organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4aS,5R,7R,8S,8aR)-8-(1,3-Dioxolan-2-yl)-7,8-di­methyl-5-(1-methyl­ethen­yl)perhydro­naphthalen-2-one

aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: a.l.spek@chem.uu.nl

(Received 10 December 2007; accepted 17 December 2007; online 21 December 2007)

In the chiral title compound, C18H28O3, the two six-membered rings of the perhydronaphthalenone adopt a rigid chair–chair conformation and the five-membered dioxolanyl ring adopts an envelope conformation. The crystal structure is stabilized only by weak inter­actions.

Related literature

For related literature, see Meulemans et al. (1999[Meulemans, T. M., Stork, G. A., Macaev, F. Z., Jansen, B. J. M. & de Groot, A. (1999). J. Org. Chem. 64, 9178-9188.]); Meulemans & de Groot (2007[Meulemans, T. M. & de Groot, A. E. (2007). Private communication.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H28O3

  • Mr = 292.40

  • Monoclinic, P 21

  • a = 8.9172 (9) Å

  • b = 11.0318 (12) Å

  • c = 8.9616 (9) Å

  • β = 116.354 (6)°

  • V = 789.95 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 6725 measured reflections

  • 1678 independent reflections

  • 1623 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.07

  • 1678 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985[Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Crystals of the title compound (Fig. 1) were obtained as an undesired product as part of an attempt to synthesize a clerodane diterpenoid. The stereochemistry at each of the chiral centers (i.e., C5:S, C6:R, C8:R, C9:S, C10:R) was assigned based on the known chirality of C6:R of the starting material [i.e., R-(-)-carvone] (Meulemans et al.,1999).

The ring (C1/C2—C10) adopts a chair conformation with puckering parameters of Q = 0.559 (2) Å, θ = 173.5 (2)°, φ = 78.4(1.7)° (Cremer & Pople, 1975). The ring (C5/C6—C10) adopts a chair conformation with puckering parameters Q = 0.559 (2) Å, θ =176.2 (2)°, φ = 359 (3)°. The two six-membered rings of the hydronaphtalenone derivative adopt a rigid chair-chair conformation (i.e., the axial H atoms of the atoms C5 and C10 are located respectively below and above the best molecular plane of the octahydronaphtalen-2-one derivative).

The five-membered dioxolanyl ring (C11/O2—O3) adopts an envelope conformation on C17 (i.e., the atoms C11, C18, O2 and O3 are coplanar and C17 projects out of the plane) with puckering parameters of Q = 0.340 (2)Å and φ = 152.0 (3)°. The torsion angles C17 – O2 – C11 – O3 and C18 – O3 – C11 – O2 are respectively 26.80 (16) and -5.37 (17). Weak interactions are found between the equatorial H atom of atom C1 and atom C18 [C1–H1B···C18 (1 - x, 1/2 + y, -z) = 2.88 Å].

Other short contacts [C5···O1 (2 - x, -1/2 + y, -z) = 3.680 (2) Å and C13···O1 (2 - x, -1/2 + y, 1 - z) = 3.503 (2) Å] are also found in the crystal structure.

Related literature top

For related literature, see Meulemans et al. (1999); Meulemans & de Groot (2007); Cremer & Pople (1975).

Experimental top

Crystal of the title compound were obtained (Scheme 1) from Meulemans & de Groot (2007).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged prior to the refinement. The reflection 100 has been omitted from the refinement due to X-ray truncation at θmin = 2.54° (θ100 = 2.55°). H atoms were found in difference Fourier maps and subsequently placed at calculated positions (C—H = 0.95–1.00 Å) with isotropic displacement parameters having values 1.2 or 1.5 times Ueq of the attached C atom.

Structure description top

Crystals of the title compound (Fig. 1) were obtained as an undesired product as part of an attempt to synthesize a clerodane diterpenoid. The stereochemistry at each of the chiral centers (i.e., C5:S, C6:R, C8:R, C9:S, C10:R) was assigned based on the known chirality of C6:R of the starting material [i.e., R-(-)-carvone] (Meulemans et al.,1999).

The ring (C1/C2—C10) adopts a chair conformation with puckering parameters of Q = 0.559 (2) Å, θ = 173.5 (2)°, φ = 78.4(1.7)° (Cremer & Pople, 1975). The ring (C5/C6—C10) adopts a chair conformation with puckering parameters Q = 0.559 (2) Å, θ =176.2 (2)°, φ = 359 (3)°. The two six-membered rings of the hydronaphtalenone derivative adopt a rigid chair-chair conformation (i.e., the axial H atoms of the atoms C5 and C10 are located respectively below and above the best molecular plane of the octahydronaphtalen-2-one derivative).

The five-membered dioxolanyl ring (C11/O2—O3) adopts an envelope conformation on C17 (i.e., the atoms C11, C18, O2 and O3 are coplanar and C17 projects out of the plane) with puckering parameters of Q = 0.340 (2)Å and φ = 152.0 (3)°. The torsion angles C17 – O2 – C11 – O3 and C18 – O3 – C11 – O2 are respectively 26.80 (16) and -5.37 (17). Weak interactions are found between the equatorial H atom of atom C1 and atom C18 [C1–H1B···C18 (1 - x, 1/2 + y, -z) = 2.88 Å].

Other short contacts [C5···O1 (2 - x, -1/2 + y, -z) = 3.680 (2) Å and C13···O1 (2 - x, -1/2 + y, 1 - z) = 3.503 (2) Å] are also found in the crystal structure.

For related literature, see Meulemans et al. (1999); Meulemans & de Groot (2007); Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of the asymmetric unit of the title compound at 150 K. H atoms are omitted for clarity.
[Figure 2] Fig. 2. The formation of the title compound.
(4aS,5R,7R,8S,8aR)-8-(1,3-Dioxolan-2-yl)-\7,8-dimethyl-5-(1-methylethenyl)perhydronaphthalen-2-one top
Crystal data top
C18H28O3F(000) = 320
Mr = 292.40Dx = 1.229 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 225 reflections
a = 8.9172 (9) Åθ = 2.0–20.0°
b = 11.0318 (12) ŵ = 0.08 mm1
c = 8.9616 (9) ÅT = 150 K
β = 116.354 (6)°Block, colourless
V = 789.95 (14) Å30.30 × 0.30 × 0.30 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1623 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.034
Graphite monochromatorθmax = 26.3°, θmin = 2.5°
φ and ω scansh = 1111
6725 measured reflectionsk = 1313
1678 independent reflectionsl = 1110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.0975P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1678 reflectionsΔρmax = 0.21 e Å3
193 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: known chirality of atom C6(R)
Primary atom site location: structure-invariant direct methods
Crystal data top
C18H28O3V = 789.95 (14) Å3
Mr = 292.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.9172 (9) ŵ = 0.08 mm1
b = 11.0318 (12) ÅT = 150 K
c = 8.9616 (9) Å0.30 × 0.30 × 0.30 mm
β = 116.354 (6)°
Data collection top
Nonius KappaCCD
diffractometer
1623 reflections with I > 2σ(I)
6725 measured reflectionsRint = 0.034
1678 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
1678 reflectionsΔρmin = 0.12 e Å3
193 parametersAbsolute structure: known chirality of atom C6(R)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91230 (16)1.20580 (12)0.02689 (16)0.0341 (3)
O20.71825 (13)0.66981 (11)0.28172 (14)0.0219 (3)
O30.66971 (14)0.78772 (12)0.05496 (14)0.0252 (3)
C10.8606 (2)1.01128 (16)0.1128 (2)0.0232 (4)
H1A0.83180.94470.03060.028*
H1B0.75481.04920.09980.028*
C20.9642 (2)1.10439 (16)0.07722 (19)0.0226 (4)
C31.1366 (2)1.06287 (16)0.1097 (2)0.0250 (4)
H3A1.20191.13270.10080.030*
H3B1.12821.00220.02500.030*
C41.22676 (19)1.00670 (15)0.2844 (2)0.0209 (3)
H4A1.33500.97250.29870.025*
H4B1.25101.07130.36870.025*
C51.12471 (18)0.90660 (14)0.31573 (19)0.0157 (3)
H5A1.10450.84000.23330.019*
C61.22433 (18)0.85501 (14)0.49250 (19)0.0166 (3)
H6A1.25450.92450.57230.020*
C71.11779 (18)0.76665 (14)0.53733 (19)0.0172 (3)
H7A1.18300.73960.65400.021*
H7B1.09280.69430.46490.021*
C80.95238 (19)0.82285 (14)0.51790 (19)0.0162 (3)
H8A0.88690.75650.53760.019*
C90.84606 (18)0.86925 (14)0.33675 (19)0.0160 (3)
C100.95399 (18)0.95839 (14)0.29051 (19)0.0159 (3)
H10A0.97961.02860.36860.019*
C110.79211 (18)0.75823 (15)0.21959 (19)0.0183 (3)
H11A0.89270.72250.21420.022*
C120.68673 (19)0.93240 (15)0.3237 (2)0.0218 (3)
H12A0.63600.88330.38040.033*
H12B0.60700.94160.20610.033*
H12C0.71571.01250.37620.033*
C130.9859 (2)0.91914 (16)0.6532 (2)0.0229 (3)
H13A1.04180.98910.63270.034*
H13B1.05760.88460.76270.034*
H13C0.87950.94500.65030.034*
C141.38701 (19)0.79469 (15)0.51502 (19)0.0196 (3)
C151.3778 (2)0.70016 (18)0.3920 (2)0.0281 (4)
H15A1.34570.73800.28310.042*
H15B1.29420.63910.38260.042*
H15C1.48740.66130.42940.042*
C161.5329 (2)0.82505 (18)0.6422 (2)0.0284 (4)
H16A1.63320.78630.65550.034*
H16B1.53620.88540.71920.034*
C170.5970 (2)0.60851 (16)0.1386 (2)0.0257 (4)
H17A0.50790.57210.16160.031*
H17B0.64950.54430.10040.031*
C180.5291 (2)0.70922 (18)0.0126 (2)0.0290 (4)
H18A0.48890.67770.10220.035*
H18B0.43600.75190.02210.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0380 (7)0.0257 (7)0.0346 (7)0.0021 (6)0.0126 (6)0.0121 (6)
O20.0228 (6)0.0192 (6)0.0210 (6)0.0074 (5)0.0073 (5)0.0009 (5)
O30.0228 (6)0.0278 (6)0.0189 (6)0.0096 (5)0.0037 (5)0.0007 (5)
C10.0176 (7)0.0256 (8)0.0229 (8)0.0005 (7)0.0059 (6)0.0072 (7)
C20.0269 (8)0.0228 (8)0.0156 (7)0.0027 (7)0.0072 (6)0.0028 (7)
C30.0265 (8)0.0273 (9)0.0235 (8)0.0047 (7)0.0132 (7)0.0047 (7)
C40.0177 (7)0.0220 (8)0.0237 (8)0.0019 (6)0.0100 (6)0.0043 (7)
C50.0149 (7)0.0154 (7)0.0163 (7)0.0006 (6)0.0064 (6)0.0000 (6)
C60.0162 (7)0.0167 (7)0.0170 (7)0.0007 (6)0.0074 (6)0.0003 (6)
C70.0175 (7)0.0149 (7)0.0186 (7)0.0008 (6)0.0073 (6)0.0024 (6)
C80.0172 (7)0.0153 (7)0.0167 (7)0.0011 (6)0.0081 (6)0.0011 (6)
C90.0147 (7)0.0165 (7)0.0179 (7)0.0000 (6)0.0081 (6)0.0012 (6)
C100.0146 (7)0.0149 (7)0.0172 (7)0.0008 (6)0.0063 (6)0.0027 (6)
C110.0175 (7)0.0183 (7)0.0181 (7)0.0020 (6)0.0071 (6)0.0000 (6)
C120.0177 (7)0.0226 (8)0.0266 (8)0.0027 (6)0.0111 (6)0.0018 (7)
C130.0258 (8)0.0242 (8)0.0205 (8)0.0013 (7)0.0120 (7)0.0027 (7)
C140.0182 (7)0.0197 (8)0.0215 (8)0.0028 (6)0.0093 (6)0.0042 (6)
C150.0262 (8)0.0277 (9)0.0330 (9)0.0070 (7)0.0155 (7)0.0005 (8)
C160.0204 (8)0.0364 (10)0.0267 (9)0.0069 (7)0.0088 (7)0.0043 (8)
C170.0239 (8)0.0245 (8)0.0242 (8)0.0097 (7)0.0067 (7)0.0038 (7)
C180.0205 (8)0.0330 (9)0.0262 (8)0.0104 (7)0.0039 (7)0.0012 (8)
Geometric parameters (Å, º) top
O1—C21.218 (2)C8—C91.559 (2)
O2—C111.4215 (19)C8—H8A1.0000
O2—C171.428 (2)C9—C121.539 (2)
O3—C181.430 (2)C9—C111.544 (2)
O3—C111.4298 (18)C9—C101.5554 (19)
C1—C21.507 (2)C10—H10A1.0000
C1—C101.547 (2)C11—H11A1.0000
C1—H1A0.9900C12—H12A0.9800
C1—H1B0.9900C12—H12B0.9800
C2—C31.503 (2)C12—H12C0.9800
C3—C41.537 (2)C13—H13A0.9800
C3—H3A0.9900C13—H13B0.9800
C3—H3B0.9900C13—H13C0.9800
C4—C51.534 (2)C14—C161.337 (2)
C4—H4A0.9900C14—C151.493 (2)
C4—H4B0.9900C15—H15A0.9800
C5—C61.541 (2)C15—H15B0.9800
C5—C101.5458 (19)C15—H15C0.9800
C5—H5A1.0000C16—H16A0.9500
C6—C141.526 (2)C16—H16B0.9500
C6—C71.534 (2)C17—C181.506 (3)
C6—H6A1.0000C17—H17A0.9900
C7—C81.537 (2)C17—H17B0.9900
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C8—C131.538 (2)
C11—O2—C17105.72 (12)C11—C9—C8108.03 (12)
C18—O3—C11108.30 (12)C10—C9—C8108.84 (11)
C2—C1—C10111.98 (13)C5—C10—C1109.58 (12)
C2—C1—H1A109.2C5—C10—C9114.40 (12)
C10—C1—H1A109.2C1—C10—C9113.50 (12)
C2—C1—H1B109.2C5—C10—H10A106.2
C10—C1—H1B109.2C1—C10—H10A106.2
H1A—C1—H1B107.9C9—C10—H10A106.2
O1—C2—C3122.63 (16)O2—C11—O3106.63 (12)
O1—C2—C1122.44 (16)O2—C11—C9109.67 (12)
C3—C2—C1114.93 (14)O3—C11—C9112.69 (13)
C2—C3—C4110.36 (13)O2—C11—H11A109.3
C2—C3—H3A109.6O3—C11—H11A109.3
C4—C3—H3A109.6C9—C11—H11A109.3
C2—C3—H3B109.6C9—C12—H12A109.5
C4—C3—H3B109.6C9—C12—H12B109.5
H3A—C3—H3B108.1H12A—C12—H12B109.5
C5—C4—C3113.07 (12)C9—C12—H12C109.5
C5—C4—H4A109.0H12A—C12—H12C109.5
C3—C4—H4A109.0H12B—C12—H12C109.5
C5—C4—H4B109.0C8—C13—H13A109.5
C3—C4—H4B109.0C8—C13—H13B109.5
H4A—C4—H4B107.8H13A—C13—H13B109.5
C4—C5—C6109.63 (12)C8—C13—H13C109.5
C4—C5—C10109.45 (12)H13A—C13—H13C109.5
C6—C5—C10111.58 (11)H13B—C13—H13C109.5
C4—C5—H5A108.7C16—C14—C15121.22 (15)
C6—C5—H5A108.7C16—C14—C6120.78 (15)
C10—C5—H5A108.7C15—C14—C6118.00 (14)
C14—C6—C7110.56 (12)C14—C15—H15A109.5
C14—C6—C5112.18 (12)C14—C15—H15B109.5
C7—C6—C5111.26 (12)H15A—C15—H15B109.5
C14—C6—H6A107.5C14—C15—H15C109.5
C7—C6—H6A107.5H15A—C15—H15C109.5
C5—C6—H6A107.5H15B—C15—H15C109.5
C6—C7—C8112.88 (12)C14—C16—H16A120.0
C6—C7—H7A109.0C14—C16—H16B120.0
C8—C7—H7A109.0H16A—C16—H16B120.0
C6—C7—H7B109.0O2—C17—C18102.48 (14)
C8—C7—H7B109.0O2—C17—H17A111.3
H7A—C7—H7B107.8C18—C17—H17A111.3
C7—C8—C13110.40 (12)O2—C17—H17B111.3
C7—C8—C9111.09 (12)C18—C17—H17B111.3
C13—C8—C9114.17 (13)H17A—C17—H17B109.2
C7—C8—H8A106.9O3—C18—C17103.57 (13)
C13—C8—H8A106.9O3—C18—H18A111.0
C9—C8—H8A106.9C17—C18—H18A111.0
C12—C9—C11107.98 (12)O3—C18—H18B111.0
C12—C9—C10110.66 (12)C17—C18—H18B111.0
C11—C9—C10111.29 (12)H18A—C18—H18B109.0
C12—C9—C8110.00 (12)
C10—C1—C2—O1126.84 (17)C2—C1—C10—C555.17 (18)
C10—C1—C2—C352.74 (19)C2—C1—C10—C9175.58 (13)
O1—C2—C3—C4129.35 (17)C12—C9—C10—C5174.62 (12)
C1—C2—C3—C450.2 (2)C11—C9—C10—C565.32 (16)
C2—C3—C4—C552.91 (19)C8—C9—C10—C553.62 (16)
C3—C4—C5—C6179.67 (13)C12—C9—C10—C158.63 (17)
C3—C4—C5—C1057.64 (17)C11—C9—C10—C161.44 (16)
C4—C5—C6—C1463.06 (16)C8—C9—C10—C1179.62 (12)
C10—C5—C6—C14175.53 (13)C17—O2—C11—O326.80 (16)
C4—C5—C6—C7172.49 (12)C17—O2—C11—C9149.10 (12)
C10—C5—C6—C751.08 (16)C18—O3—C11—O25.37 (17)
C14—C6—C7—C8179.67 (12)C18—O3—C11—C9125.73 (14)
C5—C6—C7—C854.97 (17)C12—C9—C11—O267.98 (15)
C6—C7—C8—C1370.08 (16)C10—C9—C11—O2170.38 (12)
C6—C7—C8—C957.63 (16)C8—C9—C11—O250.96 (15)
C7—C8—C9—C12176.34 (13)C12—C9—C11—O350.63 (16)
C13—C8—C9—C1250.71 (16)C10—C9—C11—O371.01 (15)
C7—C8—C9—C1166.02 (15)C8—C9—C11—O3169.56 (11)
C13—C8—C9—C11168.35 (12)C7—C6—C14—C16107.18 (17)
C7—C8—C9—C1054.94 (15)C5—C6—C14—C16127.98 (17)
C13—C8—C9—C1070.69 (15)C7—C6—C14—C1572.20 (18)
C4—C5—C10—C157.34 (16)C5—C6—C14—C1552.63 (19)
C6—C5—C10—C1178.86 (13)C11—O2—C17—C1836.40 (16)
C4—C5—C10—C9173.90 (12)C11—O3—C18—C1716.77 (18)
C6—C5—C10—C952.38 (16)O2—C17—C18—O332.42 (17)

Experimental details

Crystal data
Chemical formulaC18H28O3
Mr292.40
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)8.9172 (9), 11.0318 (12), 8.9616 (9)
β (°) 116.354 (6)
V3)789.95 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6725, 1678, 1623
Rint0.034
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.07
No. of reflections1678
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.12
Absolute structureKnown chirality of atom C6(R)

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

 

Footnotes

Shell Global Solutions International BV, Badhuisweg 3, 1031 CM Amsterdam, PO Box 38000, 1030 BN Amsterdam, The Netherlands.

Acknowledgements

We are grateful to Dr Tommy M. Meulemans and Professor Aede de Groot for providing crystals of the title compound. This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (CW–NWO).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMeulemans, T. M. & de Groot, A. E. (2007). Private communication.  Google Scholar
First citationMeulemans, T. M., Stork, G. A., Macaev, F. Z., Jansen, B. J. M. & de Groot, A. (1999). J. Org. Chem. 64, 9178–9188.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds