.0350 (16) | 0.0305 (17) | 0.0326 (17) | −0.0022 (13) | 0.0084 (13) | 0.0032 (14) |
C21 | 0.0337 (16) | 0.0334 (17) | 0.0290 (16) | −0.0010 (13) | 0.0021 (13) | 0.0035 (14) |
C22 | 0.0382 (17) | 0.0226 (16) | 0.0401 (18) | −0.0017 (13) | 0.0069 (14) | 0.0021 (15) |
C23 | 0.0397 (18) | 0.0231 (17) | 0.0370 (18) | −0.0006 (13) | 0.0068 (14) | −0.0036 (14) |
C24 | 0.0264 (15) | 0.0302 (18) | 0.0329 (18) | 0.0012 (13) | 0.0075 (13) | −0.0012 (14) |
C25 | 0.0345 (16) | 0.0251 (17) | 0.0330 (17) | 0.0014 (13) | 0.0068 (13) | 0.0026 (13) |
C26 | 0.0477 (19) | 0.0312 (18) | 0.0279 (17) | 0.0023 (15) | 0.0012 (15) | −0.0001 (14) |
C27 | 0.0410 (18) | 0.042 (2) | 0.043 (2) | −0.0024 (15) | −0.0002 (15) | 0.0082 (16) |
C28 | 0.045 (2) | 0.076 (3) | 0.064 (3) | 0.008 (2) | 0.0113 (19) | −0.004 (2) |
C29 | 0.048 (2) | 0.088 (3) | 0.066 (3) | 0.002 (2) | −0.011 (2) | 0.010 (2) |
C30 | 0.0315 (16) | 0.0297 (19) | 0.0390 (19) | −0.0002 (14) | 0.0008 (14) | 0.0022 (16) |
N1 | 0.0400 (16) | 0.0246 (16) | 0.0300 (15) | 0.0014 (12) | 0.0056 (12) | 0.0042 (12) |
N2 | 0.0369 (13) | 0.0211 (13) | 0.0282 (13) | −0.0035 (12) | 0.0044 (10) | −0.0011 (12) |
N3 | 0.0328 (15) | 0.0254 (15) | 0.0328 (16) | −0.0031 (11) | −0.0001 (12) | −0.0029 (13) |
N4 | 0.0359 (14) | 0.0202 (15) | 0.0281 (14) | −0.0004 (10) | 0.0008 (11) | −0.0006 (11) |
O1 | 0.0566 (14) | 0.0249 (12) | 0.0282 (11) | 0.0040 (11) | 0.0050 (10) | 0.0016 (11) |
O2 | 0.0579 (15) | 0.0232 (13) | 0.0306 (13) | 0.0031 (11) | 0.0067 (11) | 0.0029 (10) |
O3 | 0.0563 (15) | 0.0272 (13) | 0.0488 (15) | 0.0093 (11) | 0.0080 (12) | −0.0019 (12) |
O4 | 0.0543 (15) | 0.0300 (13) | 0.0340 (13) | −0.0021 (11) | 0.0103 (11) | 0.0053 (11) |
O5 | 0.0575 (14) | 0.0234 (14) | 0.0317 (12) | 0.0012 (10) | 0.0033 (10) | −0.0032 (10) |
O6 | 0.0622 (16) | 0.0239 (13) | 0.0301 (13) | −0.0106 (11) | −0.0057 (11) | 0.0014 (10) |
O7 | 0.0563 (15) | 0.0261 (13) | 0.0438 (15) | −0.0090 (11) | 0.0041 (12) | 0.0071 (11) |
O8 | 0.0583 (16) | 0.0330 (14) | 0.0283 (13) | −0.0032 (12) | 0.0081 (11) | −0.0082 (10) |
O9 | 0.0445 (14) | 0.0643 (17) | 0.0391 (14) | 0.0055 (12) | 0.0078 (11) | 0.0095 (13) |
O10 | 0.0642 (16) | 0.0272 (14) | 0.0483 (15) | −0.0054 (12) | −0.0170 (13) | 0.0046 (12) |
O11 | 0.0589 (14) | 0.0389 (14) | 0.0533 (14) | −0.0068 (16) | 0.0241 (11) | −0.0025 (15) |
O12 | 0.0587 (15) | 0.0384 (16) | 0.0438 (14) | 0.0141 (12) | −0.0096 (11) | −0.0047 (12) |
O13 | 0.0626 (18) | 0.0347 (16) | 0.0559 (17) | −0.0028 (13) | 0.0150 (14) | −0.0038 (14) |
O14 | 0.0487 (12) | 0.0294 (12) | 0.0372 (12) | 0.0039 (14) | 0.0101 (10) | −0.0007 (14) |
O15 | 0.0487 (16) | 0.0359 (16) | 0.081 (2) | 0.0024 (13) | 0.0162 (14) | −0.0107 (15) |
O16 | 0.0576 (17) | 0.090 (2) | 0.0504 (17) | −0.0138 (16) | 0.0138 (13) | −0.0207 (16) |
Cd1—O10 | 2.228 (2) | C16—C21 | 1.407 (4) |
Cd1—O13 | 2.268 (3) | C16—H16 | 0.9300 |
Cd1—O12 | 2.280 (2) | C17—C18 | 1.381 (5) |
Cd1—O9 | 2.281 (2) | C17—H17 | 0.9300 |
Cd1—O11 | 2.285 (2) | C18—C19 | 1.380 (5) |
Cd1—O14 | 2.373 (2) | C18—H18 | 0.9300 |
Cu1—O1 | 1.886 (2) | C19—C20 | 1.394 (5) |
Cu1—N2 | 1.903 (2) | C19—H19 | 0.9300 |
Cu1—N1 | 1.927 (3) | C20—C21 | 1.421 (5) |
Cu1—O2 | 1.954 (2) | C20—C22 | 1.452 (5) |
Cu2—O5 | 1.878 (2) | C21—O5 | 1.318 (4) |
Cu2—N4 | 1.895 (3) | C22—N3 | 1.279 (4) |
Cu2—N3 | 1.915 (3) | C22—H22 | 0.9300 |
Cu2—O6 | 1.945 (2) | C23—N3 | 1.461 (4) |
C1—C2 | 1.371 (5) | C23—C24 | 1.524 (4) |
C1—C6 | 1.410 (4) | C23—H23A | 0.9700 |
C1—H1 | 0.9300 | C23—H23B | 0.9700 |
C2—C3 | 1.379 (5) | C24—O8 | 1.267 (4) |
C2—H2 | 0.9300 | C24—N4 | 1.311 (4) |
C3—C4 | 1.382 (5) | C25—N4 | 1.462 (4) |
C3—H3 | 0.9300 | C25—C26 | 1.533 (4) |
C4—C5 | 1.413 (5) | C25—C30 | 1.549 (5) |
C4—H4 | 0.9300 | C25—H25 | 0.9800 |
C5—C6 | 1.424 (5) | C26—C27 | 1.509 (5) |
C5—C7 | 1.450 (4) | C26—H26A | 0.9700 |
C6—O1 | 1.319 (4) | C26—H26B | 0.9700 |
C7—N1 | 1.261 (4) | C27—C28 | 1.497 (5) |
C7—H7 | 0.9300 | C27—C29 | 1.532 (5) |
C8—N1 | 1.473 (4) | C27—H27 | 0.9800 |
C8—C9 | 1.526 (4) | C28—H28A | 0.9600 |
C8—H8A | 0.9700 | C28—H28B | 0.9600 |
C8—H8B | 0.9700 | C28—H28C | 0.9600 |
C9—O4 | 1.267 (4) | C29—H29A | 0.9600 |
C9—N2 | 1.300 (4) | C29—H29B | 0.9600 |
C10—N2 | 1.457 (4) | C29—H29C | 0.9600 |
C10—C11 | 1.530 (4) | C30—O7 | 1.217 (4) |
C10—C15 | 1.543 (4) | C30—O6 | 1.292 (4) |
C10—H10 | 0.9800 | O9—H9A | 0.8535 |
C11—C12 | 1.530 (5) | O9—H9B | 0.8358 |
C11—H11A | 0.9700 | O10—H10B | 0.8500 |
C11—H11B | 0.9700 | O10—H10A | 0.8501 |
C12—C13 | 1.507 (5) | O11—H11D | 0.8500 |
C12—C14 | 1.518 (5) | O11—H11C | 0.8499 |
C12—H12 | 0.9800 | O12—H12A | 0.8500 |
C13—H13A | 0.9600 | O12—H12B | 0.8499 |
C13—H13B | 0.9600 | O13—H13E | 0.8500 |
C13—H13C | 0.9600 | O13—H13D | 0.8500 |
C14—H14A | 0.9600 | O14—H14D | 0.865 (18) |
C14—H14B | 0.9600 | O14—H14E | 0.838 (17) |
C14—H14C | 0.9600 | O15—H15A | 0.861 (19) |
C15—O3 | 1.228 (4) | O15—H15B | 0.878 (18) |
C15—O2 | 1.291 (4) | O16—H16A | 0.8493 |
C16—C17 | 1.370 (5) | O16—H16B | 0.8483 |
O10—Cd1—O13 | 173.25 (11) | C18—C17—H17 | 119.2 |
O10—Cd1—O12 | 82.86 (9) | C19—C18—C17 | 117.7 (3) |
O13—Cd1—O12 | 92.07 (10) | C19—C18—H18 | 121.1 |
O10—Cd1—O9 | 89.13 (9) | C17—C18—H18 | 121.1 |
O13—Cd1—O9 | 95.67 (10) | C18—C19—C20 | 122.6 (3) |
O12—Cd1—O9 | 171.42 (9) | C18—C19—H19 | 118.7 |
O10—Cd1—O11 | 89.41 (10) | C20—C19—H19 | 118.7 |
O13—Cd1—O11 | 95.55 (10) | C19—C20—C21 | 119.3 (3) |
O12—Cd1—O11 | 95.64 (9) | C19—C20—C22 | 117.5 (3) |
O9—Cd1—O11 | 87.30 (9) | C21—C20—C22 | 123.2 (3) |
O10—Cd1—O14 | 91.09 (10) | O5—C21—C16 | 118.4 (3) |
O13—Cd1—O14 | 85.05 (10) | O5—C21—C20 | 124.8 (3) |
O12—Cd1—O14 | 96.66 (9) | C16—C21—C20 | 116.8 (3) |
O9—Cd1—O14 | 80.38 (8) | N3—C22—C20 | 125.3 (3) |
O11—Cd1—O14 | 167.66 (8) | N3—C22—H22 | 117.3 |
O1—Cu1—N2 | 179.61 (11) | C20—C22—H22 | 117.3 |
O1—Cu1—N1 | 95.61 (11) | N3—C23—C24 | 110.2 (3) |
N2—Cu1—N1 | 84.62 (11) | N3—C23—H23A | 109.6 |
O1—Cu1—O2 | 95.93 (10) | C24—C23—H23A | 109.6 |
N2—Cu1—O2 | 83.87 (11) | N3—C23—H23B | 109.6 |
N1—Cu1—O2 | 167.28 (11) | C24—C23—H23B | 109.6 |
O5—Cu2—N4 | 174.48 (11) | H23A—C23—H23B | 108.1 |
O5—Cu2—N3 | 96.40 (11) | O8—C24—N4 | 127.4 (3) |
N4—Cu2—N3 | 84.99 (11) | O8—C24—C23 | 118.4 (3) |
O5—Cu2—O6 | 95.53 (10) | N4—C24—C23 | 114.2 (3) |
N4—Cu2—O6 | 83.99 (10) | N4—C25—C26 | 115.1 (3) |
N3—Cu2—O6 | 165.06 (12) | N4—C25—C30 | 107.0 (3) |
C2—C1—C6 | 122.1 (3) | C26—C25—C30 | 111.7 (3) |
C2—C1—H1 | 119.0 | N4—C25—H25 | 107.6 |
C6—C1—H1 | 119.0 | C26—C25—H25 | 107.6 |
C1—C2—C3 | 121.2 (3) | C30—C25—H25 | 107.6 |
C1—C2—H2 | 119.4 | C27—C26—C25 | 118.3 (3) |
C3—C2—H2 | 119.4 | C27—C26—H26A | 107.7 |
C2—C3—C4 | 118.8 (3) | C25—C26—H26A | 107.7 |
C2—C3—H3 | 120.6 | C27—C26—H26B | 107.7 |
C4—C3—H3 | 120.6 | C25—C26—H26B | 107.7 |
C3—C4—C5 | 121.5 (3) | H26A—C26—H26B | 107.1 |
C3—C4—H4 | 119.2 | C28—C27—C26 | 113.9 (3) |
C5—C4—H4 | 119.2 | C28—C27—C29 | 110.0 (3) |
C4—C5—C6 | 119.3 (3) | C26—C27—C29 | 109.2 (3) |
C4—C5—C7 | 116.6 (3) | C28—C27—H27 | 107.8 |
C6—C5—C7 | 124.0 (3) | C26—C27—H27 | 107.8 |
O1—C6—C1 | 118.9 (3) | C29—C27—H27 | 107.8 |
O1—C6—C5 | 124.1 (3) | C27—C28—H28A | 109.5 |
C1—C6—C5 | 117.0 (3) | C27—C28—H28B | 109.5 |
N1—C7—C5 | 124.7 (3) | H28A—C28—H28B | 109.5 |
N1—C7—H7 | 117.7 | C27—C28—H28C | 109.5 |
C5—C7—H7 | 117.7 | H28A—C28—H28C | 109.5 |
N1—C8—C9 | 109.9 (3) | H28B—C28—H28C | 109.5 |
N1—C8—H8A | 109.7 | C27—C29—H29A | 109.5 |
C9—C8—H8A | 109.7 | C27—C29—H29B | 109.5 |
N1—C8—H8B | 109.7 | H29A—C29—H29B | 109.5 |
C9—C8—H8B | 109.7 | C27—C29—H29C | 109.5 |
H8A—C8—H8B | 108.2 | H29A—C29—H29C | 109.5 |
O4—C9—N2 | 127.8 (3) | H29B—C29—H29C | 109.5 |
O4—C9—C8 | 118.1 (3) | O7—C30—O6 | 123.1 (3) |
N2—C9—C8 | 114.1 (3) | O7—C30—C25 | 120.2 (3) |
N2—C10—C11 | 114.8 (3) | O6—C30—C25 | 116.7 (3) |
N2—C10—C15 | 106.9 (3) | C7—N1—C8 | 121.5 (3) |
C11—C10—C15 | 113.2 (3) | C7—N1—Cu1 | 125.4 (2) |
N2—C10—H10 | 107.2 | C8—N1—Cu1 | 112.5 (2) |
C11—C10—H10 | 107.2 | C9—N2—C10 | 124.3 (3) |
C15—C10—H10 | 107.2 | C9—N2—Cu1 | 117.8 (2) |
C12—C11—C10 | 117.2 (3) | C10—N2—Cu1 | 116.3 (2) |
C12—C11—H11A | 108.0 | C22—N3—C23 | 122.3 (3) |
C10—C11—H11A | 108.0 | C22—N3—Cu2 | 124.5 (2) |
C12—C11—H11B | 108.0 | C23—N3—Cu2 | 113.0 (2) |
C10—C11—H11B | 108.0 | C24—N4—C25 | 125.3 (3) |
H11A—C11—H11B | 107.3 | C24—N4—Cu2 | 117.5 (2) |
C13—C12—C14 | 110.0 (3) | C25—N4—Cu2 | 116.36 (19) |
C13—C12—C11 | 114.8 (3) | C6—O1—Cu1 | 125.4 (2) |
C14—C12—C11 | 109.5 (3) | C15—O2—Cu1 | 114.9 (2) |
C13—C12—H12 | 107.4 | C21—O5—Cu2 | 125.1 (2) |
C14—C12—H12 | 107.4 | C30—O6—Cu2 | 115.9 (2) |
C11—C12—H12 | 107.4 | Cd1—O9—H9A | 110.6 |
C12—C13—H13A | 109.5 | Cd1—O9—H9B | 104.7 |
C12—C13—H13B | 109.5 | H9A—O9—H9B | 110.5 |
H13A—C13—H13B | 109.5 | Cd1—O10—H10B | 109.6 |
C12—C13—H13C | 109.5 | Cd1—O10—H10A | 109.3 |
H13A—C13—H13C | 109.5 | H10B—O10—H10A | 109.5 |
H13B—C13—H13C | 109.5 | Cd1—O11—H11D | 109.9 |
C12—C14—H14A | 109.5 | Cd1—O11—H11C | 108.8 |
C12—C14—H14B | 109.5 | H11D—O11—H11C | 109.5 |
H14A—C14—H14B | 109.5 | Cd1—O12—H12A | 109.2 |
C12—C14—H14C | 109.5 | Cd1—O12—H12B | 108.4 |
H14A—C14—H14C | 109.5 | H12A—O12—H12B | 109.5 |
H14B—C14—H14C | 109.5 | Cd1—O13—H13E | 108.7 |
O3—C15—O2 | 122.7 (3) | Cd1—O13—H13D | 109.6 |
O3—C15—C10 | 119.8 (3) | H13E—O13—H13D | 109.5 |
O2—C15—C10 | 117.6 (3) | Cd1—O14—H14D | 98 (3) |
C17—C16—C21 | 121.9 (3) | Cd1—O14—H14E | 120 (3) |
C17—C16—H16 | 119.1 | H14D—O14—H14E | 109 (3) |
C21—C16—H16 | 119.1 | H15A—O15—H15B | 103 (3) |
C16—C17—C18 | 121.5 (3) | H16A—O16—H16B | 108.8 |
C16—C17—H17 | 119.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16B···O8i | 0.85 | 1.94 | 2.783 (4) | 171 |
O16—H16A···O4ii | 0.85 | 2.11 | 2.937 (4) | 165 |
O15—H15B···O5 | 0.88 (2) | 1.91 (2) | 2.769 (3) | 164 (4) |
O15—H15A···O14iii | 0.86 (2) | 1.98 (2) | 2.828 (4) | 168 (4) |
O14—H14D···O4iv | 0.87 (2) | 1.86 (2) | 2.714 (4) | 171 (3) |
O14—H14E···O3 | 0.84 (2) | 2.07 (2) | 2.911 (3) | 177 (3) |
O13—H13E···O4iv | 0.85 | 2.44 | 2.870 (4) | 112 |
O12—H12B···O8v | 0.85 | 2.12 | 2.853 (3) | 144 |
O12—H12A···O7vi | 0.85 | 2.51 | 2.809 (3) | 102 |
O11—H11C···O15 | 0.85 | 2.30 | 2.879 (4) | 125 |
O11—H11D···O8i | 0.85 | 2.20 | 2.779 (4) | 126 |
O10—H10A···O6vi | 0.85 | 1.93 | 2.685 (3) | 147 |
O10—H10B···O2 | 0.85 | 2.52 | 3.261 (3) | 147 |
O10—H10B···O1 | 0.85 | 2.05 | 2.729 (3) | 136 |
O9—H9A···O15 | 0.85 | 1.81 | 2.652 (4) | 167 |
O9—H9B···O2 | 0.84 | 1.99 | 2.812 (3) | 166 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y+1/2, −z+2; (iii) x+1, y, z; (iv) −x, y+1/2, −z+2; (v) −x, y+1/2, −z+1; (vi) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O |
Mr | 962.22 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 296 |
a, b, c (Å) | 7.0569 (6), 17.4745 (14), 15.9430 (13) |
β (°) | 100.680 (1) |
V (Å3) | 1932.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.71 |
Crystal size (mm) | 0.30 × 0.28 × 0.23 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.602, 0.678 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15044, 6936, 6430 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.054, 1.01 |
No. of reflections | 6936 |
No. of parameters | 494 |
No. of restraints | 361 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.28 |
Absolute structure | Flack (1983), 3005 Friedel pairs |
Absolute structure parameter | 0.008 (9) |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
Cd1—O10 | 2.228 (2) | Cu1—N2 | 1.903 (2) |
Cd1—O13 | 2.268 (3) | Cu1—N1 | 1.927 (3) |
Cd1—O12 | 2.280 (2) | Cu1—O2 | 1.954 (2) |
Cd1—O9 | 2.281 (2) | Cu2—O5 | 1.878 (2) |
Cd1—O11 | 2.285 (2) | Cu2—N4 | 1.895 (3) |
Cd1—O14 | 2.373 (2) | Cu2—N3 | 1.915 (3) |
Cu1—O1 | 1.886 (2) | Cu2—O6 | 1.945 (2) |
O1—Cu1—N2 | 179.61 (11) | O5—Cu2—N4 | 174.48 (11) |
O1—Cu1—N1 | 95.61 (11) | O5—Cu2—N3 | 96.40 (11) |
N2—Cu1—N1 | 84.62 (11) | N4—Cu2—N3 | 84.99 (11) |
O1—Cu1—O2 | 95.93 (10) | O5—Cu2—O6 | 95.53 (10) |
N2—Cu1—O2 | 83.87 (11) | N4—Cu2—O6 | 83.99 (10) |
N1—Cu1—O2 | 167.28 (11) | N3—Cu2—O6 | 165.06 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16B···O8i | 0.85 | 1.94 | 2.783 (4) | 170.6 |
O16—H16A···O4ii | 0.85 | 2.11 | 2.937 (4) | 165.0 |
O15—H15B···O5 | 0.878 (18) | 1.91 (2) | 2.769 (3) | 164 (4) |
O15—H15A···O14iii | 0.861 (19) | 1.980 (19) | 2.828 (4) | 168 (4) |
O14—H14D···O4iv | 0.865 (18) | 1.86 (2) | 2.714 (4) | 171 (3) |
O14—H14E···O3 | 0.838 (17) | 2.073 (18) | 2.911 (3) | 177 (3) |
O12—H12B···O8v | 0.85 | 2.12 | 2.853 (3) | 143.8 |
O10—H10A···O6vi | 0.85 | 1.93 | 2.685 (3) | 146.6 |
O10—H10B···O2 | 0.85 | 2.52 | 3.261 (3) | 146.9 |
O9—H9A···O15 | 0.85 | 1.81 | 2.652 (4) | 167.0 |
O9—H9B···O2 | 0.84 | 1.99 | 2.812 (3) | 165.7 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+1, y+1/2, −z+2; (iii) x+1, y, z; (iv) −x, y+1/2, −z+2; (v) −x, y+1/2, −z+1; (vi) x−1, y, z. |
Acknowledgements
This work was supported by the Natural Science Foundation of the Education Department of Jiangsu Province (No. 06KJD150208).
References
Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SMART for WNT/2000. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Liu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946–2947. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We are making a systematic investigation of chiral complexes of Schiff base derived from chiral dipeptides to which little attention has been given, and recently reported a chiral Cu(II)—Sr(II)—Na(I) complex of a Schiff base ligand resulting from the condensation of glycyl-L-tyrosine with N-5-bromosalicylaldehyde (Liu et al., 2004). Herein, we report the synthesis and structure of a Cu(II)—Cd(II) chiral Schiff base complex derived from glycyl-L-leucine and salicylaldehyde.
The asymmetric unit consists of two [CuL]- anions ([Cu1L]- and [Cu2L]-)(L is a Schiff base derived from glycyl-L-leucine and salicylaldehyde), one cation [CdII, O9, O10, O11, O12, O13 and O14]2+, and two uncoordinated water molecules (O15 and O16) (Fig. 1). [CuL]- has an approximate square-planar structure. The two crystallographically independent copper-Schiff base anions each have a chiral carbon centre (C10 and C25) with S-configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [0 1 0] direction (Fig. 2). The deprotonated Schiff base ligand is a triple negatively charged quadridentate ONNO chelant, coordinating to the CuII ion via one phenolic oxygen, one deprotonated amide nitrogen atom, one imino nitrogen atom and one carboxylate oxygen. The Cu—O and Cu—N bond distances are in the range of 1.878 (2)–1.954 (2) Å and 1.895 (3)–1.927 (3) Å, respectively (Table 1). The best-fit least-squares plane through the four basal and Cu atoms shows these atoms to be nearly coplanar. The CdII is coordinated by six aqua ligands with a slightly distorted octahedral geometry. The six Cd—O bonds in the structure are in the range of 2.228 (2)–2.373 (2) Å.
The anions and cations linked by O—H···O hydrogen bonds (Table 2) form well separated columns along the a-axis in the stacking structure of (Fig. 3). The intermolecular and intramolecular hydrogen bonds in the title compound play an important role in the stabilization of the whole structure.