metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cadmium(II) bis­­{[N-(2-oxido­benzyl­­idene)glycyl-L-leucinato]cuprate(II)} dihydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou, 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn

(Received 19 November 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, [Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O, has a chiral structure. Copper has a square-planar coordination with two N and two O atoms of the quadridentate chiral Schiff base ligand. The Cd2+ ion is coordinated by six aqua ligands with a slightly distorted octa­hedral configuration. Ions are linked by O—H⋯O hydrogen bonds, and the [Cd(H2O)6]2+ cations and [CuL] anions (L = Schiff base derived from glycyl-L-leucine and salicylaldehyde) occupy a stacking structure within well separated columns along the a axis. The two crystallographically independent copper–Schiff base anions each have a chiral carbon centre with an S configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [010] direction.

Related literature

For related literature, see: Liu et al. (2004[Liu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946-2947.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O

  • Mr = 962.22

  • Monoclinic, P 21

  • a = 7.0569 (6) Å

  • b = 17.4745 (14) Å

  • c = 15.9430 (13) Å

  • β = 100.680 (1)°

  • V = 1932.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 296 (2) K

  • 0.30 × 0.28 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.602, Tmax = 0.678

  • 15044 measured reflections

  • 6936 independent reflections

  • 6430 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.01

  • 6936 reflections

  • 494 parameters

  • 361 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3005 Friedel pairs

  • Flack parameter: 0.008 (9)

Table 1
Selected geometric parameters (Å, °)

Cd1—O10 2.228 (2)
Cd1—O13 2.268 (3)
Cd1—O12 2.280 (2)
Cd1—O9 2.281 (2)
Cd1—O11 2.285 (2)
Cd1—O14 2.373 (2)
Cu1—O1 1.886 (2)
Cu1—N2 1.903 (2)
Cu1—N1 1.927 (3)
Cu1—O2 1.954 (2)
Cu2—O5 1.878 (2)
Cu2—N4 1.895 (3)
Cu2—N3 1.915 (3)
Cu2—O6 1.945 (2)
O1—Cu1—N2 179.61 (11)
O1—Cu1—N1 95.61 (11)
N2—Cu1—N1 84.62 (11)
O1—Cu1—O2 95.93 (10)
N2—Cu1—O2 83.87 (11)
N1—Cu1—O2 167.28 (11)
O5—Cu2—N4 174.48 (11)
O5—Cu2—N3 96.40 (11)
N4—Cu2—N3 84.99 (11)
O5—Cu2—O6 95.53 (10)
N4—Cu2—O6 83.99 (10)
N3—Cu2—O6 165.06 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16B⋯O8i 0.85 1.94 2.783 (4) 171
O16—H16A⋯O4ii 0.85 2.11 2.937 (4) 165
O15—H15B⋯O5 0.878 (18) 1.91 (2) 2.769 (3) 164 (4)
O15—H15A⋯O14iii 0.861 (19) 1.980 (19) 2.828 (4) 168 (4)
O14—H14D⋯O4iv 0.865 (18) 1.86 (2) 2.714 (4) 171 (3)
O14—H14E⋯O3 0.838 (17) 2.073 (18) 2.911 (3) 177 (3)
O12—H12B⋯O8v 0.85 2.12 2.853 (3) 144
O10—H10A⋯O6vi 0.85 1.93 2.685 (3) 147
O10—H10B⋯O2 0.85 2.52 3.261 (3) 147
O9—H9A⋯O15 0.85 1.81 2.652 (4) 167
O9—H9B⋯O2 0.84 1.99 2.812 (3) 166
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) x+1, y, z; (iv) [-x, y+{\script{1\over 2}}, -z+2]; (v) [-x, y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART for WNT/2000. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We are making a systematic investigation of chiral complexes of Schiff base derived from chiral dipeptides to which little attention has been given, and recently reported a chiral Cu(II)—Sr(II)—Na(I) complex of a Schiff base ligand resulting from the condensation of glycyl-L-tyrosine with N-5-bromosalicylaldehyde (Liu et al., 2004). Herein, we report the synthesis and structure of a Cu(II)—Cd(II) chiral Schiff base complex derived from glycyl-L-leucine and salicylaldehyde.

The asymmetric unit consists of two [CuL]- anions ([Cu1L]- and [Cu2L]-)(L is a Schiff base derived from glycyl-L-leucine and salicylaldehyde), one cation [CdII, O9, O10, O11, O12, O13 and O14]2+, and two uncoordinated water molecules (O15 and O16) (Fig. 1). [CuL]- has an approximate square-planar structure. The two crystallographically independent copper-Schiff base anions each have a chiral carbon centre (C10 and C25) with S-configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [0 1 0] direction (Fig. 2). The deprotonated Schiff base ligand is a triple negatively charged quadridentate ONNO chelant, coordinating to the CuII ion via one phenolic oxygen, one deprotonated amide nitrogen atom, one imino nitrogen atom and one carboxylate oxygen. The Cu—O and Cu—N bond distances are in the range of 1.878 (2)–1.954 (2) Å and 1.895 (3)–1.927 (3) Å, respectively (Table 1). The best-fit least-squares plane through the four basal and Cu atoms shows these atoms to be nearly coplanar. The CdII is coordinated by six aqua ligands with a slightly distorted octahedral geometry. The six Cd—O bonds in the structure are in the range of 2.228 (2)–2.373 (2) Å.

The anions and cations linked by O—H···O hydrogen bonds (Table 2) form well separated columns along the a-axis in the stacking structure of (Fig. 3). The intermolecular and intramolecular hydrogen bonds in the title compound play an important role in the stabilization of the whole structure.

Related literature top

For related literature, see: Liu et al. (2004).

Experimental top

Glycyl-L-leucine (5 mmol), salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to the pH 9–11 by using 5 mol.L-1 NaOH solution. After stirring at room temperature (25 °C) for 1 hr, CdCl2.6H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for 30 min and then filtered, the precipitate was recrystallized in water. The violet crystals suitable for X-ray diffraction were obtained after 1 week.

Refinement top

The water H atoms were located in a difference Fourier map and refined in riding mode, with a distance restraint of O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.98 Å and Uiso(H) set to 1.2 or 1.5eq(C) of the parent atom. The refinement of the structure was performed using 361 least-squares restraints by applying SIMU and DFIX instructions of SHELXTL.

Structure description top

We are making a systematic investigation of chiral complexes of Schiff base derived from chiral dipeptides to which little attention has been given, and recently reported a chiral Cu(II)—Sr(II)—Na(I) complex of a Schiff base ligand resulting from the condensation of glycyl-L-tyrosine with N-5-bromosalicylaldehyde (Liu et al., 2004). Herein, we report the synthesis and structure of a Cu(II)—Cd(II) chiral Schiff base complex derived from glycyl-L-leucine and salicylaldehyde.

The asymmetric unit consists of two [CuL]- anions ([Cu1L]- and [Cu2L]-)(L is a Schiff base derived from glycyl-L-leucine and salicylaldehyde), one cation [CdII, O9, O10, O11, O12, O13 and O14]2+, and two uncoordinated water molecules (O15 and O16) (Fig. 1). [CuL]- has an approximate square-planar structure. The two crystallographically independent copper-Schiff base anions each have a chiral carbon centre (C10 and C25) with S-configuration. They are related by a non-crystallographic twofold rotation axis parallel to the [0 1 0] direction (Fig. 2). The deprotonated Schiff base ligand is a triple negatively charged quadridentate ONNO chelant, coordinating to the CuII ion via one phenolic oxygen, one deprotonated amide nitrogen atom, one imino nitrogen atom and one carboxylate oxygen. The Cu—O and Cu—N bond distances are in the range of 1.878 (2)–1.954 (2) Å and 1.895 (3)–1.927 (3) Å, respectively (Table 1). The best-fit least-squares plane through the four basal and Cu atoms shows these atoms to be nearly coplanar. The CdII is coordinated by six aqua ligands with a slightly distorted octahedral geometry. The six Cd—O bonds in the structure are in the range of 2.228 (2)–2.373 (2) Å.

The anions and cations linked by O—H···O hydrogen bonds (Table 2) form well separated columns along the a-axis in the stacking structure of (Fig. 3). The intermolecular and intramolecular hydrogen bonds in the title compound play an important role in the stabilization of the whole structure.

For related literature, see: Liu et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the title structure in ac projection showing the non-crystallographic twofold rotation symmetry between the [CuL]- anions.
[Figure 3] Fig. 3. The packing of the title compound, viewed down the a axis, showing a separated columns stacking structure connected by O—H···O hydrogen bonds, indicated by dashed lines.
Hexaaquacadmium(II) bis{[N-(2-oxidobenzylidene)glycyl-L-leucinato]cuprate(II)} dihydrate top
Crystal data top
[Cd(H2O)6][Cu(C15H17N2O4)]2·2H2OF(000) = 984
Mr = 962.22Dx = 1.654 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7167 reflections
a = 7.0569 (6) Åθ = 2.3–26.6°
b = 17.4745 (14) ŵ = 1.71 mm1
c = 15.9430 (13) ÅT = 296 K
β = 100.680 (1)°Block, violet
V = 1932.0 (3) Å30.30 × 0.28 × 0.23 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
6936 independent reflections
Radiation source: sealed tube6430 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.602, Tmax = 0.678k = 1921
15044 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0201P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
6936 reflectionsΔρmax = 0.33 e Å3
494 parametersΔρmin = 0.28 e Å3
361 restraintsAbsolute structure: Flack (1983), 3005 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.008 (9)
Crystal data top
[Cd(H2O)6][Cu(C15H17N2O4)]2·2H2OV = 1932.0 (3) Å3
Mr = 962.22Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.0569 (6) ŵ = 1.71 mm1
b = 17.4745 (14) ÅT = 296 K
c = 15.9430 (13) Å0.30 × 0.28 × 0.23 mm
β = 100.680 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6936 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
6430 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.678Rint = 0.024
15044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.28 e Å3
6936 reflectionsAbsolute structure: Flack (1983), 3005 Friedel pairs
494 parametersAbsolute structure parameter: 0.008 (9)
361 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.05438 (3)0.678849 (13)0.730726 (13)0.03116 (6)
Cu10.14923 (5)0.41364 (2)0.89059 (2)0.03101 (9)
Cu20.60569 (6)0.40862 (2)0.62847 (2)0.03172 (10)
C10.0796 (5)0.3718 (2)0.6304 (2)0.0395 (8)
H10.06980.42190.61020.047*
C20.0601 (5)0.3127 (2)0.5729 (2)0.0424 (9)
H20.03610.32350.51480.051*
C30.0753 (5)0.2376 (2)0.5997 (2)0.0448 (9)
H30.06320.19780.56030.054*
C40.1088 (5)0.2223 (2)0.6863 (2)0.0394 (8)
H40.11670.17170.70470.047*
C50.1315 (5)0.2817 (2)0.7474 (2)0.0342 (7)
C60.1140 (4)0.3592 (2)0.7193 (2)0.0318 (7)
C70.1665 (4)0.25880 (19)0.8363 (2)0.0336 (7)
H70.17420.20670.84830.040*
C80.2178 (5)0.27673 (18)0.9874 (2)0.0326 (7)
H8A0.34780.25691.00360.039*
H8B0.12830.23550.99210.039*
C90.1871 (4)0.34199 (18)1.0471 (2)0.0290 (7)
C100.1302 (5)0.47934 (18)1.0534 (2)0.0309 (7)
H100.01510.46951.07800.037*
C110.2893 (5)0.5061 (2)1.1262 (2)0.0360 (8)
H11A0.25680.55721.14260.043*
H11B0.28800.47291.17480.043*
C120.4951 (5)0.5080 (2)1.1086 (2)0.0398 (8)
H120.52950.45561.09540.048*
C130.5223 (5)0.5579 (2)1.0346 (2)0.0514 (10)
H13A0.65710.56121.03250.077*
H13B0.47300.60821.04180.077*
H13C0.45420.53600.98240.077*
C140.6328 (6)0.5326 (3)1.1889 (3)0.0626 (11)
H14A0.59610.58211.20630.094*
H14B0.76170.53481.17760.094*
H14C0.62780.49621.23360.094*
C150.0748 (4)0.54010 (18)0.9829 (2)0.0315 (7)
C160.6727 (5)0.3991 (2)0.8915 (2)0.0422 (8)
H160.66790.45110.90350.051*
C170.7038 (5)0.3480 (2)0.9577 (2)0.0431 (8)
H170.72220.36611.01350.052*
C180.7085 (5)0.2701 (2)0.9435 (2)0.0432 (9)
H180.73090.23560.98880.052*
C190.6789 (5)0.2451 (2)0.8600 (2)0.0394 (8)
H190.68050.19280.84950.047*
C200.6466 (5)0.29517 (19)0.7907 (2)0.0324 (7)
C210.6478 (4)0.37532 (19)0.8058 (2)0.0325 (7)
C220.6117 (5)0.26192 (19)0.7058 (2)0.0337 (7)
H220.60950.20880.70190.040*
C230.5484 (5)0.26228 (18)0.5525 (2)0.0333 (7)
H23A0.42790.23420.54510.040*
H23B0.65120.22620.54930.040*
C240.5385 (4)0.32158 (19)0.4817 (2)0.0296 (7)
C250.5794 (5)0.45912 (18)0.4560 (2)0.0308 (7)
H250.68290.44800.42440.037*
C260.3991 (5)0.4801 (2)0.3906 (2)0.0364 (8)
H26A0.42220.52930.36620.044*
H26B0.38560.44280.34480.044*
C270.2086 (5)0.4847 (2)0.4204 (2)0.0429 (8)
H270.18410.43470.44420.052*
C280.2036 (6)0.5437 (3)0.4880 (3)0.0611 (11)
H28A0.23860.59260.46810.092*
H28B0.29300.52990.53870.092*
H28C0.07580.54650.50050.092*
C290.0475 (6)0.5000 (3)0.3436 (3)0.0704 (13)
H29A0.04480.45950.30270.106*
H29B0.07100.54780.31770.106*
H29C0.07410.50220.36220.106*
C300.6475 (4)0.52643 (19)0.5175 (2)0.0342 (8)
N10.1872 (4)0.30447 (16)0.89864 (17)0.0316 (7)
N20.1733 (3)0.40911 (15)1.01137 (15)0.0289 (5)
N30.5838 (4)0.29972 (16)0.63589 (16)0.0311 (6)
N40.5587 (4)0.39243 (14)0.50891 (16)0.0287 (6)
O10.1267 (3)0.41864 (13)0.77098 (13)0.0369 (5)
O20.0898 (3)0.52136 (12)0.90607 (14)0.0374 (6)
O30.0209 (4)0.60371 (13)1.00130 (16)0.0443 (6)
O40.1794 (3)0.32572 (13)1.12385 (15)0.0391 (6)
O50.6277 (3)0.42809 (12)0.74572 (13)0.0382 (6)
O60.6665 (4)0.51242 (13)0.59822 (15)0.0405 (6)
O70.6854 (3)0.58814 (13)0.48932 (15)0.0427 (6)
O80.5149 (3)0.29840 (13)0.40516 (14)0.0399 (6)
O90.2842 (4)0.64352 (15)0.84431 (15)0.0493 (7)
H9A0.38040.62320.82740.074*
H9B0.22950.61150.87070.074*
O100.0061 (4)0.55560 (14)0.70150 (17)0.0501 (7)
H10B0.03420.52890.74580.075*
H10A0.12690.54930.68600.075*
O110.2908 (3)0.67554 (17)0.65034 (14)0.0486 (6)
H11D0.37840.70780.66940.073*
H11C0.33890.63080.65300.073*
O120.1939 (3)0.69629 (14)0.61856 (15)0.0494 (7)
H12A0.14920.69870.57260.074*
H12B0.25010.73810.62600.074*
O130.0777 (4)0.80624 (15)0.75778 (18)0.0505 (7)
H13E0.03500.82530.74860.076*
H13D0.13010.81350.80960.076*
O140.1360 (3)0.67596 (16)0.83875 (14)0.0382 (5)
H14D0.147 (5)0.7248 (10)0.845 (2)0.057*
H14E0.092 (5)0.6565 (17)0.8865 (15)0.057*
O150.5499 (4)0.58134 (15)0.7677 (2)0.0545 (7)
H15A0.656 (4)0.605 (2)0.788 (3)0.082*
H15B0.590 (6)0.5359 (14)0.755 (3)0.082*
O160.4485 (4)0.84117 (19)0.75926 (18)0.0655 (9)
H16A0.55620.82840.78920.098*
H16B0.45120.83240.70720.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03613 (11)0.02655 (12)0.03007 (12)0.00048 (11)0.00428 (8)0.00025 (12)
Cu10.0439 (2)0.0219 (2)0.02635 (19)0.00039 (18)0.00396 (16)0.00266 (17)
Cu20.0432 (2)0.0210 (2)0.0280 (2)0.00213 (18)0.00093 (16)0.00087 (18)
C10.0453 (18)0.0391 (19)0.0342 (18)0.0029 (15)0.0074 (15)0.0012 (15)
C20.049 (2)0.049 (2)0.0300 (18)0.0006 (17)0.0085 (15)0.0053 (17)
C30.0473 (19)0.049 (2)0.0378 (19)0.0040 (17)0.0073 (15)0.0172 (17)
C40.0461 (18)0.0306 (18)0.0408 (19)0.0014 (14)0.0061 (15)0.0062 (15)
C50.0352 (16)0.0338 (18)0.0332 (17)0.0010 (14)0.0051 (13)0.0029 (14)
C60.0308 (15)0.0348 (18)0.0302 (16)0.0016 (13)0.0062 (12)0.0012 (14)
C70.0373 (17)0.0234 (16)0.0398 (18)0.0017 (13)0.0062 (14)0.0008 (15)
C80.0425 (18)0.0225 (16)0.0324 (17)0.0029 (14)0.0064 (14)0.0056 (14)
C90.0311 (16)0.0281 (17)0.0275 (17)0.0029 (13)0.0048 (13)0.0025 (14)
C100.0349 (17)0.0264 (16)0.0326 (17)0.0002 (13)0.0096 (13)0.0034 (14)
C110.0474 (18)0.0290 (17)0.0310 (17)0.0012 (15)0.0058 (14)0.0031 (14)
C120.0408 (18)0.0351 (18)0.0406 (19)0.0030 (15)0.0004 (15)0.0030 (16)
C130.044 (2)0.059 (2)0.050 (2)0.0036 (18)0.0076 (17)0.004 (2)
C140.056 (2)0.072 (3)0.052 (2)0.009 (2)0.0109 (19)0.001 (2)
C150.0314 (16)0.0235 (17)0.0387 (19)0.0016 (13)0.0041 (14)0.0008 (14)
C160.0477 (18)0.040 (2)0.0380 (18)0.0031 (16)0.0052 (15)0.0022 (16)
C170.0427 (18)0.057 (2)0.0298 (18)0.0022 (17)0.0056 (14)0.0035 (17)
C180.0435 (19)0.050 (2)0.0364 (19)0.0010 (16)0.0079 (15)0.0096 (17)
C190.0427 (17)0.0344 (18)0.0408 (19)0.0006 (15)0.0071 (15)0.0078 (15)
C200.0350 (16)0.0305 (17)0.0326 (17)0.0022 (13)0.0084 (13)0.0032 (14)
C210.0337 (16)0.0334 (17)0.0290 (16)0.0010 (13)0.0021 (13)0.0035 (14)
C220.0382 (17)0.0226 (16)0.0401 (18)0.0017 (13)0.0069 (14)0.0021 (15)
C230.0397 (18)0.0231 (17)0.0370 (18)0.0006 (13)0.0068 (14)0.0036 (14)
C240.0264 (15)0.0302 (18)0.0329 (18)0.0012 (13)0.0075 (13)0.0012 (14)
C250.0345 (16)0.0251 (17)0.0330 (17)0.0014 (13)0.0068 (13)0.0026 (13)
C260.0477 (19)0.0312 (18)0.0279 (17)0.0023 (15)0.0012 (15)0.0001 (14)
C270.0410 (18)0.042 (2)0.043 (2)0.0024 (15)0.0002 (15)0.0082 (16)
C280.045 (2)0.076 (3)0.064 (3)0.008 (2)0.0113 (19)0.004 (2)
C290.048 (2)0.088 (3)0.066 (3)0.002 (2)0.011 (2)0.010 (2)
C300.0315 (16)0.0297 (19)0.0390 (19)0.0002 (14)0.0008 (14)0.0022 (16)
N10.0400 (16)0.0246 (16)0.0300 (15)0.0014 (12)0.0056 (12)0.0042 (12)
N20.0369 (13)0.0211 (13)0.0282 (13)0.0035 (12)0.0044 (10)0.0011 (12)
N30.0328 (15)0.0254 (15)0.0328 (16)0.0031 (11)0.0001 (12)0.0029 (13)
N40.0359 (14)0.0202 (15)0.0281 (14)0.0004 (10)0.0008 (11)0.0006 (11)
O10.0566 (14)0.0249 (12)0.0282 (11)0.0040 (11)0.0050 (10)0.0016 (11)
O20.0579 (15)0.0232 (13)0.0306 (13)0.0031 (11)0.0067 (11)0.0029 (10)
O30.0563 (15)0.0272 (13)0.0488 (15)0.0093 (11)0.0080 (12)0.0019 (12)
O40.0543 (15)0.0300 (13)0.0340 (13)0.0021 (11)0.0103 (11)0.0053 (11)
O50.0575 (14)0.0234 (14)0.0317 (12)0.0012 (10)0.0033 (10)0.0032 (10)
O60.0622 (16)0.0239 (13)0.0301 (13)0.0106 (11)0.0057 (11)0.0014 (10)
O70.0563 (15)0.0261 (13)0.0438 (15)0.0090 (11)0.0041 (12)0.0071 (11)
O80.0583 (16)0.0330 (14)0.0283 (13)0.0032 (12)0.0081 (11)0.0082 (10)
O90.0445 (14)0.0643 (17)0.0391 (14)0.0055 (12)0.0078 (11)0.0095 (13)
O100.0642 (16)0.0272 (14)0.0483 (15)0.0054 (12)0.0170 (13)0.0046 (12)
O110.0589 (14)0.0389 (14)0.0533 (14)0.0068 (16)0.0241 (11)0.0025 (15)
O120.0587 (15)0.0384 (16)0.0438 (14)0.0141 (12)0.0096 (11)0.0047 (12)
O130.0626 (18)0.0347 (16)0.0559 (17)0.0028 (13)0.0150 (14)0.0038 (14)
O140.0487 (12)0.0294 (12)0.0372 (12)0.0039 (14)0.0101 (10)0.0007 (14)
O150.0487 (16)0.0359 (16)0.081 (2)0.0024 (13)0.0162 (14)0.0107 (15)
O160.0576 (17)0.090 (2)0.0504 (17)0.0138 (16)0.0138 (13)0.0207 (16)
Geometric parameters (Å, º) top
Cd1—O102.228 (2)C16—C211.407 (4)
Cd1—O132.268 (3)C16—H160.9300
Cd1—O122.280 (2)C17—C181.381 (5)
Cd1—O92.281 (2)C17—H170.9300
Cd1—O112.285 (2)C18—C191.380 (5)
Cd1—O142.373 (2)C18—H180.9300
Cu1—O11.886 (2)C19—C201.394 (5)
Cu1—N21.903 (2)C19—H190.9300
Cu1—N11.927 (3)C20—C211.421 (5)
Cu1—O21.954 (2)C20—C221.452 (5)
Cu2—O51.878 (2)C21—O51.318 (4)
Cu2—N41.895 (3)C22—N31.279 (4)
Cu2—N31.915 (3)C22—H220.9300
Cu2—O61.945 (2)C23—N31.461 (4)
C1—C21.371 (5)C23—C241.524 (4)
C1—C61.410 (4)C23—H23A0.9700
C1—H10.9300C23—H23B0.9700
C2—C31.379 (5)C24—O81.267 (4)
C2—H20.9300C24—N41.311 (4)
C3—C41.382 (5)C25—N41.462 (4)
C3—H30.9300C25—C261.533 (4)
C4—C51.413 (5)C25—C301.549 (5)
C4—H40.9300C25—H250.9800
C5—C61.424 (5)C26—C271.509 (5)
C5—C71.450 (4)C26—H26A0.9700
C6—O11.319 (4)C26—H26B0.9700
C7—N11.261 (4)C27—C281.497 (5)
C7—H70.9300C27—C291.532 (5)
C8—N11.473 (4)C27—H270.9800
C8—C91.526 (4)C28—H28A0.9600
C8—H8A0.9700C28—H28B0.9600
C8—H8B0.9700C28—H28C0.9600
C9—O41.267 (4)C29—H29A0.9600
C9—N21.300 (4)C29—H29B0.9600
C10—N21.457 (4)C29—H29C0.9600
C10—C111.530 (4)C30—O71.217 (4)
C10—C151.543 (4)C30—O61.292 (4)
C10—H100.9800O9—H9A0.8535
C11—C121.530 (5)O9—H9B0.8358
C11—H11A0.9700O10—H10B0.8500
C11—H11B0.9700O10—H10A0.8501
C12—C131.507 (5)O11—H11D0.8500
C12—C141.518 (5)O11—H11C0.8499
C12—H120.9800O12—H12A0.8500
C13—H13A0.9600O12—H12B0.8499
C13—H13B0.9600O13—H13E0.8500
C13—H13C0.9600O13—H13D0.8500
C14—H14A0.9600O14—H14D0.865 (18)
C14—H14B0.9600O14—H14E0.838 (17)
C14—H14C0.9600O15—H15A0.861 (19)
C15—O31.228 (4)O15—H15B0.878 (18)
C15—O21.291 (4)O16—H16A0.8493
C16—C171.370 (5)O16—H16B0.8483
O10—Cd1—O13173.25 (11)C18—C17—H17119.2
O10—Cd1—O1282.86 (9)C19—C18—C17117.7 (3)
O13—Cd1—O1292.07 (10)C19—C18—H18121.1
O10—Cd1—O989.13 (9)C17—C18—H18121.1
O13—Cd1—O995.67 (10)C18—C19—C20122.6 (3)
O12—Cd1—O9171.42 (9)C18—C19—H19118.7
O10—Cd1—O1189.41 (10)C20—C19—H19118.7
O13—Cd1—O1195.55 (10)C19—C20—C21119.3 (3)
O12—Cd1—O1195.64 (9)C19—C20—C22117.5 (3)
O9—Cd1—O1187.30 (9)C21—C20—C22123.2 (3)
O10—Cd1—O1491.09 (10)O5—C21—C16118.4 (3)
O13—Cd1—O1485.05 (10)O5—C21—C20124.8 (3)
O12—Cd1—O1496.66 (9)C16—C21—C20116.8 (3)
O9—Cd1—O1480.38 (8)N3—C22—C20125.3 (3)
O11—Cd1—O14167.66 (8)N3—C22—H22117.3
O1—Cu1—N2179.61 (11)C20—C22—H22117.3
O1—Cu1—N195.61 (11)N3—C23—C24110.2 (3)
N2—Cu1—N184.62 (11)N3—C23—H23A109.6
O1—Cu1—O295.93 (10)C24—C23—H23A109.6
N2—Cu1—O283.87 (11)N3—C23—H23B109.6
N1—Cu1—O2167.28 (11)C24—C23—H23B109.6
O5—Cu2—N4174.48 (11)H23A—C23—H23B108.1
O5—Cu2—N396.40 (11)O8—C24—N4127.4 (3)
N4—Cu2—N384.99 (11)O8—C24—C23118.4 (3)
O5—Cu2—O695.53 (10)N4—C24—C23114.2 (3)
N4—Cu2—O683.99 (10)N4—C25—C26115.1 (3)
N3—Cu2—O6165.06 (12)N4—C25—C30107.0 (3)
C2—C1—C6122.1 (3)C26—C25—C30111.7 (3)
C2—C1—H1119.0N4—C25—H25107.6
C6—C1—H1119.0C26—C25—H25107.6
C1—C2—C3121.2 (3)C30—C25—H25107.6
C1—C2—H2119.4C27—C26—C25118.3 (3)
C3—C2—H2119.4C27—C26—H26A107.7
C2—C3—C4118.8 (3)C25—C26—H26A107.7
C2—C3—H3120.6C27—C26—H26B107.7
C4—C3—H3120.6C25—C26—H26B107.7
C3—C4—C5121.5 (3)H26A—C26—H26B107.1
C3—C4—H4119.2C28—C27—C26113.9 (3)
C5—C4—H4119.2C28—C27—C29110.0 (3)
C4—C5—C6119.3 (3)C26—C27—C29109.2 (3)
C4—C5—C7116.6 (3)C28—C27—H27107.8
C6—C5—C7124.0 (3)C26—C27—H27107.8
O1—C6—C1118.9 (3)C29—C27—H27107.8
O1—C6—C5124.1 (3)C27—C28—H28A109.5
C1—C6—C5117.0 (3)C27—C28—H28B109.5
N1—C7—C5124.7 (3)H28A—C28—H28B109.5
N1—C7—H7117.7C27—C28—H28C109.5
C5—C7—H7117.7H28A—C28—H28C109.5
N1—C8—C9109.9 (3)H28B—C28—H28C109.5
N1—C8—H8A109.7C27—C29—H29A109.5
C9—C8—H8A109.7C27—C29—H29B109.5
N1—C8—H8B109.7H29A—C29—H29B109.5
C9—C8—H8B109.7C27—C29—H29C109.5
H8A—C8—H8B108.2H29A—C29—H29C109.5
O4—C9—N2127.8 (3)H29B—C29—H29C109.5
O4—C9—C8118.1 (3)O7—C30—O6123.1 (3)
N2—C9—C8114.1 (3)O7—C30—C25120.2 (3)
N2—C10—C11114.8 (3)O6—C30—C25116.7 (3)
N2—C10—C15106.9 (3)C7—N1—C8121.5 (3)
C11—C10—C15113.2 (3)C7—N1—Cu1125.4 (2)
N2—C10—H10107.2C8—N1—Cu1112.5 (2)
C11—C10—H10107.2C9—N2—C10124.3 (3)
C15—C10—H10107.2C9—N2—Cu1117.8 (2)
C12—C11—C10117.2 (3)C10—N2—Cu1116.3 (2)
C12—C11—H11A108.0C22—N3—C23122.3 (3)
C10—C11—H11A108.0C22—N3—Cu2124.5 (2)
C12—C11—H11B108.0C23—N3—Cu2113.0 (2)
C10—C11—H11B108.0C24—N4—C25125.3 (3)
H11A—C11—H11B107.3C24—N4—Cu2117.5 (2)
C13—C12—C14110.0 (3)C25—N4—Cu2116.36 (19)
C13—C12—C11114.8 (3)C6—O1—Cu1125.4 (2)
C14—C12—C11109.5 (3)C15—O2—Cu1114.9 (2)
C13—C12—H12107.4C21—O5—Cu2125.1 (2)
C14—C12—H12107.4C30—O6—Cu2115.9 (2)
C11—C12—H12107.4Cd1—O9—H9A110.6
C12—C13—H13A109.5Cd1—O9—H9B104.7
C12—C13—H13B109.5H9A—O9—H9B110.5
H13A—C13—H13B109.5Cd1—O10—H10B109.6
C12—C13—H13C109.5Cd1—O10—H10A109.3
H13A—C13—H13C109.5H10B—O10—H10A109.5
H13B—C13—H13C109.5Cd1—O11—H11D109.9
C12—C14—H14A109.5Cd1—O11—H11C108.8
C12—C14—H14B109.5H11D—O11—H11C109.5
H14A—C14—H14B109.5Cd1—O12—H12A109.2
C12—C14—H14C109.5Cd1—O12—H12B108.4
H14A—C14—H14C109.5H12A—O12—H12B109.5
H14B—C14—H14C109.5Cd1—O13—H13E108.7
O3—C15—O2122.7 (3)Cd1—O13—H13D109.6
O3—C15—C10119.8 (3)H13E—O13—H13D109.5
O2—C15—C10117.6 (3)Cd1—O14—H14D98 (3)
C17—C16—C21121.9 (3)Cd1—O14—H14E120 (3)
C17—C16—H16119.1H14D—O14—H14E109 (3)
C21—C16—H16119.1H15A—O15—H15B103 (3)
C16—C17—C18121.5 (3)H16A—O16—H16B108.8
C16—C17—H17119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16B···O8i0.851.942.783 (4)171
O16—H16A···O4ii0.852.112.937 (4)165
O15—H15B···O50.88 (2)1.91 (2)2.769 (3)164 (4)
O15—H15A···O14iii0.86 (2)1.98 (2)2.828 (4)168 (4)
O14—H14D···O4iv0.87 (2)1.86 (2)2.714 (4)171 (3)
O14—H14E···O30.84 (2)2.07 (2)2.911 (3)177 (3)
O13—H13E···O4iv0.852.442.870 (4)112
O12—H12B···O8v0.852.122.853 (3)144
O12—H12A···O7vi0.852.512.809 (3)102
O11—H11C···O150.852.302.879 (4)125
O11—H11D···O8i0.852.202.779 (4)126
O10—H10A···O6vi0.851.932.685 (3)147
O10—H10B···O20.852.523.261 (3)147
O10—H10B···O10.852.052.729 (3)136
O9—H9A···O150.851.812.652 (4)167
O9—H9B···O20.841.992.812 (3)166
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y, z; (iv) x, y+1/2, z+2; (v) x, y+1/2, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(H2O)6][Cu(C15H17N2O4)]2·2H2O
Mr962.22
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.0569 (6), 17.4745 (14), 15.9430 (13)
β (°) 100.680 (1)
V3)1932.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.30 × 0.28 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.602, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
15044, 6936, 6430
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.01
No. of reflections6936
No. of parameters494
No. of restraints361
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.28
Absolute structureFlack (1983), 3005 Friedel pairs
Absolute structure parameter0.008 (9)

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Cd1—O102.228 (2)Cu1—N21.903 (2)
Cd1—O132.268 (3)Cu1—N11.927 (3)
Cd1—O122.280 (2)Cu1—O21.954 (2)
Cd1—O92.281 (2)Cu2—O51.878 (2)
Cd1—O112.285 (2)Cu2—N41.895 (3)
Cd1—O142.373 (2)Cu2—N31.915 (3)
Cu1—O11.886 (2)Cu2—O61.945 (2)
O1—Cu1—N2179.61 (11)O5—Cu2—N4174.48 (11)
O1—Cu1—N195.61 (11)O5—Cu2—N396.40 (11)
N2—Cu1—N184.62 (11)N4—Cu2—N384.99 (11)
O1—Cu1—O295.93 (10)O5—Cu2—O695.53 (10)
N2—Cu1—O283.87 (11)N4—Cu2—O683.99 (10)
N1—Cu1—O2167.28 (11)N3—Cu2—O6165.06 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16B···O8i0.851.942.783 (4)170.6
O16—H16A···O4ii0.852.112.937 (4)165.0
O15—H15B···O50.878 (18)1.91 (2)2.769 (3)164 (4)
O15—H15A···O14iii0.861 (19)1.980 (19)2.828 (4)168 (4)
O14—H14D···O4iv0.865 (18)1.86 (2)2.714 (4)171 (3)
O14—H14E···O30.838 (17)2.073 (18)2.911 (3)177 (3)
O12—H12B···O8v0.852.122.853 (3)143.8
O10—H10A···O6vi0.851.932.685 (3)146.6
O10—H10B···O20.852.523.261 (3)146.9
O9—H9A···O150.851.812.652 (4)167.0
O9—H9B···O20.841.992.812 (3)165.7
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y+1/2, z+2; (iii) x+1, y, z; (iv) x, y+1/2, z+2; (v) x, y+1/2, z+1; (vi) x1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of the Education Department of Jiangsu Province (No. 06KJD150208).

References

First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART for WNT/2000. Version 5.630. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Version 6.45. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, W. L., Song, Y., Li, Y. Z., Zou, Y., Dang, D. B., Ni, C. L. & Meng, Q. J. (2004). Chem. Commun. pp. 2946–2947.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds