organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A cocrystal of pyridine-2,4-di­carboxylic acid and serine

aCollege of Chemical Engineering & Materials Science, Liaodong University, Dandong 118003, People's Republic of China
*Correspondence e-mail: liangpenglong@163.com

(Received 8 November 2007; accepted 22 November 2007; online 6 December 2007)

The title compound, pyridine-2,4-dicarboxylic acid–S-serine (1/1), C7H5NO4·C3H7NO3, has serine in its zwitterionic form. The crystal structure is stabilized by an extensive series of inter­molecular O—H⋯O, N—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related structures of organic acids and amino acids, see: Coupar et al. (1997[Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521-533.]); Pandiarajan et al. (2001[Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o466-o468.]); Sobczyk et al. (2000[Sobczyk, L., Lis, T., Olejnik, Z. & Majerz, I. (2000). J. Mol. Struct. 552, 233-241.]); Srinivasan et al. (2002[Srinivasan, N., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o95-o97.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4·C3H7NO3

  • Mr = 272.22

  • Triclinic, P 1

  • a = 4.4941 (13) Å

  • b = 6.4512 (18) Å

  • c = 10.123 (3) Å

  • α = 81.273 (3)°

  • β = 87.060 (3)°

  • γ = 86.247 (3)°

  • V = 289.22 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 (2) K

  • 0.37 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.961

  • 2493 measured reflections

  • 1287 independent reflections

  • 1202 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.05

  • 1287 reflections

  • 184 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 1.77 2.590 (3) 173
O4—H4⋯O6ii 0.82 1.81 2.598 (3) 162
O7—H7⋯O6iii 0.82 1.94 2.754 (3) 171
N2—H2A⋯N1iv 0.89 (3) 2.05 (2) 2.872 (3) 152 (4)
N2—H2A⋯O1iv 0.89 (3) 2.55 (4) 3.023 (3) 113 (3)
N2—H2B⋯O7v 0.90 (3) 2.01 (2) 2.848 (3) 155 (4)
N2—H2C⋯O2vi 0.90 (4) 2.07 (4) 2.925 (3) 158 (4)
N2—H2C⋯O5v 0.90 (4) 2.48 (4) 2.998 (3) 117 (3)
Symmetry codes: (i) x+1, y-1, z-1; (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y+1, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The interactions of organic acids with amino acids in the solid state have been widely investigated due to their interesting hydrogen-bonding interactions (Coupar et al., 1997; Sobczyk et al., 2000; Pandiarajan et al., 2001; Srinivasan et al., 2002). We report here the structure of the title co-crystal (I), Fig.1, formed from pyridine-2,4-dicarboxylic acid and serine in its zwitterionic form.

The crystal is stabilized by an extensive array of intermolecular O–H···O, N–H···N, and N–H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2).

Related literature top

For related structures of organic acids and amino acids, see: Coupar et al. (1997); Pandiarajan et al. (2001); Sobczyk et al. (2000); Srinivasan et al. (2002).

Experimental top

The compound was crystallized by slow evaporation of an equimolar solution of pyridine-2,4-dicarboxylic acid and serine in a solution of ethanol/water (1:1, v/v).

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. The H2A, H2B, and H2C atoms of the serine NH3 group were located from a difference Fourier map and refined isotropically, with N–H distances restrained to 0.90 (1) Å, H···H distances restrained to 1.43 (2) Å, and with Uiso(H) values fixed at 0.08 Å2. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å, O–H distances of 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

The interactions of organic acids with amino acids in the solid state have been widely investigated due to their interesting hydrogen-bonding interactions (Coupar et al., 1997; Sobczyk et al., 2000; Pandiarajan et al., 2001; Srinivasan et al., 2002). We report here the structure of the title co-crystal (I), Fig.1, formed from pyridine-2,4-dicarboxylic acid and serine in its zwitterionic form.

The crystal is stabilized by an extensive array of intermolecular O–H···O, N–H···N, and N–H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2).

For related structures of organic acids and amino acids, see: Coupar et al. (1997); Pandiarajan et al. (2001); Sobczyk et al. (2000); Srinivasan et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the compound, showing 30% probability displacement and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecular packing of the compound. Intermolecular hydrogen bonds are shown as dashed lines.
pyridine-2,4-dicarboxylic acid–serine (1/1) top
Crystal data top
C7H5NO4·C3H7NO3Z = 1
Mr = 272.22F(000) = 142
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4941 (13) ÅCell parameters from 1233 reflections
b = 6.4512 (18) Åθ = 2.7–27.8°
c = 10.123 (3) ŵ = 0.14 mm1
α = 81.273 (3)°T = 298 K
β = 87.060 (3)°Block, colorless
γ = 86.247 (3)°0.37 × 0.33 × 0.30 mm
V = 289.22 (14) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1287 independent reflections
Radiation source: fine-focus sealed tube1202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.952, Tmax = 0.961k = 88
2493 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.006P]
where P = (Fo2 + 2Fc2)/3
1287 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.24 e Å3
9 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H5NO4·C3H7NO3γ = 86.247 (3)°
Mr = 272.22V = 289.22 (14) Å3
Triclinic, P1Z = 1
a = 4.4941 (13) ÅMo Kα radiation
b = 6.4512 (18) ŵ = 0.14 mm1
c = 10.123 (3) ÅT = 298 K
α = 81.273 (3)°0.37 × 0.33 × 0.30 mm
β = 87.060 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1287 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1202 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.961Rint = 0.021
2493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0369 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
1287 reflectionsΔρmin = 0.25 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0517 (4)0.0560 (3)0.0626 (2)0.0334 (5)
H11.18220.02010.03170.050*
O20.9510 (4)0.2405 (3)0.1977 (2)0.0356 (5)
O30.1493 (6)0.2074 (3)0.5583 (2)0.0516 (7)
O40.0519 (5)0.1089 (3)0.5859 (2)0.0434 (6)
H40.14310.04300.64910.065*
O50.4623 (4)0.7963 (3)0.9831 (2)0.0337 (5)
O60.5883 (5)0.9761 (3)0.7854 (2)0.0359 (5)
O70.4881 (4)0.3780 (3)0.8451 (2)0.0377 (5)
H70.49860.25690.82900.057*
N10.6382 (5)0.2780 (3)0.1903 (2)0.0293 (5)
N20.9518 (5)0.5231 (3)0.9729 (2)0.0269 (5)
C10.6767 (6)0.0717 (4)0.2350 (3)0.0249 (5)
C20.5179 (6)0.0277 (4)0.3443 (3)0.0271 (5)
H20.54900.17140.37170.033*
C30.3112 (6)0.0908 (4)0.4122 (3)0.0270 (5)
C40.2762 (6)0.3039 (4)0.3694 (3)0.0327 (6)
H4A0.14460.38840.41480.039*
C50.4416 (6)0.3894 (4)0.2573 (3)0.0333 (6)
H50.41320.53260.22740.040*
C60.9072 (6)0.0535 (4)0.1629 (3)0.0261 (5)
C70.1307 (6)0.0215 (4)0.5278 (3)0.0320 (6)
C80.6098 (5)0.8204 (4)0.8753 (3)0.0236 (5)
C90.8388 (5)0.6435 (4)0.8475 (3)0.0253 (5)
H91.00810.70730.79550.030*
C100.7075 (6)0.4937 (4)0.7658 (3)0.0329 (6)
H10A0.61840.57300.68700.039*
H10B0.86450.39820.73670.039*
H2A0.826 (7)0.433 (5)1.017 (4)0.080*
H2B1.120 (5)0.448 (5)0.955 (4)0.080*
H2C0.998 (9)0.607 (6)1.031 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0327 (10)0.0268 (10)0.0373 (11)0.0043 (8)0.0169 (8)0.0029 (8)
O20.0397 (11)0.0250 (10)0.0390 (11)0.0046 (8)0.0125 (8)0.0022 (8)
O30.0690 (16)0.0327 (12)0.0461 (14)0.0018 (10)0.0271 (12)0.0043 (10)
O40.0507 (13)0.0357 (12)0.0398 (12)0.0011 (9)0.0226 (10)0.0022 (10)
O50.0320 (10)0.0297 (10)0.0364 (11)0.0046 (7)0.0156 (8)0.0036 (8)
O60.0460 (11)0.0237 (10)0.0335 (10)0.0063 (8)0.0135 (8)0.0015 (8)
O70.0352 (11)0.0269 (10)0.0526 (13)0.0027 (8)0.0124 (9)0.0153 (9)
N10.0300 (12)0.0222 (11)0.0337 (12)0.0017 (9)0.0082 (9)0.0023 (9)
N20.0275 (11)0.0197 (11)0.0317 (11)0.0013 (8)0.0099 (9)0.0024 (8)
C10.0227 (11)0.0253 (12)0.0262 (12)0.0008 (9)0.0023 (10)0.0043 (10)
C20.0315 (13)0.0224 (12)0.0259 (12)0.0014 (9)0.0043 (10)0.0015 (10)
C30.0272 (13)0.0301 (13)0.0234 (12)0.0022 (10)0.0034 (10)0.0041 (10)
C40.0319 (14)0.0282 (14)0.0359 (14)0.0054 (11)0.0112 (12)0.0056 (12)
C50.0363 (15)0.0224 (13)0.0390 (15)0.0027 (11)0.0090 (12)0.0031 (11)
C60.0255 (12)0.0243 (13)0.0282 (14)0.0005 (10)0.0053 (10)0.0058 (10)
C70.0346 (15)0.0335 (16)0.0254 (14)0.0007 (12)0.0087 (11)0.0014 (11)
C80.0239 (11)0.0189 (11)0.0280 (12)0.0015 (8)0.0049 (10)0.0050 (9)
C90.0243 (12)0.0229 (12)0.0261 (12)0.0019 (9)0.0122 (10)0.0009 (9)
C100.0372 (14)0.0279 (14)0.0341 (14)0.0000 (11)0.0089 (11)0.0104 (11)
Geometric parameters (Å, º) top
O1—C61.315 (3)N2—H2C0.90 (4)
O1—H10.8200C1—C21.381 (3)
O2—C61.211 (3)C1—C61.500 (3)
O3—C71.191 (4)C2—C31.386 (3)
O4—C71.318 (4)C2—H20.9300
O4—H40.8200C3—C41.378 (4)
O5—C81.242 (3)C3—C71.508 (4)
O6—C81.251 (3)C4—C51.386 (4)
O7—C101.417 (3)C4—H4A0.9300
O7—H70.8200C5—H50.9300
N1—C51.327 (4)C8—C91.535 (3)
N1—C11.342 (3)C9—C101.528 (4)
N2—C91.479 (3)C9—H90.9800
N2—H2A0.89 (3)C10—H10A0.9700
N2—H2B0.90 (3)C10—H10B0.9700
C6—O1—H1109.5N1—C5—H5118.2
C7—O4—H4109.5C4—C5—H5118.2
C10—O7—H7109.5O2—C6—O1124.4 (2)
C5—N1—C1117.4 (2)O2—C6—C1120.9 (2)
C9—N2—H2A115 (3)O1—C6—C1114.7 (2)
C9—N2—H2B110 (3)O3—C7—O4125.2 (3)
H2A—N2—H2B107 (2)O3—C7—C3122.6 (3)
C9—N2—H2C112 (3)O4—C7—C3112.2 (2)
H2A—N2—H2C106 (2)O5—C8—O6126.1 (2)
H2B—N2—H2C107 (2)O5—C8—C9117.8 (2)
N1—C1—C2123.1 (2)O6—C8—C9116.2 (2)
N1—C1—C6117.7 (2)N2—C9—C10109.4 (2)
C2—C1—C6119.3 (2)N2—C9—C8111.60 (19)
C1—C2—C3118.7 (2)C10—C9—C8111.4 (2)
C1—C2—H2120.6N2—C9—H9108.1
C3—C2—H2120.6C10—C9—H9108.1
C4—C3—C2118.7 (2)C8—C9—H9108.1
C4—C3—C7123.3 (2)O7—C10—C9109.5 (2)
C2—C3—C7118.1 (2)O7—C10—H10A109.8
C3—C4—C5118.6 (2)C9—C10—H10A109.8
C3—C4—H4A120.7O7—C10—H10B109.8
C5—C4—H4A120.7C9—C10—H10B109.8
N1—C5—C4123.6 (2)H10A—C10—H10B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.772.590 (3)173
O4—H4···O6ii0.821.812.598 (3)162
O7—H7···O6iii0.821.942.754 (3)171
N2—H2A···N1iv0.89 (3)2.05 (2)2.872 (3)152 (4)
N2—H2A···O1iv0.89 (3)2.55 (4)3.023 (3)113 (3)
N2—H2B···O7v0.90 (3)2.01 (2)2.848 (3)155 (4)
N2—H2C···O2vi0.90 (4)2.07 (4)2.925 (3)158 (4)
N2—H2C···O5v0.90 (4)2.48 (4)2.998 (3)117 (3)
Symmetry codes: (i) x+1, y1, z1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H5NO4·C3H7NO3
Mr272.22
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.4941 (13), 6.4512 (18), 10.123 (3)
α, β, γ (°)81.273 (3), 87.060 (3), 86.247 (3)
V3)289.22 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.37 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
2493, 1287, 1202
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.05
No. of reflections1287
No. of parameters184
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.772.590 (3)173.3
O4—H4···O6ii0.821.812.598 (3)161.8
O7—H7···O6iii0.821.942.754 (3)171.2
N2—H2A···N1iv0.89 (3)2.05 (2)2.872 (3)152 (4)
N2—H2A···O1iv0.89 (3)2.55 (4)3.023 (3)113 (3)
N2—H2B···O7v0.90 (3)2.01 (2)2.848 (3)155 (4)
N2—H2C···O2vi0.90 (4)2.07 (4)2.925 (3)158 (4)
N2—H2C···O5v0.90 (4)2.48 (4)2.998 (3)117 (3)
Symmetry codes: (i) x+1, y1, z1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y+1, z+1.
 

Acknowledgements

The author acknowledges Liaodong University for funding this study.

References

First citationBruker (1998). SMART (Version 5.628) and SAINT (Version 6.02) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521–533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPandiarajan, S., Sridhar, B. & Rajaram, R. K. (2001). Acta Cryst. E57, o466–o468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSobczyk, L., Lis, T., Olejnik, Z. & Majerz, I. (2000). J. Mol. Struct. 552, 233–241.  Web of Science CSD CrossRef CAS Google Scholar
First citationSrinivasan, N., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o95–o97.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds