organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 4-({[(E)-1,3-di­methyl-5-phen­­oxy­pyrazol-4-yl]meth­yl}amino­oxymeth­yl)benzoate

aState Key Laboratory and Institute of Element-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: funa2008@mail.nankai.edu.cn

(Received 27 October 2007; accepted 30 October 2007; online 6 December 2007)

The title compound, C24H27N3O4, also known as fenpyroximate, is a commercial acaricide. The benzene ring of the phen­oxy group is approximately perpendicular to the pyrazole ring with a dihedral angle of 84.37 (11)°. The dihedral angle between the phen­oxy and the benzoate benzene rings is 48.83 (8)°.

Related literature

For background to the design of bioactive mol­ecules, see: Lewis et al. (1991[Lewis, R. J., Camilleri, P., Kirby, A. J., Marby, C. A., Slawin, A. A. & Williams, D. J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1625-1631.]) and for a related structure, see: Zou et al. (2006[Zou, X.-M., Lin, D., Pei, J., Wang, C.-Q. & Yang, H.-Z. (2006). Acta Cryst. E62, o2471-o2472.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27N3O4

  • Mr = 421.49

  • Triclinic, [P \overline 1]

  • a = 9.672 (3) Å

  • b = 9.908 (3) Å

  • c = 13.179 (3) Å

  • α = 72.487 (5)°

  • β = 71.614 (5)°

  • γ = 74.494 (4)°

  • V = 1122.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45), SADABS and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.983

  • 5754 measured reflections

  • 3941 independent reflections

  • 2284 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.175

  • S = 1.06

  • 3941 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45), SADABS and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45), SADABS and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SMART (Version 5.618), SAINT (Version 6.45), SADABS and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since biological activities are related to the conformation of molecules, study of the relationships between chemical structure and biological activity is important in the rational design of bioactive molecules (Lewis et al., 1991). The title compound, also known as Fenpyroximate, is a commercial acaricide. Details of its crystal structure may be helpful for the design of new acaricidal compounds and we report here the structure of the title compound (I), Fig. 1. In (I), the benzene ring (C1/C2/C3/C4/C5/C6) is approximately perpendicular to the pyrazole ring with a dihedral angle of 84.37 (11) ° between them. The dihedral angle between the benzoate benzene ring(C14/C15/C16/C17/C18/C19) and the pyrazole ring is 64.87 (11) °. This is different to the dihedral angle between the pyrimidine ring and the pyrazole ring in (E)-5(3,5-dimethylphenoxy)-1,3-dimethyl-1H-pyrazole-4-carbaldehyde O-(2-chloropyrimidin-4-yl)oxime (Zou et al., 2006).

Related literature top

For background to the design of bioactive molecules, see: Lewis et al. (1991) and for a related structure, see: Zou et al. (2006).

Experimental top

Tert-butyl-(4-bromomethyl)benzoate(2.2 mmol), anhydrous potassium carbonate (4 mmol), and 1,3-dimethyl-5-phenoxy-1H-pyrazole-4- carbaldehyde oxime (2 mmol) were mixed in acetonitrile (40 ml) and refluxed for 5 h. The solvent was then evaporated in vacuo. The residue was recrystallized from ethanol and single crystals of (I) suitable for X-ray analysis were grown from ethyl acetate and petroleum ether at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Structure description top

Since biological activities are related to the conformation of molecules, study of the relationships between chemical structure and biological activity is important in the rational design of bioactive molecules (Lewis et al., 1991). The title compound, also known as Fenpyroximate, is a commercial acaricide. Details of its crystal structure may be helpful for the design of new acaricidal compounds and we report here the structure of the title compound (I), Fig. 1. In (I), the benzene ring (C1/C2/C3/C4/C5/C6) is approximately perpendicular to the pyrazole ring with a dihedral angle of 84.37 (11) ° between them. The dihedral angle between the benzoate benzene ring(C14/C15/C16/C17/C18/C19) and the pyrazole ring is 64.87 (11) °. This is different to the dihedral angle between the pyrimidine ring and the pyrazole ring in (E)-5(3,5-dimethylphenoxy)-1,3-dimethyl-1H-pyrazole-4-carbaldehyde O-(2-chloropyrimidin-4-yl)oxime (Zou et al., 2006).

For background to the design of bioactive molecules, see: Lewis et al. (1991) and for a related structure, see: Zou et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 30% probability level.
tert-Butyl 4-({[(E)-1,3-dimethyl-5-phenoxypyrazol-4-yl]methyl}aminooxymethyl)benzoate top
Crystal data top
C24H27N3O4Z = 2
Mr = 421.49F(000) = 448
Triclinic, P1Dx = 1.248 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.672 (3) ÅCell parameters from 1585 reflections
b = 9.908 (3) Åθ = 2.2–22.6°
c = 13.179 (3) ŵ = 0.09 mm1
α = 72.487 (5)°T = 294 K
β = 71.614 (5)°Prism, colorless
γ = 74.494 (4)°0.32 × 0.24 × 0.20 mm
V = 1122.0 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3941 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.972, Tmax = 0.983k = 811
5754 measured reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
3941 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H27N3O4γ = 74.494 (4)°
Mr = 421.49V = 1122.0 (6) Å3
Triclinic, P1Z = 2
a = 9.672 (3) ÅMo Kα radiation
b = 9.908 (3) ŵ = 0.09 mm1
c = 13.179 (3) ÅT = 294 K
α = 72.487 (5)°0.32 × 0.24 × 0.20 mm
β = 71.614 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2284 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.983Rint = 0.022
5754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
3941 reflectionsΔρmin = 0.22 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26628 (19)1.1772 (2)0.00386 (14)0.0554 (5)
O20.3962 (2)0.6532 (2)0.19530 (16)0.0616 (6)
O31.0760 (3)0.3688 (3)0.34012 (19)0.0934 (9)
O40.9545 (2)0.2420 (2)0.49895 (15)0.0561 (5)
N10.3522 (3)1.2674 (3)0.1062 (2)0.0559 (6)
N20.4285 (3)1.2208 (3)0.1845 (2)0.0609 (7)
N30.4010 (3)0.7806 (3)0.2206 (2)0.0542 (6)
C10.1138 (3)1.1919 (3)0.0179 (2)0.0441 (7)
C20.0642 (3)1.1915 (3)0.0686 (2)0.0601 (8)
H20.13071.18120.13560.072*
C30.0863 (4)1.2068 (4)0.0544 (3)0.0743 (10)
H30.12131.20640.11240.089*
C40.1839 (4)1.2223 (3)0.0431 (3)0.0673 (9)
H40.28501.23180.05200.081*
C50.1329 (3)1.2238 (3)0.1279 (3)0.0612 (8)
H50.20001.23490.19450.073*
C60.0167 (3)1.2090 (3)0.1166 (2)0.0545 (8)
H60.05101.21060.17460.065*
C70.3276 (3)1.1573 (3)0.0806 (2)0.0479 (7)
C80.3863 (3)1.0308 (3)0.1450 (2)0.0456 (7)
C90.4502 (3)1.0776 (3)0.2080 (2)0.0519 (7)
C100.5368 (4)0.9888 (4)0.2888 (3)0.0734 (10)
H10A0.57431.05070.31320.110*
H10B0.61830.92350.25450.110*
H10C0.47380.93480.35070.110*
C110.3029 (4)1.4211 (3)0.0637 (3)0.0784 (10)
H11A0.37301.45490.00360.118*
H11B0.29591.47270.11680.118*
H11C0.20741.43700.04990.118*
C120.3833 (3)0.8883 (3)0.1411 (2)0.0493 (7)
H120.36810.87470.07900.059*
C130.3981 (3)0.5385 (3)0.2913 (3)0.0615 (8)
H13A0.36800.45830.28160.074*
H13B0.32580.57060.35360.074*
C140.5472 (3)0.4862 (3)0.3174 (2)0.0499 (7)
C150.5588 (3)0.3798 (3)0.4126 (3)0.0631 (9)
H150.47540.34290.45800.076*
C160.6917 (3)0.3281 (3)0.4406 (2)0.0569 (8)
H160.69690.25820.50550.068*
C170.8173 (3)0.3792 (3)0.3734 (2)0.0457 (7)
C180.8060 (3)0.4847 (3)0.2779 (2)0.0536 (7)
H180.89000.52000.23150.064*
C190.6725 (3)0.5377 (3)0.2510 (2)0.0518 (7)
H190.66670.60930.18720.062*
C200.9636 (3)0.3290 (3)0.4004 (2)0.0532 (7)
C211.0809 (3)0.1863 (3)0.5491 (2)0.0522 (7)
C221.2093 (4)0.1033 (5)0.4795 (3)0.1094 (16)
H22A1.17750.02730.46680.164*
H22B1.28710.06260.51670.164*
H22C1.24560.16680.41030.164*
C231.0184 (5)0.0865 (5)0.6550 (3)0.1151 (17)
H23A0.93390.13950.69790.173*
H23B1.09270.04460.69550.173*
H23C0.98860.01150.63940.173*
C241.1218 (5)0.3089 (4)0.5687 (4)0.1043 (14)
H24A1.16170.37020.49940.156*
H24B1.19490.27260.61040.156*
H24C1.03520.36300.60900.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (11)0.0691 (14)0.0429 (11)0.0020 (9)0.0124 (9)0.0054 (9)
O20.0750 (14)0.0483 (12)0.0716 (14)0.0077 (10)0.0418 (11)0.0080 (10)
O30.0540 (14)0.124 (2)0.0669 (16)0.0101 (14)0.0133 (12)0.0198 (14)
O40.0515 (12)0.0629 (13)0.0494 (12)0.0120 (9)0.0224 (9)0.0041 (10)
N10.0533 (15)0.0509 (15)0.0583 (15)0.0045 (12)0.0181 (12)0.0063 (12)
N20.0529 (15)0.0655 (18)0.0656 (17)0.0076 (12)0.0213 (13)0.0145 (13)
N30.0561 (15)0.0490 (15)0.0595 (16)0.0021 (11)0.0254 (12)0.0114 (12)
C10.0431 (16)0.0375 (15)0.0456 (16)0.0048 (11)0.0137 (13)0.0010 (12)
C20.0605 (19)0.071 (2)0.0476 (18)0.0151 (16)0.0105 (15)0.0140 (15)
C30.068 (2)0.094 (3)0.071 (2)0.0225 (19)0.0294 (19)0.016 (2)
C40.0504 (19)0.066 (2)0.088 (3)0.0082 (15)0.0240 (19)0.0171 (18)
C50.0486 (18)0.065 (2)0.065 (2)0.0076 (15)0.0050 (15)0.0201 (16)
C60.0529 (18)0.0619 (19)0.0471 (18)0.0077 (14)0.0146 (14)0.0117 (14)
C70.0377 (15)0.0532 (18)0.0447 (16)0.0033 (13)0.0087 (13)0.0065 (13)
C80.0363 (14)0.0491 (17)0.0457 (16)0.0042 (12)0.0104 (12)0.0065 (13)
C90.0362 (15)0.061 (2)0.0538 (18)0.0045 (13)0.0124 (13)0.0102 (14)
C100.0582 (19)0.084 (2)0.081 (2)0.0019 (17)0.0388 (17)0.0120 (18)
C110.091 (3)0.051 (2)0.087 (3)0.0066 (17)0.030 (2)0.0051 (17)
C120.0393 (15)0.0579 (19)0.0472 (17)0.0026 (13)0.0161 (13)0.0079 (14)
C130.067 (2)0.0487 (18)0.074 (2)0.0127 (15)0.0381 (17)0.0007 (15)
C140.0603 (18)0.0389 (15)0.0568 (18)0.0069 (13)0.0279 (15)0.0091 (13)
C150.0567 (19)0.0589 (19)0.067 (2)0.0178 (15)0.0245 (16)0.0097 (15)
C160.0611 (19)0.0506 (18)0.0541 (18)0.0128 (14)0.0244 (15)0.0067 (14)
C170.0513 (17)0.0414 (15)0.0439 (16)0.0029 (12)0.0165 (13)0.0102 (12)
C180.0520 (17)0.0590 (19)0.0445 (17)0.0078 (14)0.0138 (14)0.0055 (14)
C190.0616 (19)0.0490 (17)0.0413 (16)0.0051 (14)0.0195 (14)0.0034 (13)
C200.0542 (19)0.0549 (18)0.0452 (18)0.0018 (14)0.0160 (15)0.0083 (14)
C210.0502 (16)0.0573 (18)0.0492 (17)0.0058 (14)0.0231 (14)0.0055 (14)
C220.105 (3)0.112 (3)0.106 (3)0.049 (3)0.059 (3)0.046 (3)
C230.089 (3)0.156 (4)0.080 (3)0.039 (3)0.048 (2)0.042 (3)
C240.122 (3)0.080 (3)0.140 (4)0.012 (2)0.085 (3)0.021 (3)
Geometric parameters (Å, º) top
O1—C71.360 (3)C11—H11A0.9600
O1—C11.386 (3)C11—H11B0.9600
O2—N31.414 (3)C11—H11C0.9600
O2—C131.425 (3)C12—H120.9300
O3—C201.210 (3)C13—C141.507 (4)
O4—C201.316 (3)C13—H13A0.9700
O4—C211.471 (3)C13—H13B0.9700
N1—C71.332 (4)C14—C191.373 (4)
N1—N21.355 (3)C14—C151.388 (4)
N1—C111.458 (4)C15—C161.373 (4)
N2—C91.331 (4)C15—H150.9300
N3—C121.268 (3)C16—C171.377 (4)
C1—C21.370 (4)C16—H160.9300
C1—C61.371 (4)C17—C181.386 (4)
C2—C31.380 (4)C17—C201.487 (4)
C2—H20.9300C18—C191.373 (4)
C3—C41.358 (4)C18—H180.9300
C3—H30.9300C19—H190.9300
C4—C51.361 (4)C21—C241.487 (5)
C4—H40.9300C21—C231.499 (4)
C5—C61.379 (4)C21—C221.500 (5)
C5—H50.9300C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—C81.377 (4)C22—H22C0.9600
C8—C91.413 (4)C23—H23A0.9600
C8—C121.436 (4)C23—H23B0.9600
C9—C101.489 (4)C23—H23C0.9600
C10—H10A0.9600C24—H24A0.9600
C10—H10B0.9600C24—H24B0.9600
C10—H10C0.9600C24—H24C0.9600
C7—O1—C1119.0 (2)O2—C13—H13A108.8
N3—O2—C13108.3 (2)C14—C13—H13A108.8
C20—O4—C21122.9 (2)O2—C13—H13B108.8
C7—N1—N2111.3 (2)C14—C13—H13B108.8
C7—N1—C11128.0 (3)H13A—C13—H13B107.7
N2—N1—C11120.7 (3)C19—C14—C15118.4 (3)
C9—N2—N1105.4 (2)C19—C14—C13123.2 (3)
C12—N3—O2110.3 (2)C15—C14—C13118.4 (3)
C2—C1—C6121.1 (3)C16—C15—C14121.0 (3)
C2—C1—O1114.9 (2)C16—C15—H15119.5
C6—C1—O1123.9 (2)C14—C15—H15119.5
C1—C2—C3118.8 (3)C15—C16—C17120.4 (3)
C1—C2—H2120.6C15—C16—H16119.8
C3—C2—H2120.6C17—C16—H16119.8
C4—C3—C2120.8 (3)C16—C17—C18118.6 (3)
C4—C3—H3119.6C16—C17—C20122.8 (3)
C2—C3—H3119.6C18—C17—C20118.6 (3)
C3—C4—C5119.7 (3)C19—C18—C17120.8 (3)
C3—C4—H4120.2C19—C18—H18119.6
C5—C4—H4120.2C17—C18—H18119.6
C4—C5—C6121.0 (3)C18—C19—C14120.8 (3)
C4—C5—H5119.5C18—C19—H19119.6
C6—C5—H5119.5C14—C19—H19119.6
C1—C6—C5118.5 (3)O3—C20—O4124.4 (3)
C1—C6—H6120.7O3—C20—C17123.4 (3)
C5—C6—H6120.7O4—C20—C17112.1 (3)
N1—C7—O1121.8 (2)O4—C21—C24108.7 (2)
N1—C7—C8108.6 (3)O4—C21—C23102.6 (2)
O1—C7—C8129.4 (3)C24—C21—C23111.6 (3)
C7—C8—C9103.6 (3)O4—C21—C22111.5 (2)
C7—C8—C12125.5 (3)C24—C21—C22112.2 (3)
C9—C8—C12130.9 (2)C23—C21—C22109.9 (3)
N2—C9—C8111.1 (2)C21—C22—H22A109.5
N2—C9—C10120.4 (3)C21—C22—H22B109.5
C8—C9—C10128.5 (3)H22A—C22—H22B109.5
C9—C10—H10A109.5C21—C22—H22C109.5
C9—C10—H10B109.5H22A—C22—H22C109.5
H10A—C10—H10B109.5H22B—C22—H22C109.5
C9—C10—H10C109.5C21—C23—H23A109.5
H10A—C10—H10C109.5C21—C23—H23B109.5
H10B—C10—H10C109.5H23A—C23—H23B109.5
N1—C11—H11A109.5C21—C23—H23C109.5
N1—C11—H11B109.5H23A—C23—H23C109.5
H11A—C11—H11B109.5H23B—C23—H23C109.5
N1—C11—H11C109.5C21—C24—H24A109.5
H11A—C11—H11C109.5C21—C24—H24B109.5
H11B—C11—H11C109.5H24A—C24—H24B109.5
N3—C12—C8121.5 (3)C21—C24—H24C109.5
N3—C12—H12119.3H24A—C24—H24C109.5
C8—C12—H12119.3H24B—C24—H24C109.5
O2—C13—C14114.0 (2)
C7—N1—N2—C90.4 (3)C7—C8—C9—C10176.7 (3)
C11—N1—N2—C9177.3 (3)C12—C8—C9—C101.2 (5)
C13—O2—N3—C12172.9 (2)O2—N3—C12—C8178.9 (2)
C7—O1—C1—C2171.4 (2)C7—C8—C12—N3160.1 (3)
C7—O1—C1—C610.0 (4)C9—C8—C12—N322.4 (4)
C6—C1—C2—C30.9 (4)N3—O2—C13—C1473.9 (3)
O1—C1—C2—C3179.5 (3)O2—C13—C14—C193.9 (4)
C1—C2—C3—C40.2 (5)O2—C13—C14—C15176.7 (3)
C2—C3—C4—C50.4 (5)C19—C14—C15—C160.7 (5)
C3—C4—C5—C60.3 (5)C13—C14—C15—C16179.9 (3)
C2—C1—C6—C50.9 (4)C14—C15—C16—C171.3 (5)
O1—C1—C6—C5179.5 (2)C15—C16—C17—C180.8 (4)
C4—C5—C6—C10.3 (4)C15—C16—C17—C20179.0 (3)
N2—N1—C7—O1173.2 (2)C16—C17—C18—C190.3 (4)
C11—N1—C7—O19.3 (4)C20—C17—C18—C19178.0 (3)
N2—N1—C7—C81.2 (3)C17—C18—C19—C140.8 (4)
C11—N1—C7—C8176.3 (3)C15—C14—C19—C180.4 (4)
C1—O1—C7—N193.0 (3)C13—C14—C19—C18179.1 (3)
C1—O1—C7—C893.9 (3)C21—O4—C20—O32.1 (5)
N1—C7—C8—C91.4 (3)C21—O4—C20—C17175.1 (2)
O1—C7—C8—C9172.5 (3)C16—C17—C20—O3177.0 (3)
N1—C7—C8—C12179.4 (2)C18—C17—C20—O34.8 (4)
O1—C7—C8—C125.6 (4)C16—C17—C20—O45.7 (4)
N1—N2—C9—C80.5 (3)C18—C17—C20—O4172.4 (2)
N1—N2—C9—C10177.6 (2)C20—O4—C21—C2465.5 (4)
C7—C8—C9—N21.2 (3)C20—O4—C21—C23176.2 (3)
C12—C8—C9—N2179.0 (3)C20—O4—C21—C2258.7 (4)

Experimental details

Crystal data
Chemical formulaC24H27N3O4
Mr421.49
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.672 (3), 9.908 (3), 13.179 (3)
α, β, γ (°)72.487 (5), 71.614 (5), 74.494 (4)
V3)1122.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.972, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5754, 3941, 2284
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.175, 1.06
No. of reflections3941
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.22

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

 

Acknowledgements

This work was supported by the National Key Project for Basic Research (No. 20772067).

References

First citationBruker (1999). SMART (Version 5.618), SAINT (Version 6.45), SADABS and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLewis, R. J., Camilleri, P., Kirby, A. J., Marby, C. A., Slawin, A. A. & Williams, D. J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1625–1631.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZou, X.-M., Lin, D., Pei, J., Wang, C.-Q. & Yang, H.-Z. (2006). Acta Cryst. E62, o2471–o2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds