metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[4′-(2-Bromo-5-pyrid­yl)-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′]bis­(tri­phenyl­phosphine-κP)­copper(I) tetra­fluorido­borate di­chloro­methane hemisolvate

aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand, bDépartment de Chimie, Université de Montréal, Montréal, Québec, H3T 1J4 Canada, and cDepartment of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
*Correspondence e-mail: matthew.polson@canterbury.ac.nz

(Received 9 November 2007; accepted 8 December 2007; online 18 December 2007)

In the title complex, [Cu(C20H13BrN4)(C18H15P)2]BF4·0.5CH2Cl2, the copper(I) cation adopts a distorted tetra­hedral arrangement, coordinated by two triphenyl­phosphine ligands and two N atoms of the potentially tridentate terpyridine ligand. One half-mol­ecule of dichloro­methane crystallizes with the complex. The chlorine atoms are disordered over two sites with occupancies fixed at 0.30 and 0.20 respectively. The N donor atom of the central pyridine inter­acts weakly with the copper centre at a distance of 3.071 Å.

Related literature

For general background see: Loiseau et al. (2002[Loiseau, F., Passalacqua, R., Campagna, S., Polson, M. I. J., Fang, Y.-Q. & Hanan, G. S. (2002). Photochem. Photobiol. Sci. 1, 982-990.]); Fitchett et al. (2005[Fitchett, C. M., Richardson, C. & Steel, P. J. (2005). Org. Biomol. Chem. 3, 498-502.]). For related structures see: Ainscough et al. (1994[Ainscough, E. W., Brodie, A. M., Ingham, S. L. & Waters, J. M. (1994). J. Chem. Soc. Dalton Trans. pp. 215-220.]); Feng et al. (2002[Feng, Q., Li, D., Yin, Y.-G., Feng, X.-L. & Cai, J.-W. (2002). Huaxue Xuebao, 60, 2167-2171.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H13BrN4)(C18H15P)2]BF4·0.5CH2Cl2

  • Mr = 1106.61

  • Triclinic, [P \overline 1]

  • a = 13.8900 (5) Å

  • b = 13.9623 (6) Å

  • c = 15.2549 (5) Å

  • α = 72.358 (1)°

  • β = 83.6520 (11)°

  • γ = 69.821 (1)°

  • V = 2646.23 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 150 (1) K

  • 0.34 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker,2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.01), SADABS (Version 2.0) and SHELXTL-NT (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.627, Tmax = 0.698

  • 22637 measured reflections

  • 9368 independent reflections

  • 7361 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.209

  • S = 1.05

  • 9368 reflections

  • 676 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.01), SADABS (Version 2.0) and SHELXTL-NT (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.01), SADABS (Version 2.0) and SHELXTL-NT (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Version 1.08; Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

To fully characterize a family of multi-nuclear ruthenium complexes (Loiseau et al., 2002) we undertook to synthesize the the key bridging ligand 2:6:2''':6'''tetra-2-pyridyl-4,5':2',2'':5'',4'''tetrapyridine. Initial attempts at the synthesis by nickel catalysed homocoupling of 4'-(2-bromo-5-pyridyl)2,2':6',2''terpyridine failed, presumably due to the free terpyridine unit sequestering the nickel from the catalyst (Loiseau et al., 2002). The title complex, (I), Fig 1, crystallized as part of this work. The copper(I) cation adopts a distorted tetrahedral arrangement with the additional pyridine interacting weakly with the copper centre at a distance of 3.071 Å). Two other structures of copper (I) terpyridine bis-triphenylphosphine complexes were found in the literature (Ainscough et al., 1994; Feng et al., 2002). In both of these structures, the terpyridine ligand coordinates through all three N atoms giving a pentacoordinate complex. Despite the long N14—Cu1 distance there is an interaction, albeit somewhat weak. If there were no interaction it is likely that the N14 nitrogen of the loosely bound pyridine ring would rotate to adopt a s-trans arrangement, which is much more commonly seen in uncoordinated polypyridine ligands (Fitchett et al., 2005).

Related literature top

For general background see: Loiseau et al. (2002); Fitchett et al. (2005). For related structures see: Ainscough et al. (1994); Feng et al. (2002).

Experimental top

4'-(2-bromo-5-pyridyl)2,2':6',2''terpyridine (100 mg) and bis-triphenylphosphine bis-acetonitrile copper(I) tetrafloroborate (194 mg) were stirred in dichloromethane (20 ml) under argon for 1 h. After the colour had changed from colourless to yellow, the solution was evaporated to dryness, redissolved in a mimimum of dichloromethane and crystals suitable for X-ray crystallography were grown by diffusion with diethyl ether. Yield (191 mg, 70%)

Refinement top

One half molecule of dichloromethane crystallizes with the compound (1) with the chlorine atoms disordered over two sites with occupancies of fixed at 0.30 and 0.20 respectively. The hydrogen atoms of this hemi-solvate were not included in the refinement. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Structure description top

To fully characterize a family of multi-nuclear ruthenium complexes (Loiseau et al., 2002) we undertook to synthesize the the key bridging ligand 2:6:2''':6'''tetra-2-pyridyl-4,5':2',2'':5'',4'''tetrapyridine. Initial attempts at the synthesis by nickel catalysed homocoupling of 4'-(2-bromo-5-pyridyl)2,2':6',2''terpyridine failed, presumably due to the free terpyridine unit sequestering the nickel from the catalyst (Loiseau et al., 2002). The title complex, (I), Fig 1, crystallized as part of this work. The copper(I) cation adopts a distorted tetrahedral arrangement with the additional pyridine interacting weakly with the copper centre at a distance of 3.071 Å). Two other structures of copper (I) terpyridine bis-triphenylphosphine complexes were found in the literature (Ainscough et al., 1994; Feng et al., 2002). In both of these structures, the terpyridine ligand coordinates through all three N atoms giving a pentacoordinate complex. Despite the long N14—Cu1 distance there is an interaction, albeit somewhat weak. If there were no interaction it is likely that the N14 nitrogen of the loosely bound pyridine ring would rotate to adopt a s-trans arrangement, which is much more commonly seen in uncoordinated polypyridine ligands (Fitchett et al., 2005).

For general background see: Loiseau et al. (2002); Fitchett et al. (2005). For related structures see: Ainscough et al. (1994); Feng et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Version 1.08; Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.
[4'-(2-Bromo-5-pyridyl)-2,2':6',2''-terpyridine-\k3N,N',N'']bis(triphenylphosphine-κP)copper(I) tetrafluoridoborate dichloromethane hemisolvate top
Crystal data top
[Cu(C20H13BrN4)(C18H15P)2]BF4·0.5CH2Cl2Z = 2
Mr = 1106.61F(000) = 1126
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.8900 (5) ÅCell parameters from 6660 reflections
b = 13.9623 (6) Åθ = 2.4–29.9°
c = 15.2549 (5) ŵ = 1.33 mm1
α = 72.358 (1)°T = 150 K
β = 83.6520 (11)°Prism, yellow
γ = 69.821 (1)°0.34 × 0.30 × 0.26 mm
V = 2646.23 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9368 independent reflections
Radiation source: fine-focus sealed tube7361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker,2000)
h = 1616
Tmin = 0.627, Tmax = 0.698k = 1616
22637 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
9368 reflections(Δ/σ)max < 0.001
676 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Cu(C20H13BrN4)(C18H15P)2]BF4·0.5CH2Cl2γ = 69.821 (1)°
Mr = 1106.61V = 2646.23 (16) Å3
Triclinic, P1Z = 2
a = 13.8900 (5) ÅMo Kα radiation
b = 13.9623 (6) ŵ = 1.33 mm1
c = 15.2549 (5) ÅT = 150 K
α = 72.358 (1)°0.34 × 0.30 × 0.26 mm
β = 83.6520 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2000)
7361 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.698Rint = 0.022
22637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.05Δρmax = 1.37 e Å3
9368 reflectionsΔρmin = 0.80 e Å3
676 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.20583 (3)0.25255 (3)0.24907 (3)0.04279 (18)
P10.14443 (7)0.14203 (7)0.36391 (6)0.0424 (2)
P20.14842 (7)0.43189 (7)0.22730 (6)0.0421 (2)
Br10.92793 (5)0.11921 (7)0.14023 (5)0.1063 (3)
C10.2577 (3)0.1842 (3)0.0794 (2)0.0425 (8)
N20.1746 (2)0.2181 (2)0.1297 (2)0.0445 (7)
C30.0854 (3)0.2164 (3)0.1056 (3)0.0512 (9)
H30.02710.23950.14010.061*
C40.0758 (3)0.1823 (3)0.0324 (3)0.0561 (10)
H40.01270.18140.01850.067*
C50.1597 (4)0.1501 (4)0.0192 (3)0.0620 (11)
H50.15500.12850.07000.074*
C60.2523 (3)0.1499 (4)0.0052 (3)0.0566 (10)
H60.31120.12660.02860.068*
C70.3570 (3)0.1824 (3)0.1106 (2)0.0441 (8)
N80.3551 (2)0.1939 (2)0.19544 (19)0.0411 (6)
C90.4458 (3)0.1841 (3)0.2282 (2)0.0443 (8)
C100.5351 (3)0.1692 (3)0.1767 (3)0.0500 (9)
H100.59550.16380.20180.060*
C110.5357 (3)0.1621 (3)0.0882 (3)0.0527 (9)
C120.4434 (3)0.1683 (3)0.0561 (3)0.0522 (9)
H120.44010.16300.00280.063*
C130.4479 (3)0.1911 (3)0.3233 (3)0.0481 (9)
N140.3784 (3)0.2734 (4)0.3441 (3)0.0770 (12)
C150.3831 (4)0.2848 (5)0.4277 (4)0.093 (2)
H150.33560.34350.44260.111*
C160.4552 (4)0.2135 (4)0.4927 (3)0.0720 (13)
H160.45580.22340.55020.086*
C170.5253 (4)0.1286 (4)0.4703 (3)0.0802 (15)
H170.57460.07880.51250.096*
C180.5220 (4)0.1176 (4)0.3841 (3)0.0754 (14)
H180.56990.06050.36720.090*
C190.6294 (3)0.1514 (4)0.0300 (3)0.0568 (10)
C200.7254 (3)0.1068 (4)0.0688 (3)0.0617 (11)
H200.73020.08180.13250.074*
N210.8130 (3)0.0976 (4)0.0186 (3)0.0759 (11)
C220.8033 (4)0.1336 (4)0.0706 (3)0.0706 (13)
C230.7126 (4)0.1801 (6)0.1162 (3)0.094 (2)
H230.70980.20650.17990.113*
C240.6260 (4)0.1859 (6)0.0639 (3)0.0886 (18)
H240.56270.21420.09280.106*
C250.2110 (3)0.0005 (3)0.3844 (3)0.0464 (8)
C260.2852 (3)0.0364 (3)0.3229 (3)0.0553 (10)
H260.29970.01250.27100.066*
C270.3377 (4)0.1427 (4)0.3369 (3)0.0652 (12)
H270.38610.16540.29390.078*
C280.3195 (4)0.2154 (4)0.4136 (4)0.0664 (12)
H280.35670.28730.42380.080*
C290.2447 (4)0.1817 (4)0.4767 (4)0.0714 (13)
H290.23090.23110.52860.086*
C300.1917 (4)0.0750 (3)0.4616 (3)0.0627 (11)
H300.14200.05250.50380.075*
C310.1328 (3)0.1546 (3)0.4806 (2)0.0470 (8)
C320.0418 (3)0.1829 (4)0.5276 (3)0.0614 (11)
H320.01960.19460.50060.074*
C330.0415 (4)0.1939 (4)0.6151 (3)0.0769 (14)
H330.02050.21460.64590.092*
C340.1310 (5)0.1749 (4)0.6562 (3)0.0814 (15)
H340.13050.18110.71530.098*
C350.2224 (4)0.1463 (5)0.6098 (4)0.0791 (14)
H350.28390.13370.63710.095*
C360.2222 (4)0.1364 (4)0.5239 (3)0.0690 (12)
H360.28440.11680.49320.083*
C370.0140 (3)0.1617 (3)0.3331 (3)0.0479 (9)
C380.0562 (3)0.2630 (4)0.3151 (3)0.0592 (10)
H380.03760.31680.32490.071*
C390.1537 (4)0.2871 (4)0.2829 (3)0.0755 (14)
H390.19980.35610.27040.091*
C400.1806 (4)0.2059 (5)0.2698 (4)0.0886 (18)
H400.24630.22030.24960.106*
C410.1129 (4)0.1057 (5)0.2861 (4)0.0846 (16)
H410.13220.05230.27630.102*
C420.0139 (4)0.0821 (4)0.3176 (3)0.0675 (12)
H420.03270.01350.32790.081*
C430.2107 (3)0.5033 (3)0.1301 (3)0.0493 (9)
C440.1596 (4)0.5978 (3)0.0671 (3)0.0603 (11)
H440.08970.63020.07480.072*
C450.2102 (4)0.6449 (4)0.0066 (3)0.0719 (13)
H450.17410.70880.04790.086*
C460.3115 (5)0.5999 (4)0.0199 (4)0.0875 (16)
H460.34540.63240.06970.105*
C470.3642 (5)0.5046 (5)0.0416 (6)0.122 (3)
H470.43360.47190.03190.146*
C480.3150 (4)0.4572 (4)0.1173 (5)0.097 (2)
H480.35180.39450.15960.116*
C490.0116 (3)0.5008 (3)0.1992 (3)0.0460 (8)
C500.0272 (3)0.4842 (3)0.1281 (3)0.0564 (10)
H500.01590.43920.09550.068*
C510.1297 (4)0.5335 (4)0.1045 (3)0.0687 (12)
H510.15480.52330.05520.082*
C520.1947 (4)0.5982 (4)0.1549 (4)0.0745 (13)
H520.26370.63160.13960.089*
C530.1570 (4)0.6124 (4)0.2264 (4)0.0788 (14)
H530.20120.65370.26140.095*
C540.0542 (3)0.5666 (4)0.2483 (3)0.0645 (11)
H540.02900.57980.29590.077*
C550.1621 (3)0.4779 (3)0.3233 (3)0.0533 (10)
C560.1300 (4)0.4313 (4)0.4090 (3)0.0671 (12)
H560.10310.37680.41640.080*
C570.1369 (5)0.4640 (5)0.4846 (4)0.0859 (16)
H570.11530.43110.54220.103*
C580.1750 (6)0.5437 (7)0.4745 (5)0.114 (3)
H580.17990.56550.52520.137*
C590.2066 (6)0.5925 (6)0.3891 (6)0.115 (2)
H590.23250.64750.38230.138*
C600.2000 (4)0.5602 (4)0.3137 (4)0.0809 (15)
H600.22120.59380.25610.097*
F10.6777 (3)0.8864 (3)0.1912 (2)0.1053 (11)
F20.5358 (3)0.9296 (3)0.2740 (3)0.1141 (12)
F30.6069 (4)0.7686 (4)0.2744 (5)0.195 (3)
F40.5314 (5)0.8907 (7)0.1460 (3)0.210 (3)
B10.5864 (5)0.8693 (5)0.2184 (4)0.0722 (15)
Cl10.5274 (16)0.480 (2)0.2408 (12)0.357 (16)0.30
Cl20.5825 (17)0.5107 (10)0.3935 (10)0.198 (6)0.30
Cl30.5682 (8)0.5078 (11)0.2081 (10)0.135 (4)0.20
Cl40.572 (2)0.458 (2)0.394 (2)0.253 (16)0.20
C1S0.538 (2)0.5698 (13)0.2990 (17)0.179 (11)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0430 (3)0.0470 (3)0.0407 (3)0.0171 (2)0.00886 (19)0.0164 (2)
P10.0416 (5)0.0477 (5)0.0399 (5)0.0176 (4)0.0068 (4)0.0144 (4)
P20.0424 (5)0.0432 (5)0.0417 (5)0.0145 (4)0.0020 (4)0.0140 (4)
Br10.0707 (4)0.1666 (7)0.1063 (5)0.0550 (4)0.0471 (3)0.0720 (5)
C10.0425 (19)0.050 (2)0.0368 (18)0.0154 (16)0.0010 (15)0.0143 (15)
N20.0435 (17)0.0546 (18)0.0385 (15)0.0180 (14)0.0016 (13)0.0164 (14)
C30.045 (2)0.062 (2)0.048 (2)0.0187 (18)0.0017 (17)0.0188 (18)
C40.049 (2)0.068 (3)0.056 (2)0.021 (2)0.0093 (18)0.019 (2)
C50.067 (3)0.077 (3)0.055 (2)0.023 (2)0.004 (2)0.037 (2)
C60.051 (2)0.077 (3)0.049 (2)0.020 (2)0.0080 (18)0.033 (2)
C70.0419 (19)0.054 (2)0.0382 (18)0.0168 (16)0.0023 (15)0.0160 (16)
N80.0414 (16)0.0501 (16)0.0341 (14)0.0162 (13)0.0010 (12)0.0141 (13)
C90.0401 (19)0.051 (2)0.0398 (18)0.0117 (16)0.0002 (15)0.0141 (16)
C100.040 (2)0.069 (2)0.046 (2)0.0213 (18)0.0035 (16)0.0202 (19)
C110.041 (2)0.068 (2)0.052 (2)0.0188 (18)0.0099 (17)0.0246 (19)
C120.051 (2)0.071 (3)0.0404 (19)0.0231 (19)0.0051 (16)0.0229 (19)
C130.043 (2)0.063 (2)0.0420 (19)0.0186 (17)0.0001 (16)0.0193 (18)
N140.057 (2)0.105 (3)0.060 (2)0.007 (2)0.0119 (18)0.045 (2)
C150.069 (3)0.129 (5)0.069 (3)0.015 (3)0.016 (3)0.061 (3)
C160.066 (3)0.110 (4)0.049 (2)0.028 (3)0.005 (2)0.036 (3)
C170.085 (4)0.086 (3)0.059 (3)0.006 (3)0.027 (3)0.021 (3)
C180.081 (3)0.070 (3)0.062 (3)0.004 (2)0.025 (2)0.025 (2)
C190.047 (2)0.079 (3)0.055 (2)0.025 (2)0.0132 (18)0.032 (2)
C200.045 (2)0.080 (3)0.056 (2)0.017 (2)0.0085 (18)0.022 (2)
N210.052 (2)0.098 (3)0.079 (3)0.023 (2)0.016 (2)0.035 (2)
C220.058 (3)0.107 (4)0.065 (3)0.039 (3)0.027 (2)0.045 (3)
C230.069 (3)0.182 (6)0.052 (3)0.061 (4)0.021 (2)0.047 (3)
C240.052 (3)0.163 (6)0.055 (3)0.039 (3)0.005 (2)0.037 (3)
C250.050 (2)0.047 (2)0.047 (2)0.0210 (17)0.0045 (16)0.0153 (16)
C260.061 (2)0.055 (2)0.051 (2)0.0209 (19)0.0088 (19)0.0172 (19)
C270.065 (3)0.061 (3)0.075 (3)0.019 (2)0.012 (2)0.035 (2)
C280.065 (3)0.050 (2)0.087 (3)0.017 (2)0.002 (2)0.025 (2)
C290.081 (3)0.051 (2)0.075 (3)0.028 (2)0.003 (3)0.000 (2)
C300.066 (3)0.060 (3)0.061 (3)0.024 (2)0.015 (2)0.017 (2)
C310.052 (2)0.051 (2)0.0407 (19)0.0201 (17)0.0067 (16)0.0157 (16)
C320.056 (2)0.076 (3)0.052 (2)0.023 (2)0.0119 (19)0.021 (2)
C330.081 (3)0.095 (4)0.055 (3)0.027 (3)0.023 (2)0.032 (3)
C340.123 (5)0.082 (3)0.049 (3)0.039 (3)0.005 (3)0.029 (2)
C350.075 (3)0.104 (4)0.070 (3)0.028 (3)0.008 (3)0.042 (3)
C360.058 (3)0.094 (3)0.065 (3)0.022 (2)0.005 (2)0.042 (3)
C370.047 (2)0.057 (2)0.0415 (19)0.0252 (18)0.0051 (16)0.0085 (17)
C380.054 (2)0.066 (3)0.056 (2)0.026 (2)0.0071 (19)0.010 (2)
C390.053 (3)0.085 (3)0.070 (3)0.018 (2)0.002 (2)0.001 (3)
C400.064 (3)0.114 (5)0.081 (4)0.045 (3)0.021 (3)0.007 (3)
C410.084 (4)0.094 (4)0.088 (4)0.048 (3)0.026 (3)0.013 (3)
C420.068 (3)0.073 (3)0.065 (3)0.032 (2)0.010 (2)0.011 (2)
C430.049 (2)0.049 (2)0.056 (2)0.0223 (17)0.0070 (17)0.0179 (18)
C440.058 (2)0.054 (2)0.060 (2)0.019 (2)0.002 (2)0.004 (2)
C450.078 (3)0.069 (3)0.063 (3)0.032 (3)0.001 (2)0.003 (2)
C460.092 (4)0.072 (3)0.084 (4)0.035 (3)0.029 (3)0.002 (3)
C470.058 (3)0.094 (4)0.171 (7)0.018 (3)0.045 (4)0.000 (4)
C480.054 (3)0.067 (3)0.127 (5)0.015 (2)0.019 (3)0.020 (3)
C490.045 (2)0.0449 (19)0.047 (2)0.0159 (16)0.0026 (16)0.0111 (16)
C500.055 (2)0.059 (2)0.054 (2)0.0156 (19)0.0010 (19)0.0178 (19)
C510.066 (3)0.071 (3)0.069 (3)0.025 (2)0.018 (2)0.010 (2)
C520.050 (3)0.075 (3)0.086 (3)0.012 (2)0.004 (2)0.015 (3)
C530.052 (3)0.084 (3)0.089 (4)0.001 (2)0.003 (2)0.037 (3)
C540.056 (3)0.070 (3)0.063 (3)0.007 (2)0.002 (2)0.029 (2)
C550.050 (2)0.053 (2)0.057 (2)0.0073 (18)0.0081 (18)0.0253 (19)
C560.074 (3)0.070 (3)0.054 (3)0.013 (2)0.001 (2)0.026 (2)
C570.086 (4)0.105 (4)0.060 (3)0.003 (3)0.005 (3)0.044 (3)
C580.109 (5)0.132 (6)0.115 (6)0.002 (4)0.028 (4)0.093 (5)
C590.132 (6)0.125 (5)0.135 (6)0.057 (5)0.007 (5)0.083 (5)
C600.093 (4)0.082 (3)0.091 (4)0.044 (3)0.002 (3)0.041 (3)
F10.095 (2)0.166 (3)0.081 (2)0.066 (2)0.0291 (17)0.056 (2)
F20.109 (3)0.126 (3)0.115 (3)0.034 (2)0.037 (2)0.063 (2)
F30.139 (4)0.091 (3)0.313 (8)0.025 (3)0.088 (5)0.045 (4)
F40.169 (5)0.441 (11)0.108 (3)0.177 (6)0.006 (3)0.116 (5)
B10.075 (4)0.082 (4)0.062 (3)0.025 (3)0.016 (3)0.030 (3)
Cl10.31 (2)0.76 (5)0.216 (14)0.42 (3)0.076 (14)0.20 (2)
Cl20.311 (19)0.125 (9)0.140 (10)0.073 (10)0.049 (11)0.004 (8)
Cl30.090 (6)0.201 (11)0.159 (11)0.066 (7)0.003 (6)0.096 (9)
Cl40.27 (2)0.20 (2)0.20 (2)0.12 (2)0.069 (17)0.14 (2)
C1S0.27 (3)0.078 (9)0.20 (2)0.092 (13)0.14 (2)0.066 (12)
Geometric parameters (Å, º) top
Cu1—N82.121 (3)C32—C331.389 (7)
Cu1—N22.142 (3)C32—H320.9300
Cu1—P12.2621 (10)C33—C341.362 (8)
Cu1—P22.2788 (10)C33—H330.9300
P1—C311.826 (4)C34—C351.376 (8)
P1—C251.824 (4)C34—H340.9300
P1—C371.829 (4)C35—C361.360 (7)
P2—C551.819 (4)C35—H350.9300
P2—C431.832 (4)C36—H360.9300
P2—C491.841 (4)C37—C381.377 (6)
Br1—C221.910 (4)C37—C421.386 (6)
C1—N21.339 (5)C38—C391.387 (6)
C1—C61.374 (5)C38—H380.9300
C1—C71.498 (5)C39—C401.382 (8)
N2—C31.340 (5)C39—H390.9300
C3—C41.375 (6)C40—C411.355 (8)
C3—H30.9300C40—H400.9300
C4—C51.352 (6)C41—C421.403 (7)
C4—H40.9300C41—H410.9300
C5—C61.376 (6)C42—H420.9300
C5—H50.9300C43—C441.380 (6)
C6—H60.9300C43—C481.386 (6)
C7—N81.347 (5)C44—C451.374 (6)
C7—C121.374 (5)C44—H440.9300
N8—C91.355 (5)C45—C461.349 (7)
C9—C101.380 (5)C45—H450.9300
C9—C131.488 (5)C46—C471.382 (9)
C10—C111.383 (5)C46—H460.9300
C10—H100.9300C47—C481.383 (8)
C11—C121.387 (6)C47—H470.9300
C11—C191.481 (5)C48—H480.9300
C12—H120.9300C49—C501.374 (6)
C13—N141.319 (5)C49—C541.388 (6)
C13—C181.371 (6)C50—C511.384 (6)
N14—C151.345 (6)C50—H500.9300
C15—C161.382 (7)C51—C521.388 (7)
C15—H150.9300C51—H510.9300
C16—C171.358 (7)C52—C531.354 (7)
C16—H160.9300C52—H520.9300
C17—C181.377 (7)C53—C541.381 (7)
C17—H170.9300C53—H530.9300
C18—H180.9300C54—H540.9300
C19—C241.366 (7)C55—C561.374 (6)
C19—C201.376 (6)C55—C601.385 (6)
C20—N211.353 (6)C56—C571.386 (7)
C20—H200.9300C56—H560.9300
N21—C221.304 (6)C57—C581.352 (10)
C22—C231.359 (7)C57—H570.9300
C23—C241.360 (7)C58—C591.376 (11)
C23—H230.9300C58—H580.9300
C24—H240.9300C59—C601.379 (8)
C25—C261.382 (5)C59—H590.9300
C25—C301.386 (6)C60—H600.9300
C26—C271.370 (6)F1—B11.368 (7)
C26—H260.9300F2—B11.346 (6)
C27—C281.362 (7)F3—B11.355 (8)
C27—H270.9300F4—B11.313 (8)
C28—C291.394 (7)Cl1—Cl30.835 (16)
C28—H280.9300Cl1—C1S1.79 (3)
C29—C301.374 (6)Cl1—Cl42.39 (4)
C29—H290.9300Cl2—Cl40.79 (3)
C30—H300.9300Cl2—C1S1.51 (3)
C31—C321.376 (6)Cl3—C1S1.79 (2)
C31—C361.379 (6)Cl4—C1S1.74 (3)
N8—Cu1—N277.85 (11)C31—C32—C33120.2 (4)
N8—Cu1—P1119.66 (8)C31—C32—H32119.9
N2—Cu1—P1102.16 (8)C33—C32—H32119.9
N8—Cu1—P2113.91 (8)C34—C33—C32120.6 (5)
N2—Cu1—P2109.81 (9)C34—C33—H33119.7
P1—Cu1—P2121.80 (4)C32—C33—H33119.7
C31—P1—C25101.36 (17)C33—C34—C35119.6 (4)
C31—P1—C37104.69 (18)C33—C34—H34120.2
C25—P1—C37104.55 (18)C35—C34—H34120.2
C31—P1—Cu1120.24 (12)C36—C35—C34119.6 (5)
C25—P1—Cu1116.95 (12)C36—C35—H35120.2
C37—P1—Cu1107.44 (12)C34—C35—H35120.2
C55—P2—C43104.72 (19)C35—C36—C31122.2 (5)
C55—P2—C49102.07 (17)C35—C36—H36118.9
C43—P2—C49102.12 (17)C31—C36—H36118.9
C55—P2—Cu1116.80 (13)C38—C37—C42118.7 (4)
C43—P2—Cu1113.20 (13)C38—C37—P1118.2 (3)
C49—P2—Cu1116.11 (12)C42—C37—P1122.8 (3)
N2—C1—C6121.6 (3)C37—C38—C39122.0 (4)
N2—C1—C7116.2 (3)C37—C38—H38119.0
C6—C1—C7122.2 (3)C39—C38—H38119.0
C1—N2—C3117.6 (3)C40—C39—C38118.3 (5)
C1—N2—Cu1114.3 (2)C40—C39—H39120.9
C3—N2—Cu1127.8 (3)C38—C39—H39120.9
N2—C3—C4123.2 (4)C41—C40—C39121.0 (5)
N2—C3—H3118.4C41—C40—H40119.5
C4—C3—H3118.4C39—C40—H40119.5
C5—C4—C3119.0 (4)C40—C41—C42120.4 (5)
C5—C4—H4120.5C40—C41—H41119.8
C3—C4—H4120.5C42—C41—H41119.8
C4—C5—C6118.7 (4)C37—C42—C41119.5 (5)
C4—C5—H5120.7C37—C42—H42120.2
C6—C5—H5120.7C41—C42—H42120.2
C1—C6—C5120.0 (4)C44—C43—C48118.2 (4)
C1—C6—H6120.0C44—C43—P2124.1 (3)
C5—C6—H6120.0C48—C43—P2117.7 (3)
N8—C7—C12123.3 (3)C45—C44—C43121.1 (4)
N8—C7—C1115.3 (3)C45—C44—H44119.4
C12—C7—C1121.4 (3)C43—C44—H44119.4
C7—N8—C9116.4 (3)C46—C45—C44121.0 (5)
C7—N8—Cu1114.5 (2)C46—C45—H45119.5
C9—N8—Cu1128.1 (2)C44—C45—H45119.5
N8—C9—C10122.7 (3)C45—C46—C47119.0 (5)
N8—C9—C13118.0 (3)C45—C46—H46120.5
C10—C9—C13119.2 (3)C47—C46—H46120.5
C9—C10—C11120.6 (3)C46—C47—C48120.9 (5)
C9—C10—H10119.7C46—C47—H47119.6
C11—C10—H10119.7C48—C47—H47119.6
C10—C11—C12116.5 (3)C43—C48—C47119.8 (5)
C10—C11—C19121.5 (4)C43—C48—H48120.1
C12—C11—C19122.0 (4)C47—C48—H48120.1
C7—C12—C11120.4 (3)C50—C49—C54118.9 (4)
C7—C12—H12119.8C50—C49—P2118.5 (3)
C11—C12—H12119.8C54—C49—P2122.7 (3)
N14—C13—C18122.4 (4)C49—C50—C51120.9 (4)
N14—C13—C9116.7 (3)C49—C50—H50119.6
C18—C13—C9120.8 (4)C51—C50—H50119.6
C13—N14—C15117.6 (4)C50—C51—C52119.6 (4)
N14—C15—C16123.1 (5)C50—C51—H51120.2
N14—C15—H15118.4C52—C51—H51120.2
C16—C15—H15118.4C53—C52—C51119.5 (4)
C17—C16—C15118.2 (4)C53—C52—H52120.2
C17—C16—H16120.9C51—C52—H52120.2
C15—C16—H16120.9C52—C53—C54121.2 (5)
C16—C17—C18118.9 (4)C52—C53—H53119.4
C16—C17—H17120.5C54—C53—H53119.4
C18—C17—H17120.5C53—C54—C49119.9 (4)
C13—C18—C17119.7 (4)C53—C54—H54120.1
C13—C18—H18120.2C49—C54—H54120.1
C17—C18—H18120.2C56—C55—C60118.4 (4)
C24—C19—C20116.4 (4)C56—C55—P2118.4 (3)
C24—C19—C11122.6 (4)C60—C55—P2123.2 (4)
C20—C19—C11121.0 (4)C55—C56—C57121.2 (5)
N21—C20—C19123.1 (4)C55—C56—H56119.4
N21—C20—H20118.4C57—C56—H56119.4
C19—C20—H20118.4C58—C57—C56119.9 (6)
C22—N21—C20116.8 (4)C58—C57—H57120.0
N21—C22—C23125.0 (4)C56—C57—H57120.0
N21—C22—Br1116.1 (4)C57—C58—C59120.0 (5)
C23—C22—Br1118.8 (4)C57—C58—H58120.0
C22—C23—C24116.7 (5)C59—C58—H58120.0
C22—C23—H23121.6C58—C59—C60120.4 (6)
C24—C23—H23121.6C58—C59—H59119.8
C23—C24—C19121.9 (5)C60—C59—H59119.8
C23—C24—H24119.1C59—C60—C55120.2 (6)
C19—C24—H24119.1C59—C60—H60119.9
C26—C25—C30118.1 (4)C55—C60—H60119.9
C26—C25—P1119.7 (3)F4—B1—F2110.9 (6)
C30—C25—P1122.2 (3)F4—B1—F3114.6 (7)
C27—C26—C25121.2 (4)F2—B1—F3103.3 (5)
C27—C26—H26119.4F4—B1—F1109.8 (5)
C25—C26—H26119.4F2—B1—F1109.9 (5)
C28—C27—C26120.4 (4)F3—B1—F1108.1 (5)
C28—C27—H27119.8Cl3—Cl1—C1S76.2 (18)
C26—C27—H27119.8Cl3—Cl1—Cl4103.8 (16)
C27—C28—C29119.8 (4)C1S—Cl1—Cl446.5 (10)
C27—C28—H28120.1Cl4—Cl2—C1S93 (3)
C29—C28—H28120.1Cl1—Cl3—C1S76.9 (19)
C30—C29—C28119.4 (4)Cl2—Cl4—C1S60 (2)
C30—C29—H29120.3Cl2—Cl4—Cl1107 (3)
C28—C29—H29120.3C1S—Cl4—Cl148.5 (11)
C29—C30—C25121.1 (4)Cl2—C1S—Cl1111.1 (13)
C29—C30—H30119.4Cl2—C1S—Cl427.1 (12)
C25—C30—H30119.4Cl1—C1S—Cl485.0 (16)
C32—C31—C36117.9 (4)Cl2—C1S—Cl3121.0 (14)
C32—C31—P1124.9 (3)Cl1—C1S—Cl327.0 (6)
C36—C31—P1117.2 (3)Cl4—C1S—Cl3100.4 (16)

Experimental details

Crystal data
Chemical formula[Cu(C20H13BrN4)(C18H15P)2]BF4·0.5CH2Cl2
Mr1106.61
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)13.8900 (5), 13.9623 (6), 15.2549 (5)
α, β, γ (°)72.358 (1), 83.6520 (11), 69.821 (1)
V3)2646.23 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.34 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker,2000)
Tmin, Tmax0.627, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
22637, 9368, 7361
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.209, 1.05
No. of reflections9368
No. of parameters676
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 0.80

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Version 1.08; Farrugia, 1997), publCIF (Westrip, 2008).

 

Acknowledgements

The authors thank the NSERC of Canada for funding. MIJP also thanks the Foundation of Research Science and Technology for funding.

References

First citationAinscough, E. W., Brodie, A. M., Ingham, S. L. & Waters, J. M. (1994). J. Chem. Soc. Dalton Trans. pp. 215–220.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.01), SADABS (Version 2.0) and SHELXTL-NT (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, Q., Li, D., Yin, Y.-G., Feng, X.-L. & Cai, J.-W. (2002). Huaxue Xuebao, 60, 2167–2171.  CAS Google Scholar
First citationFitchett, C. M., Richardson, C. & Steel, P. J. (2005). Org. Biomol. Chem. 3, 498–502.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLoiseau, F., Passalacqua, R., Campagna, S., Polson, M. I. J., Fang, Y.-Q. & Hanan, G. S. (2002). Photochem. Photobiol. Sci. 1, 982–990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds