metal-organic compounds
(η6-Benzene)(2,2′-bipyridine-κ2N,N′)chloridoruthenium(II) chloride methanol sesquisolvate
aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: matthew.polson@canterbury.ac.nz
In the title compound, [RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O, the RuII atom is in a distorted octahedral environment coordinated by an η6-benzene ring, a chelating 2,2′-bipyridine ligand and a chloride ion. The is completed by a chloride anion and two methanol molecules, one of which is disordered about a centre of inversion with an occupancy of 0.5. It is an example of a ruthenium complex with a less sterically congested environment than in similar derivatives. In the O—H⋯Cl hydrogen bonds, together with π–π stacking interactions [centroid–centroid distances of 3.472Å(2) Å], stabilize the structure.
Related literature
For literature concerning the synthesis of this class of compound, see Freedman et al. (2001). For related structures, see Himeda et al. (2007); Lalrempuia & Kollipara (2003).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
https://doi.org/10.1107/S1600536807066858/sj2425sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066858/sj2425Isup2.hkl
The complex was prepared according to literature procedures (Freedman et al. 2001). X-ray quality crystals were grown by slow evaporation of a solution in methanol.
The C and O atoms of both methanol solvate molecules were refined isotropically. One of these molecules (C60, O60) is disordered about an inversion centre and was refined with the occupancy of all atoms fixed at 0.5. A l l H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.82 Å, Uiso = 1.5Ueq (O) for the OH groups.
The desire for a ruthenium complex which could be used to synthesize facially coordinated complexes led to the preparation of the starting material (1) (Freedman et al. 2001). It is convenient to use, in that the benzene ring can be readily removed in a photolytic reaction leaving ruthenium with three, vacant, facially arranged coordination sites. The RuII atom is in a distorted octahedral environment, Table 1, coordinating to an η6-benzene ring, a chelating 2,2'-bipyridine ligand and a chloride anion. Compared to other similar complexes from the literature, the cation is less bulky both around the benzene ring (Himeda et al., 2007) and in the bipyridine unit (Lalrempuia & Kollipara, 2003). This manifests itself in two angles. The angles between the mean plane of the bipyridine ligand and the mean plane of the benzene ring (60.47 (18)° in 1) become smaller as the ligands become larger due to additional substitution by methyl groups. This forces the two ligands become more parallel to each other. This effect is seen when either the bipyridine (32.24 ° Lalrempuia & Kollipara, 2003) or the benzene ring (36.04° Himeda et al. 2007) is larger due to additional substitution. With the smaller unsubstituted ligands of (1) the ruthenium atom is also more able to sit in the same plane as the bipyridine ligand, lying only 0.075 (1) Å above the plane in the direction of the choride ligand. The methanol solvate molecules form O—H···Cl hydrogen bonds to the chloride anion, Table 2, with D–H A distances of 3.013 (4) Å (O51–Cl2) and 2.986 (6) Å (O61–Cl2). The structure is further stabilized by offset π—π stacking interactions between adjacent N1, C7···C11 rings of the bipyridine ligands, with centroid to centroid distances of 3.472 (2) Å, related by the 1 - x, 1 - y, 1 - z, Fig. 2.
For literature concerning the synthesis of this class of compound, see Freedman et al. (2001). For related structures, see Himeda et al. (2007); Lalrempuia & Kollipara (2003).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2008).[RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O | Z = 2 |
Mr = 454.33 | F(000) = 458 |
Triclinic, P1 | Dx = 1.718 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.9027 (11) Å | Cell parameters from 3474 reflections |
b = 10.2346 (16) Å | θ = 2.5–26.4° |
c = 12.895 (2) Å | µ = 1.21 mm−1 |
α = 85.597 (2)° | T = 93 K |
β = 84.531 (2)° | Block, yellow |
γ = 75.875 (2)° | 0.36 × 0.34 × 0.13 mm |
V = 878.1 (2) Å3 |
Bruker APEXII CCD area-detector diffractometer | 3082 independent reflections |
Radiation source: sealed tube | 2867 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
φ and ω scans | θmax = 25.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→8 |
Tmin = 0.660, Tmax = 0.854 | k = −12→12 |
4385 measured reflections | l = −15→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0562P)2 + 0.5007P] where P = (Fo2 + 2Fc2)/3 |
3082 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 1.13 e Å−3 |
0 restraints | Δρmin = −0.69 e Å−3 |
[RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O | γ = 75.875 (2)° |
Mr = 454.33 | V = 878.1 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9027 (11) Å | Mo Kα radiation |
b = 10.2346 (16) Å | µ = 1.21 mm−1 |
c = 12.895 (2) Å | T = 93 K |
α = 85.597 (2)° | 0.36 × 0.34 × 0.13 mm |
β = 84.531 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3082 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2867 reflections with I > 2σ(I) |
Tmin = 0.660, Tmax = 0.854 | Rint = 0.014 |
4385 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.13 e Å−3 |
3082 reflections | Δρmin = −0.69 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.60854 (4) | 0.67682 (3) | 0.77268 (2) | 0.02474 (11) | |
Cl1 | 0.89451 (12) | 0.76724 (9) | 0.71514 (7) | 0.0277 (2) | |
Cl2 | 0.12633 (18) | 0.29047 (14) | 0.82005 (9) | 0.0536 (3) | |
N1 | 0.6736 (4) | 0.5821 (3) | 0.6319 (2) | 0.0217 (6) | |
N2 | 0.4510 (4) | 0.8207 (3) | 0.6686 (2) | 0.0244 (6) | |
C7 | 0.6008 (5) | 0.6559 (3) | 0.5465 (2) | 0.0201 (7) | |
C12 | 0.4677 (5) | 0.7878 (3) | 0.5677 (3) | 0.0217 (7) | |
C2 | 0.4713 (8) | 0.7559 (5) | 0.9230 (3) | 0.0530 (13) | |
H2 | 0.4272 | 0.8559 | 0.9289 | 0.064* | |
C1 | 0.3440 (7) | 0.6888 (5) | 0.8796 (3) | 0.0463 (11) | |
H1 | 0.2101 | 0.7407 | 0.8579 | 0.056* | |
C6 | 0.4177 (8) | 0.5533 (5) | 0.8541 (3) | 0.0499 (13) | |
H6 | 0.3375 | 0.5085 | 0.8140 | 0.060* | |
C3 | 0.6688 (8) | 0.6925 (6) | 0.9351 (3) | 0.0557 (14) | |
H3 | 0.7634 | 0.7478 | 0.9496 | 0.067* | |
C4 | 0.7456 (8) | 0.5604 (6) | 0.9086 (3) | 0.0515 (12) | |
H4 | 0.8939 | 0.5224 | 0.9047 | 0.062* | |
C5 | 0.6250 (8) | 0.4896 (5) | 0.8699 (3) | 0.0489 (12) | |
H5 | 0.6880 | 0.4012 | 0.8385 | 0.059* | |
C11 | 0.7918 (5) | 0.4575 (3) | 0.6204 (3) | 0.0234 (7) | |
H11 | 0.8430 | 0.4054 | 0.6803 | 0.028* | |
C8 | 0.6504 (5) | 0.6079 (3) | 0.4470 (2) | 0.0220 (7) | |
H8 | 0.6023 | 0.6628 | 0.3876 | 0.026* | |
C9 | 0.7708 (5) | 0.4794 (4) | 0.4354 (3) | 0.0232 (7) | |
H9 | 0.8048 | 0.4442 | 0.3682 | 0.028* | |
C10 | 0.8406 (5) | 0.4030 (4) | 0.5234 (3) | 0.0236 (7) | |
H10 | 0.9215 | 0.3140 | 0.5174 | 0.028* | |
C14 | 0.2393 (5) | 0.9964 (4) | 0.5210 (3) | 0.0307 (8) | |
H14 | 0.1655 | 1.0562 | 0.4708 | 0.037* | |
C13 | 0.3616 (5) | 0.8737 (4) | 0.4923 (3) | 0.0255 (7) | |
H13 | 0.3729 | 0.8485 | 0.4222 | 0.031* | |
C16 | 0.3322 (5) | 0.9412 (4) | 0.6948 (3) | 0.0307 (8) | |
H16 | 0.3216 | 0.9650 | 0.7652 | 0.037* | |
C15 | 0.2259 (5) | 1.0307 (4) | 0.6237 (3) | 0.0337 (9) | |
H15 | 0.1444 | 1.1150 | 0.6447 | 0.040* | |
O51 | 0.5683 (5) | 0.2257 (4) | 0.7539 (3) | 0.0553 (8) | |
H51 | 0.4459 | 0.2334 | 0.7716 | 0.083* | |
C50 | 0.6807 (7) | 0.1122 (5) | 0.8067 (4) | 0.0484 (11) | |
H50A | 0.5976 | 0.0837 | 0.8658 | 0.073* | |
H50B | 0.7973 | 0.1347 | 0.8322 | 0.073* | |
H50C | 0.7261 | 0.0388 | 0.7590 | 0.073* | |
O61 | 0.1958 (9) | 0.0351 (6) | 0.9544 (5) | 0.0413 (13)* | 0.50 |
H61 | 0.1872 | 0.1092 | 0.9201 | 0.062* | 0.50 |
C60 | −0.002 (4) | 0.035 (3) | 1.016 (2) | 0.135 (8)* | 0.50 |
H60A | 0.0149 | 0.0364 | 1.0909 | 0.202* | 0.50 |
H60B | −0.0448 | −0.0459 | 1.0032 | 0.202* | 0.50 |
H60C | −0.1028 | 0.1156 | 0.9950 | 0.202* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.02860 (18) | 0.03351 (18) | 0.01564 (16) | −0.01396 (12) | −0.00330 (11) | −0.00015 (11) |
Cl1 | 0.0235 (4) | 0.0287 (4) | 0.0335 (5) | −0.0100 (3) | −0.0057 (3) | −0.0006 (3) |
Cl2 | 0.0509 (7) | 0.0718 (8) | 0.0416 (6) | −0.0182 (6) | −0.0168 (5) | 0.0028 (5) |
N1 | 0.0215 (14) | 0.0283 (15) | 0.0187 (13) | −0.0131 (12) | −0.0036 (11) | 0.0024 (11) |
N2 | 0.0206 (14) | 0.0305 (16) | 0.0246 (15) | −0.0109 (12) | −0.0005 (11) | −0.0024 (12) |
C7 | 0.0175 (16) | 0.0258 (17) | 0.0203 (16) | −0.0120 (13) | −0.0044 (12) | 0.0032 (13) |
C12 | 0.0176 (16) | 0.0281 (17) | 0.0231 (16) | −0.0140 (14) | −0.0012 (13) | 0.0022 (13) |
C2 | 0.072 (3) | 0.064 (3) | 0.028 (2) | −0.031 (3) | 0.017 (2) | −0.015 (2) |
C1 | 0.041 (2) | 0.076 (3) | 0.0229 (19) | −0.021 (2) | 0.0037 (17) | 0.008 (2) |
C6 | 0.073 (3) | 0.081 (3) | 0.0145 (18) | −0.058 (3) | −0.0018 (19) | 0.0070 (19) |
C3 | 0.065 (3) | 0.099 (4) | 0.0178 (19) | −0.046 (3) | −0.0041 (19) | −0.006 (2) |
C4 | 0.054 (3) | 0.085 (4) | 0.0195 (19) | −0.027 (3) | −0.0085 (19) | 0.016 (2) |
C5 | 0.074 (3) | 0.048 (3) | 0.022 (2) | −0.020 (2) | 0.007 (2) | 0.0148 (18) |
C11 | 0.0226 (17) | 0.0259 (17) | 0.0242 (17) | −0.0112 (14) | −0.0059 (13) | 0.0049 (13) |
C8 | 0.0191 (16) | 0.0318 (18) | 0.0176 (16) | −0.0122 (14) | −0.0039 (12) | 0.0046 (13) |
C9 | 0.0179 (16) | 0.0344 (19) | 0.0217 (16) | −0.0140 (14) | −0.0014 (13) | −0.0033 (14) |
C10 | 0.0167 (16) | 0.0267 (17) | 0.0298 (18) | −0.0096 (14) | −0.0039 (13) | 0.0007 (14) |
C14 | 0.0183 (17) | 0.0299 (19) | 0.046 (2) | −0.0122 (15) | −0.0043 (15) | 0.0085 (16) |
C13 | 0.0214 (17) | 0.0291 (18) | 0.0296 (18) | −0.0138 (14) | −0.0050 (14) | 0.0045 (14) |
C16 | 0.0263 (19) | 0.036 (2) | 0.0326 (19) | −0.0139 (16) | 0.0049 (15) | −0.0091 (16) |
C15 | 0.0213 (18) | 0.0283 (19) | 0.051 (2) | −0.0086 (15) | 0.0045 (16) | −0.0028 (17) |
O51 | 0.063 (2) | 0.058 (2) | 0.0437 (18) | −0.0138 (17) | −0.0090 (16) | 0.0107 (15) |
C50 | 0.048 (3) | 0.042 (2) | 0.054 (3) | −0.010 (2) | −0.012 (2) | 0.005 (2) |
Ru1—N1 | 2.083 (3) | C4—H4 | 1.0000 |
Ru1—N2 | 2.084 (3) | C5—H5 | 1.0000 |
Ru1—C1 | 2.165 (4) | C11—C10 | 1.387 (5) |
Ru1—C6 | 2.186 (4) | C11—H11 | 0.9500 |
Ru1—C5 | 2.193 (4) | C8—C9 | 1.385 (5) |
Ru1—C2 | 2.198 (4) | C8—H8 | 0.9500 |
Ru1—C4 | 2.198 (4) | C9—C10 | 1.384 (5) |
Ru1—C3 | 2.199 (4) | C9—H9 | 0.9500 |
Ru1—Cl1 | 2.4105 (9) | C10—H10 | 0.9500 |
N1—C11 | 1.346 (4) | C14—C15 | 1.385 (6) |
N1—C7 | 1.352 (4) | C14—C13 | 1.386 (5) |
N2—C16 | 1.351 (5) | C14—H14 | 0.9500 |
N2—C12 | 1.356 (4) | C13—H13 | 0.9500 |
C7—C8 | 1.392 (5) | C16—C15 | 1.374 (6) |
C7—C12 | 1.464 (5) | C16—H16 | 0.9500 |
C12—C13 | 1.394 (5) | C15—H15 | 0.9500 |
C2—C3 | 1.378 (8) | O51—C50 | 1.398 (6) |
C2—C1 | 1.417 (7) | O51—H51 | 0.8400 |
C2—H2 | 1.0000 | C50—H50A | 0.9800 |
C1—C6 | 1.408 (7) | C50—H50B | 0.9800 |
C1—H1 | 1.0000 | C50—H50C | 0.9800 |
C6—C5 | 1.447 (7) | O61—C60 | 1.51 (3) |
C6—H6 | 1.0000 | O61—H61 | 0.8400 |
C3—C4 | 1.383 (8) | C60—H60A | 0.9800 |
C3—H3 | 1.0000 | C60—H60B | 0.9800 |
C4—C5 | 1.378 (7) | C60—H60C | 0.9800 |
N1—Ru1—N2 | 77.18 (11) | C1—C6—Ru1 | 70.3 (2) |
N1—Ru1—C1 | 127.42 (15) | C5—C6—Ru1 | 70.9 (2) |
N2—Ru1—C1 | 91.75 (15) | C1—C6—H6 | 120.4 |
N1—Ru1—C6 | 99.21 (14) | C5—C6—H6 | 120.4 |
N2—Ru1—C6 | 111.47 (16) | Ru1—C6—H6 | 120.4 |
C1—Ru1—C6 | 37.76 (19) | C2—C3—C4 | 120.9 (5) |
N1—Ru1—C5 | 94.95 (14) | C2—C3—Ru1 | 71.7 (2) |
N2—Ru1—C5 | 148.17 (16) | C4—C3—Ru1 | 71.6 (2) |
C1—Ru1—C5 | 68.40 (19) | C2—C3—H3 | 119.0 |
C6—Ru1—C5 | 38.58 (19) | C4—C3—H3 | 119.0 |
N1—Ru1—C2 | 165.29 (15) | Ru1—C3—H3 | 119.0 |
N2—Ru1—C2 | 101.06 (17) | C5—C4—C3 | 120.4 (5) |
C1—Ru1—C2 | 37.89 (18) | C5—C4—Ru1 | 71.5 (2) |
C6—Ru1—C2 | 67.59 (18) | C3—C4—Ru1 | 71.7 (3) |
C5—Ru1—C2 | 78.80 (19) | C5—C4—H4 | 119.3 |
N1—Ru1—C4 | 116.02 (17) | C3—C4—H4 | 119.3 |
N2—Ru1—C4 | 166.80 (17) | Ru1—C4—H4 | 119.3 |
C1—Ru1—C4 | 80.20 (18) | C4—C5—C6 | 120.4 (5) |
C6—Ru1—C4 | 68.00 (18) | C4—C5—Ru1 | 71.9 (3) |
C5—Ru1—C4 | 36.57 (19) | C6—C5—Ru1 | 70.5 (2) |
C2—Ru1—C4 | 66.2 (2) | C4—C5—H5 | 119.1 |
N1—Ru1—C3 | 151.14 (18) | C6—C5—H5 | 119.1 |
N2—Ru1—C3 | 130.37 (18) | Ru1—C5—H5 | 119.1 |
C1—Ru1—C3 | 67.60 (18) | N1—C11—C10 | 121.8 (3) |
C6—Ru1—C3 | 79.73 (17) | N1—C11—H11 | 119.1 |
C5—Ru1—C3 | 66.1 (2) | C10—C11—H11 | 119.1 |
C2—Ru1—C3 | 36.5 (2) | C9—C8—C7 | 119.3 (3) |
C4—Ru1—C3 | 36.7 (2) | C9—C8—H8 | 120.4 |
N1—Ru1—Cl1 | 84.01 (8) | C7—C8—H8 | 120.4 |
N2—Ru1—Cl1 | 86.34 (8) | C10—C9—C8 | 118.8 (3) |
C1—Ru1—Cl1 | 147.23 (14) | C10—C9—H9 | 120.6 |
C6—Ru1—Cl1 | 162.19 (14) | C8—C9—H9 | 120.6 |
C5—Ru1—Cl1 | 123.93 (14) | C9—C10—C11 | 119.6 (3) |
C2—Ru1—Cl1 | 110.55 (13) | C9—C10—H10 | 120.2 |
C4—Ru1—Cl1 | 94.76 (13) | C11—C10—H10 | 120.2 |
C3—Ru1—Cl1 | 89.00 (13) | C15—C14—C13 | 119.2 (3) |
C11—N1—C7 | 119.0 (3) | C15—C14—H14 | 120.4 |
C11—N1—Ru1 | 124.3 (2) | C13—C14—H14 | 120.4 |
C7—N1—Ru1 | 116.5 (2) | C14—C13—C12 | 119.1 (3) |
C16—N2—C12 | 118.5 (3) | C14—C13—H13 | 120.4 |
C16—N2—Ru1 | 125.0 (2) | C12—C13—H13 | 120.4 |
C12—N2—Ru1 | 116.5 (2) | N2—C16—C15 | 122.7 (3) |
N1—C7—C8 | 121.6 (3) | N2—C16—H16 | 118.6 |
N1—C7—C12 | 114.8 (3) | C15—C16—H16 | 118.6 |
C8—C7—C12 | 123.6 (3) | C16—C15—C14 | 119.0 (3) |
N2—C12—C13 | 121.4 (3) | C16—C15—H15 | 120.5 |
N2—C12—C7 | 114.6 (3) | C14—C15—H15 | 120.5 |
C13—C12—C7 | 124.0 (3) | C50—O51—H51 | 109.5 |
C3—C2—C1 | 120.7 (5) | O51—C50—H50A | 109.5 |
C3—C2—Ru1 | 71.8 (3) | O51—C50—H50B | 109.5 |
C1—C2—Ru1 | 69.8 (2) | H50A—C50—H50B | 109.5 |
C3—C2—H2 | 118.9 | O51—C50—H50C | 109.5 |
C1—C2—H2 | 118.9 | H50A—C50—H50C | 109.5 |
Ru1—C2—H2 | 118.9 | H50B—C50—H50C | 109.5 |
C6—C1—C2 | 119.4 (5) | C60—O61—H61 | 109.5 |
C6—C1—Ru1 | 71.9 (2) | O61—C60—H60A | 109.5 |
C2—C1—Ru1 | 72.3 (2) | O61—C60—H60B | 109.5 |
C6—C1—H1 | 120.0 | H60A—C60—H60B | 109.5 |
C2—C1—H1 | 120.0 | O61—C60—H60C | 109.5 |
Ru1—C1—H1 | 120.0 | H60A—C60—H60C | 109.5 |
C1—C6—C5 | 118.2 (4) | H60B—C60—H60C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O51—H51···Cl2 | 0.84 | 2.18 | 3.013 (4) | 170 |
O61—H61···Cl2 | 0.84 | 2.15 | 2.986 (6) | 171 |
Experimental details
Crystal data | |
Chemical formula | [RuCl(C6H6)(C10H8N2)]Cl·1.5CH4O |
Mr | 454.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 93 |
a, b, c (Å) | 6.9027 (11), 10.2346 (16), 12.895 (2) |
α, β, γ (°) | 85.597 (2), 84.531 (2), 75.875 (2) |
V (Å3) | 878.1 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.21 |
Crystal size (mm) | 0.36 × 0.34 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.660, 0.854 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4385, 3082, 2867 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.086, 1.06 |
No. of reflections | 3082 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.13, −0.69 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), publCIF (Westrip, 2008).
Ru1—N1 | 2.083 (3) | Ru1—C2 | 2.198 (4) |
Ru1—N2 | 2.084 (3) | Ru1—C4 | 2.198 (4) |
Ru1—C1 | 2.165 (4) | Ru1—C3 | 2.199 (4) |
Ru1—C6 | 2.186 (4) | Ru1—Cl1 | 2.4105 (9) |
Ru1—C5 | 2.193 (4) | ||
N1—Ru1—N2 | 77.18 (11) | N2—Ru1—Cl1 | 86.34 (8) |
N1—Ru1—Cl1 | 84.01 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O51—H51···Cl2 | 0.84 | 2.18 | 3.013 (4) | 170.0 |
O61—H61···Cl2 | 0.84 | 2.15 | 2.986 (6) | 170.5 |
Acknowledgements
The author acknowledges the extensive advice of Professor Peter Steel and funding from the New Zealand Foundation of Research, Science and Technology.
References
Bruker (2007). APEX2 (Version 2.1-4), SAINT (Version 7.34A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Freedman, D. A., Evju, J. K., Pomije, M. K. & Mann, K. R. (2001). Inorg. Chem. 40, 5711–5715. Web of Science CrossRef PubMed CAS Google Scholar
Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H. & Kasuga, K. (2007). Organometallics, 26, 702–712. Web of Science CSD CrossRef CAS Google Scholar
Lalrempuia, R. & Kollipara, M. R. (2003). Polyhedron, 22, 3155–3160. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The desire for a ruthenium complex which could be used to synthesize facially coordinated complexes led to the preparation of the starting material (1) (Freedman et al. 2001). It is convenient to use, in that the benzene ring can be readily removed in a photolytic reaction leaving ruthenium with three, vacant, facially arranged coordination sites. The RuII atom is in a distorted octahedral environment, Table 1, coordinating to an η6-benzene ring, a chelating 2,2'-bipyridine ligand and a chloride anion. Compared to other similar complexes from the literature, the cation is less bulky both around the benzene ring (Himeda et al., 2007) and in the bipyridine unit (Lalrempuia & Kollipara, 2003). This manifests itself in two angles. The angles between the mean plane of the bipyridine ligand and the mean plane of the benzene ring (60.47 (18)° in 1) become smaller as the ligands become larger due to additional substitution by methyl groups. This forces the two ligands become more parallel to each other. This effect is seen when either the bipyridine (32.24 ° Lalrempuia & Kollipara, 2003) or the benzene ring (36.04° Himeda et al. 2007) is larger due to additional substitution. With the smaller unsubstituted ligands of (1) the ruthenium atom is also more able to sit in the same plane as the bipyridine ligand, lying only 0.075 (1) Å above the plane in the direction of the choride ligand. The methanol solvate molecules form O—H···Cl hydrogen bonds to the chloride anion, Table 2, with D–H A distances of 3.013 (4) Å (O51–Cl2) and 2.986 (6) Å (O61–Cl2). The structure is further stabilized by offset π—π stacking interactions between adjacent N1, C7···C11 rings of the bipyridine ligands, with centroid to centroid distances of 3.472 (2) Å, related by the symmetry operation 1 - x, 1 - y, 1 - z, Fig. 2.