metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η6-Benzene)(2,2′-bi­pyridine-κ2N,N′)chloridoruthenium(II) chloride methanol sesquisolvate

aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: matthew.polson@canterbury.ac.nz

(Received 9 November 2007; accepted 13 December 2007; online 21 December 2007)

In the title compound, [RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O, the RuII atom is in a distorted octa­hedral environment coordinated by an η6-benzene ring, a chelating 2,2′-bipyridine ligand and a chloride ion. The asymmetric unit is completed by a chloride anion and two methanol mol­ecules, one of which is disordered about a centre of inversion with an occupancy of 0.5. It is an example of a ruthenium complex with a less sterically congested environment than in similar derivatives. In the crystal structure, O—H⋯Cl hydrogen bonds, together with ππ stacking inter­actions [centroid–centroid distances of 3.472Å(2) Å], stabilize the structure.

Related literature

For literature concerning the synthesis of this class of compound, see Freedman et al. (2001[Freedman, D. A., Evju, J. K., Pomije, M. K. & Mann, K. R. (2001). Inorg. Chem. 40, 5711-5715.]). For related structures, see Himeda et al. (2007[Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H. & Kasuga, K. (2007). Organometallics, 26, 702-712.]); Lalrempuia & Kollipara (2003[Lalrempuia, R. & Kollipara, M. R. (2003). Polyhedron, 22, 3155-3160.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O

  • Mr = 454.33

  • Triclinic, [P \overline 1]

  • a = 6.9027 (11) Å

  • b = 10.2346 (16) Å

  • c = 12.895 (2) Å

  • α = 85.597 (2)°

  • β = 84.531 (2)°

  • γ = 75.875 (2)°

  • V = 878.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 93 (2) K

  • 0.36 × 0.34 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 0.854

  • 4385 measured reflections

  • 3082 independent reflections

  • 2867 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.06

  • 3082 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ru1—N1 2.083 (3)
Ru1—N2 2.084 (3)
Ru1—C1 2.165 (4)
Ru1—C6 2.186 (4)
Ru1—C5 2.193 (4)
Ru1—C2 2.198 (4)
Ru1—C4 2.198 (4)
Ru1—C3 2.199 (4)
Ru1—Cl1 2.4105 (9)
N1—Ru1—N2 77.18 (11)
N1—Ru1—Cl1 84.01 (8)
N2—Ru1—Cl1 86.34 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H51⋯Cl2 0.84 2.18 3.013 (4) 170
O61—H61⋯Cl2 0.84 2.15 2.986 (6) 171

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The desire for a ruthenium complex which could be used to synthesize facially coordinated complexes led to the preparation of the starting material (1) (Freedman et al. 2001). It is convenient to use, in that the benzene ring can be readily removed in a photolytic reaction leaving ruthenium with three, vacant, facially arranged coordination sites. The RuII atom is in a distorted octahedral environment, Table 1, coordinating to an η6-benzene ring, a chelating 2,2'-bipyridine ligand and a chloride anion. Compared to other similar complexes from the literature, the cation is less bulky both around the benzene ring (Himeda et al., 2007) and in the bipyridine unit (Lalrempuia & Kollipara, 2003). This manifests itself in two angles. The angles between the mean plane of the bipyridine ligand and the mean plane of the benzene ring (60.47 (18)° in 1) become smaller as the ligands become larger due to additional substitution by methyl groups. This forces the two ligands become more parallel to each other. This effect is seen when either the bipyridine (32.24 ° Lalrempuia & Kollipara, 2003) or the benzene ring (36.04° Himeda et al. 2007) is larger due to additional substitution. With the smaller unsubstituted ligands of (1) the ruthenium atom is also more able to sit in the same plane as the bipyridine ligand, lying only 0.075 (1) Å above the plane in the direction of the choride ligand. The methanol solvate molecules form O—H···Cl hydrogen bonds to the chloride anion, Table 2, with D–H A distances of 3.013 (4) Å (O51–Cl2) and 2.986 (6) Å (O61–Cl2). The structure is further stabilized by offset ππ stacking interactions between adjacent N1, C7···C11 rings of the bipyridine ligands, with centroid to centroid distances of 3.472 (2) Å, related by the symmetry operation 1 - x, 1 - y, 1 - z, Fig. 2.

Related literature top

For literature concerning the synthesis of this class of compound, see Freedman et al. (2001). For related structures, see Himeda et al. (2007); Lalrempuia & Kollipara (2003).

Experimental top

The complex was prepared according to literature procedures (Freedman et al. 2001). X-ray quality crystals were grown by slow evaporation of a solution in methanol.

Refinement top

The C and O atoms of both methanol solvate molecules were refined isotropically. One of these molecules (C60, O60) is disordered about an inversion centre and was refined with the occupancy of all atoms fixed at 0.5. A l l H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.82 Å, Uiso = 1.5Ueq (O) for the OH groups.

Structure description top

The desire for a ruthenium complex which could be used to synthesize facially coordinated complexes led to the preparation of the starting material (1) (Freedman et al. 2001). It is convenient to use, in that the benzene ring can be readily removed in a photolytic reaction leaving ruthenium with three, vacant, facially arranged coordination sites. The RuII atom is in a distorted octahedral environment, Table 1, coordinating to an η6-benzene ring, a chelating 2,2'-bipyridine ligand and a chloride anion. Compared to other similar complexes from the literature, the cation is less bulky both around the benzene ring (Himeda et al., 2007) and in the bipyridine unit (Lalrempuia & Kollipara, 2003). This manifests itself in two angles. The angles between the mean plane of the bipyridine ligand and the mean plane of the benzene ring (60.47 (18)° in 1) become smaller as the ligands become larger due to additional substitution by methyl groups. This forces the two ligands become more parallel to each other. This effect is seen when either the bipyridine (32.24 ° Lalrempuia & Kollipara, 2003) or the benzene ring (36.04° Himeda et al. 2007) is larger due to additional substitution. With the smaller unsubstituted ligands of (1) the ruthenium atom is also more able to sit in the same plane as the bipyridine ligand, lying only 0.075 (1) Å above the plane in the direction of the choride ligand. The methanol solvate molecules form O—H···Cl hydrogen bonds to the chloride anion, Table 2, with D–H A distances of 3.013 (4) Å (O51–Cl2) and 2.986 (6) Å (O61–Cl2). The structure is further stabilized by offset ππ stacking interactions between adjacent N1, C7···C11 rings of the bipyridine ligands, with centroid to centroid distances of 3.472 (2) Å, related by the symmetry operation 1 - x, 1 - y, 1 - z, Fig. 2.

For literature concerning the synthesis of this class of compound, see Freedman et al. (2001). For related structures, see Himeda et al. (2007); Lalrempuia & Kollipara (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram showing the π stacking. The close centroid-centroid approach is shown as a dashed line.
(η6-Benzene)(2,2'-bipyridine-κ2N,N')chloridoruthenium(II) chloride methanol sesquisolvate top
Crystal data top
[RuCl(C6H6)(C10H8N2)]Cl·1.5CH4OZ = 2
Mr = 454.33F(000) = 458
Triclinic, P1Dx = 1.718 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9027 (11) ÅCell parameters from 3474 reflections
b = 10.2346 (16) Åθ = 2.5–26.4°
c = 12.895 (2) ŵ = 1.21 mm1
α = 85.597 (2)°T = 93 K
β = 84.531 (2)°Block, yellow
γ = 75.875 (2)°0.36 × 0.34 × 0.13 mm
V = 878.1 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3082 independent reflections
Radiation source: sealed tube2867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.660, Tmax = 0.854k = 1212
4385 measured reflectionsl = 1510
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.5007P]
where P = (Fo2 + 2Fc2)/3
3082 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[RuCl(C6H6)(C10H8N2)]Cl·1.5CH4Oγ = 75.875 (2)°
Mr = 454.33V = 878.1 (2) Å3
Triclinic, P1Z = 2
a = 6.9027 (11) ÅMo Kα radiation
b = 10.2346 (16) ŵ = 1.21 mm1
c = 12.895 (2) ÅT = 93 K
α = 85.597 (2)°0.36 × 0.34 × 0.13 mm
β = 84.531 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2867 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.854Rint = 0.014
4385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.06Δρmax = 1.13 e Å3
3082 reflectionsΔρmin = 0.69 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.60854 (4)0.67682 (3)0.77268 (2)0.02474 (11)
Cl10.89451 (12)0.76724 (9)0.71514 (7)0.0277 (2)
Cl20.12633 (18)0.29047 (14)0.82005 (9)0.0536 (3)
N10.6736 (4)0.5821 (3)0.6319 (2)0.0217 (6)
N20.4510 (4)0.8207 (3)0.6686 (2)0.0244 (6)
C70.6008 (5)0.6559 (3)0.5465 (2)0.0201 (7)
C120.4677 (5)0.7878 (3)0.5677 (3)0.0217 (7)
C20.4713 (8)0.7559 (5)0.9230 (3)0.0530 (13)
H20.42720.85590.92890.064*
C10.3440 (7)0.6888 (5)0.8796 (3)0.0463 (11)
H10.21010.74070.85790.056*
C60.4177 (8)0.5533 (5)0.8541 (3)0.0499 (13)
H60.33750.50850.81400.060*
C30.6688 (8)0.6925 (6)0.9351 (3)0.0557 (14)
H30.76340.74780.94960.067*
C40.7456 (8)0.5604 (6)0.9086 (3)0.0515 (12)
H40.89390.52240.90470.062*
C50.6250 (8)0.4896 (5)0.8699 (3)0.0489 (12)
H50.68800.40120.83850.059*
C110.7918 (5)0.4575 (3)0.6204 (3)0.0234 (7)
H110.84300.40540.68030.028*
C80.6504 (5)0.6079 (3)0.4470 (2)0.0220 (7)
H80.60230.66280.38760.026*
C90.7708 (5)0.4794 (4)0.4354 (3)0.0232 (7)
H90.80480.44420.36820.028*
C100.8406 (5)0.4030 (4)0.5234 (3)0.0236 (7)
H100.92150.31400.51740.028*
C140.2393 (5)0.9964 (4)0.5210 (3)0.0307 (8)
H140.16551.05620.47080.037*
C130.3616 (5)0.8737 (4)0.4923 (3)0.0255 (7)
H130.37290.84850.42220.031*
C160.3322 (5)0.9412 (4)0.6948 (3)0.0307 (8)
H160.32160.96500.76520.037*
C150.2259 (5)1.0307 (4)0.6237 (3)0.0337 (9)
H150.14441.11500.64470.040*
O510.5683 (5)0.2257 (4)0.7539 (3)0.0553 (8)
H510.44590.23340.77160.083*
C500.6807 (7)0.1122 (5)0.8067 (4)0.0484 (11)
H50A0.59760.08370.86580.073*
H50B0.79730.13470.83220.073*
H50C0.72610.03880.75900.073*
O610.1958 (9)0.0351 (6)0.9544 (5)0.0413 (13)*0.50
H610.18720.10920.92010.062*0.50
C600.002 (4)0.035 (3)1.016 (2)0.135 (8)*0.50
H60A0.01490.03641.09090.202*0.50
H60B0.04480.04591.00320.202*0.50
H60C0.10280.11560.99500.202*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02860 (18)0.03351 (18)0.01564 (16)0.01396 (12)0.00330 (11)0.00015 (11)
Cl10.0235 (4)0.0287 (4)0.0335 (5)0.0100 (3)0.0057 (3)0.0006 (3)
Cl20.0509 (7)0.0718 (8)0.0416 (6)0.0182 (6)0.0168 (5)0.0028 (5)
N10.0215 (14)0.0283 (15)0.0187 (13)0.0131 (12)0.0036 (11)0.0024 (11)
N20.0206 (14)0.0305 (16)0.0246 (15)0.0109 (12)0.0005 (11)0.0024 (12)
C70.0175 (16)0.0258 (17)0.0203 (16)0.0120 (13)0.0044 (12)0.0032 (13)
C120.0176 (16)0.0281 (17)0.0231 (16)0.0140 (14)0.0012 (13)0.0022 (13)
C20.072 (3)0.064 (3)0.028 (2)0.031 (3)0.017 (2)0.015 (2)
C10.041 (2)0.076 (3)0.0229 (19)0.021 (2)0.0037 (17)0.008 (2)
C60.073 (3)0.081 (3)0.0145 (18)0.058 (3)0.0018 (19)0.0070 (19)
C30.065 (3)0.099 (4)0.0178 (19)0.046 (3)0.0041 (19)0.006 (2)
C40.054 (3)0.085 (4)0.0195 (19)0.027 (3)0.0085 (19)0.016 (2)
C50.074 (3)0.048 (3)0.022 (2)0.020 (2)0.007 (2)0.0148 (18)
C110.0226 (17)0.0259 (17)0.0242 (17)0.0112 (14)0.0059 (13)0.0049 (13)
C80.0191 (16)0.0318 (18)0.0176 (16)0.0122 (14)0.0039 (12)0.0046 (13)
C90.0179 (16)0.0344 (19)0.0217 (16)0.0140 (14)0.0014 (13)0.0033 (14)
C100.0167 (16)0.0267 (17)0.0298 (18)0.0096 (14)0.0039 (13)0.0007 (14)
C140.0183 (17)0.0299 (19)0.046 (2)0.0122 (15)0.0043 (15)0.0085 (16)
C130.0214 (17)0.0291 (18)0.0296 (18)0.0138 (14)0.0050 (14)0.0045 (14)
C160.0263 (19)0.036 (2)0.0326 (19)0.0139 (16)0.0049 (15)0.0091 (16)
C150.0213 (18)0.0283 (19)0.051 (2)0.0086 (15)0.0045 (16)0.0028 (17)
O510.063 (2)0.058 (2)0.0437 (18)0.0138 (17)0.0090 (16)0.0107 (15)
C500.048 (3)0.042 (2)0.054 (3)0.010 (2)0.012 (2)0.005 (2)
Geometric parameters (Å, º) top
Ru1—N12.083 (3)C4—H41.0000
Ru1—N22.084 (3)C5—H51.0000
Ru1—C12.165 (4)C11—C101.387 (5)
Ru1—C62.186 (4)C11—H110.9500
Ru1—C52.193 (4)C8—C91.385 (5)
Ru1—C22.198 (4)C8—H80.9500
Ru1—C42.198 (4)C9—C101.384 (5)
Ru1—C32.199 (4)C9—H90.9500
Ru1—Cl12.4105 (9)C10—H100.9500
N1—C111.346 (4)C14—C151.385 (6)
N1—C71.352 (4)C14—C131.386 (5)
N2—C161.351 (5)C14—H140.9500
N2—C121.356 (4)C13—H130.9500
C7—C81.392 (5)C16—C151.374 (6)
C7—C121.464 (5)C16—H160.9500
C12—C131.394 (5)C15—H150.9500
C2—C31.378 (8)O51—C501.398 (6)
C2—C11.417 (7)O51—H510.8400
C2—H21.0000C50—H50A0.9800
C1—C61.408 (7)C50—H50B0.9800
C1—H11.0000C50—H50C0.9800
C6—C51.447 (7)O61—C601.51 (3)
C6—H61.0000O61—H610.8400
C3—C41.383 (8)C60—H60A0.9800
C3—H31.0000C60—H60B0.9800
C4—C51.378 (7)C60—H60C0.9800
N1—Ru1—N277.18 (11)C1—C6—Ru170.3 (2)
N1—Ru1—C1127.42 (15)C5—C6—Ru170.9 (2)
N2—Ru1—C191.75 (15)C1—C6—H6120.4
N1—Ru1—C699.21 (14)C5—C6—H6120.4
N2—Ru1—C6111.47 (16)Ru1—C6—H6120.4
C1—Ru1—C637.76 (19)C2—C3—C4120.9 (5)
N1—Ru1—C594.95 (14)C2—C3—Ru171.7 (2)
N2—Ru1—C5148.17 (16)C4—C3—Ru171.6 (2)
C1—Ru1—C568.40 (19)C2—C3—H3119.0
C6—Ru1—C538.58 (19)C4—C3—H3119.0
N1—Ru1—C2165.29 (15)Ru1—C3—H3119.0
N2—Ru1—C2101.06 (17)C5—C4—C3120.4 (5)
C1—Ru1—C237.89 (18)C5—C4—Ru171.5 (2)
C6—Ru1—C267.59 (18)C3—C4—Ru171.7 (3)
C5—Ru1—C278.80 (19)C5—C4—H4119.3
N1—Ru1—C4116.02 (17)C3—C4—H4119.3
N2—Ru1—C4166.80 (17)Ru1—C4—H4119.3
C1—Ru1—C480.20 (18)C4—C5—C6120.4 (5)
C6—Ru1—C468.00 (18)C4—C5—Ru171.9 (3)
C5—Ru1—C436.57 (19)C6—C5—Ru170.5 (2)
C2—Ru1—C466.2 (2)C4—C5—H5119.1
N1—Ru1—C3151.14 (18)C6—C5—H5119.1
N2—Ru1—C3130.37 (18)Ru1—C5—H5119.1
C1—Ru1—C367.60 (18)N1—C11—C10121.8 (3)
C6—Ru1—C379.73 (17)N1—C11—H11119.1
C5—Ru1—C366.1 (2)C10—C11—H11119.1
C2—Ru1—C336.5 (2)C9—C8—C7119.3 (3)
C4—Ru1—C336.7 (2)C9—C8—H8120.4
N1—Ru1—Cl184.01 (8)C7—C8—H8120.4
N2—Ru1—Cl186.34 (8)C10—C9—C8118.8 (3)
C1—Ru1—Cl1147.23 (14)C10—C9—H9120.6
C6—Ru1—Cl1162.19 (14)C8—C9—H9120.6
C5—Ru1—Cl1123.93 (14)C9—C10—C11119.6 (3)
C2—Ru1—Cl1110.55 (13)C9—C10—H10120.2
C4—Ru1—Cl194.76 (13)C11—C10—H10120.2
C3—Ru1—Cl189.00 (13)C15—C14—C13119.2 (3)
C11—N1—C7119.0 (3)C15—C14—H14120.4
C11—N1—Ru1124.3 (2)C13—C14—H14120.4
C7—N1—Ru1116.5 (2)C14—C13—C12119.1 (3)
C16—N2—C12118.5 (3)C14—C13—H13120.4
C16—N2—Ru1125.0 (2)C12—C13—H13120.4
C12—N2—Ru1116.5 (2)N2—C16—C15122.7 (3)
N1—C7—C8121.6 (3)N2—C16—H16118.6
N1—C7—C12114.8 (3)C15—C16—H16118.6
C8—C7—C12123.6 (3)C16—C15—C14119.0 (3)
N2—C12—C13121.4 (3)C16—C15—H15120.5
N2—C12—C7114.6 (3)C14—C15—H15120.5
C13—C12—C7124.0 (3)C50—O51—H51109.5
C3—C2—C1120.7 (5)O51—C50—H50A109.5
C3—C2—Ru171.8 (3)O51—C50—H50B109.5
C1—C2—Ru169.8 (2)H50A—C50—H50B109.5
C3—C2—H2118.9O51—C50—H50C109.5
C1—C2—H2118.9H50A—C50—H50C109.5
Ru1—C2—H2118.9H50B—C50—H50C109.5
C6—C1—C2119.4 (5)C60—O61—H61109.5
C6—C1—Ru171.9 (2)O61—C60—H60A109.5
C2—C1—Ru172.3 (2)O61—C60—H60B109.5
C6—C1—H1120.0H60A—C60—H60B109.5
C2—C1—H1120.0O61—C60—H60C109.5
Ru1—C1—H1120.0H60A—C60—H60C109.5
C1—C6—C5118.2 (4)H60B—C60—H60C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···Cl20.842.183.013 (4)170
O61—H61···Cl20.842.152.986 (6)171

Experimental details

Crystal data
Chemical formula[RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O
Mr454.33
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)6.9027 (11), 10.2346 (16), 12.895 (2)
α, β, γ (°)85.597 (2), 84.531 (2), 75.875 (2)
V3)878.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.36 × 0.34 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.660, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
4385, 3082, 2867
Rint0.014
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.06
No. of reflections3082
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.69

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Ru1—N12.083 (3)Ru1—C22.198 (4)
Ru1—N22.084 (3)Ru1—C42.198 (4)
Ru1—C12.165 (4)Ru1—C32.199 (4)
Ru1—C62.186 (4)Ru1—Cl12.4105 (9)
Ru1—C52.193 (4)
N1—Ru1—N277.18 (11)N2—Ru1—Cl186.34 (8)
N1—Ru1—Cl184.01 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O51—H51···Cl20.842.183.013 (4)170.0
O61—H61···Cl20.842.152.986 (6)170.5
 

Acknowledgements

The author acknowledges the extensive advice of Professor Peter Steel and funding from the New Zealand Foundation of Research, Science and Technology.

References

First citationBruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFreedman, D. A., Evju, J. K., Pomije, M. K. & Mann, K. R. (2001). Inorg. Chem. 40, 5711–5715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHimeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H. & Kasuga, K. (2007). Organometallics, 26, 702–712.  Web of Science CSD CrossRef CAS Google Scholar
First citationLalrempuia, R. & Kollipara, M. R. (2003). Polyhedron, 22, 3155–3160.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds